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Exercice 1

a) Le potentiel électrique généré sur le point P par les charges ponc-
tuelles (a), (b) et (c) est donné par :

Va→P =
1

4πϵ0

2q

(L/2)
(1)

Vb→P =
1

4πϵ0

−q

(L/2)
(2)

Vc→P =
1

4πϵ0

Q

(
√
3L/2)

(3)

Par superposition, il est possible d’exprimer le potentiel au point P
par la somme des potentiels appliqués sur le point P. Pour que il soit
nul,

0 = Va→P + Vb→P + Vc→P =
1

4πϵ0

1

L

(
4q − 2q +

2Q√
3

)
. (4)

Finalement, on obtient

Q = −
√
3q = −

√
3× 2× 10−6 ≃ −3.46× 10−6 (5)

b) L’énergie potentielle pour deux charges est :

U =
1

4πϵ0

q1q2
r12

(6)

L’énergie potentielle totale du système peut être, donc, écrite comme suit

Utot = Uab + Ubc + Uca (7)

=
1

4πϵ0

1

L
(−2q2 +

√
3q2 − 2

√
3q2) (8)

=
1

4× π × 8.8× 10−12

1

0.03
(−2−

√
3)(2× 10−6)2 (9)

≃ −4.5J. (10)

c) Comme le noyau de l’atome de fer contient 26 ptorons et 30
neutrons, sa masse et sa charge sont équivalentes à Qfer = 26e =
4.16×10−18C et mfer ≃ 56mi ≃ 9×10−26kg. Alors, la force appliquée
par les charges simples (a), (b) et (c) sur le noyau du fer peut être
exprimée comme suit
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Fa→fer =
1

4πϵ

(2q)(Qfer)

(L/2)2
êx (11)

=
1

4π × 80× (8.8× 10−12)

(2× 2× 10−6)(26× 1.6× 10−19)

(0.03/2)2
êx ≃ 8.36× 10−12N êx, (12)

Fb→fer =
1

4πϵ

(−q)(Qfer)

(L/2)2
(−êx) (13)

=
1

4π × 80× (8.8× 10−12)

(−2× 10−6)(26× 1.6× 10−19)

(0.03/2)2
(−êx) ≃ 4.18× 10−12N êx, (14)

Fc→fer =
1

4πϵ

(−
√
3q)(Qfer)

(
√
3L/2)2

(−êy) (15)

=
1

4π × 80× (8.8× 10−12)

(−
√
3× 2× 10−6)(26× 1.6× 10−19)

((
√
3× 0.03)/2)2

(−êy) ≃ 2.41× 10−12N êy. (16)

(17)

où l’on a divisée les forces par la constante diélectrique K, car dans un milieu diélectrique le champ électrique (et
donc les forces) sont réduits par ce facteur K. Alors l’amplitude de la force totale est égale à

Ftot =
√
F 2
x + F 2

y (18)

=
√
(12.54× 10−12)2 + (2.41× 10−12)2 ≃ 1.28× 10−11N (19)

En utilisant la relation trigonométrique de chaque composante, il est possible de trouver un angle

Ftot cos θ = Fx = Fa→fer + Fb→fer = 12.54× 10−12N (20)

Ftot sin θ = Fy = Fc→fer = 2.41× 10−12N (21)

conduisant à

tan θ =
Fy

Fx
=

2.41

12.54
(22)

θ = tan−1 2.41

12.54
≃ 10.9◦ (23)

Enfin, l’accélération peut être obtenue

a =
Ftot

mfer
=

1.28× 10−11

56× 1.6× 10−27
≃ 1.43× 1014m/s2 (24)

avec

ax =
Fx

mfer
≃ 1.4× 1014m/s2 (25)

ay =
Fy

mfer
≃ 2.7× 1013m/s2 (26)
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Exercice 2

a) Pour calculer la capacité de la sphère, on utilise la relation C = Q/∆V . On suppose que l’on a déposé une
charge Q sur la sphère, et on calcule la différence de potentiel que cette charge crée entre les armatures du
condensateur. Dans notre cas, on suppose que la deuxième armature est à l’infini.

On part de l’expression pour le champ électrique créé par une sphère uniformément chargée, en incluant l’effet
du diélectrique :

E =
Q

4πϵ0Kr2
(27)

K = 2 pour R < r < R+ a

K = 1 pour r > R+ a

Le potentiel de la sphère est calculé de la manière suivante :

∆V =

∫ ∞

R
Edr =

∫ R+a

R

Q

8πϵ0r2
dr +

∫ ∞

R+a

Q

4πϵ0r2
dr

=
Q

8πϵ0R
− Q

8πϵ0(R+ a)
+

Q

4πϵ0(R+ a)

=
5Q

24πϵ0R
(avec R = 2a)

Finalement, on utilise la définition de la capacité :

C =
Q

∆V
=

24

5
πϵ0R ≈ 13.4 pF (28)

b) Lorsque l’on connecte la batterie de V0 = 9 V, la capacité se charge selon la relation suivante :

Q(t) = CV0

(
1− e−

t
RC

)
(29)

On cherche le temps tb lorsque la capacité porte une charge Qb = 10−10 C.

Qb = Q(tb) = CV0

(
1− e−

tb
RC

)
(30)

tb = −RC ln

(
1− Qb

CV0

)
≈ 1.2 ns (31)

c) L’énergie nécessaire pour charger le condensateur est égale à l’intégrale de la puissance Pbatt = V0i(t) délivrée
par la batterie, avec le courant i(t) = dQ/dt :

Ebatt =

∫ tb

0
V0i(t)dt = V0Qb (32)

Remarquons que ceci est différent de l’énergie stockée dans le condensateur . En effet, une partie de l’énergie
délivrée par la batterie est dissipée par la résistance pendant la charge du condensateur. Si on ajoute la perte
totale sur la résistance (

∫ tb
0 Ri2(t)dt) et l’énergie finale dans le condensateur (Q2

b/(2C)), on retrouve le même
résultat.
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d) Si on ajoute une inductance au circuit, le temps de charge va augmenter.

Sans inductance, le courant traversant le circuit passe de 0 à V0/R
instantanément lorsque l’on connecte la batterie. L’inductance
ralentit la variation du courant, et donc le chargement du conden-
sateur. En effet, l’équation différentielle de ce circuit est :

L
d2Q

dt2
= −Q

C
−R

dQ

dt
+ V0 (33)

ce qui est équivalent à celle d’un oscillateur harmonique avec frot-
tement (R) et forçage (V0). L’inductance L joue le rôle de masse et
donc d’inertie. Comme on a, pour L = 1 nH, que

R2

L2
− 4

LC
> 0 (34)

alors on est en régime "sur-amorti", donc sans oscillations, et la
charge du condensateur va se faire de manière monotone mais avec
un temps plus long que sans L.

V0

R L
C
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Exercice 3

En raison de la variation du champ magnétique tout au long de
la tempête, le flux du champ magnétique à travers la boucle du
tuyau change également. La géométrie du problème est donnée dans
l’image :

a) Pour trouver le champ électrique dans l’espace du tuyau, nous pouvons utiliser la loi de Faraday. Nous pouvons
évaluer le changement de flux magnétique à travers la boucle de tuyau de la manière suivante :

Eind = −∂Φ

∂t
= −∂(B0 sinωtA cosϑ)

∂t
= −ωB0A cosωt cosϑ. (35)

Ici, nous avons pris en compte le fait qu’en fonction de ϑ la projection du champ magnétique sur la normale à la
boucle change, atteignant son maximum au pôle Nord.
Avant que l’air dans l’espace du tuyau ne soit ionisé, aucun courant ne circule dans le tuyau et Eind est appliqué
à l’espace entre les extrémités du tuyau. En supposant que le champ électrique atteigne une valeur critique, nous
pouvons estimer ωcrit.

Ecritd = max(Eind) = ωcritB0A; (36)

ωcrit =
Ecritd

B0A
=

3 · 106 V/m 0.001 m
2 · 10−7 T 2108 m2

= 150Hz. (37)

b) Pour la fréquence critique doublée, nous pouvons avoir cosϑ aussi petit que 0.5 et toujours remplir la première
égalité dans (36). Cela signifie que l’ionisation se produira partout dans la plage ϑ = 0− 60◦.

c) D’après le résultat de b), nous savons que pour ϑ = 30◦ l’air sera ionisé et le tuyau se transformera en boucle
avec résistance. Pour trouver la résistance, il faut connaître la longueur de la boucle et sa section. La longueur
peut être estimée en sachant que A = 100 km2 :

L = 2πR0 = 2π

√
A

π
= 35.45km. (38)

La section du tuyau est un anneau, son aire Across est égale à π
(
(r + e)2 − r2

)
= 0.28 m2. Enfin, nous pouvons

trouver la résistance du tuyau et le courant qui le traverse.

R =
ρL

Across
=

2.6 · 10−8 Ohm m 3.545 · 104m
0.28 m2

= 0.0033Ohm. (39)

Imax =
Vmax

R
=

2ωcritB0A cosϑ
ρL

Across

=
300Hz 2 · 10−7 T 108 m2

0.0033 Ohm

√
3

2
= 1.58MA. (40)

d) Nous pouvons utiliser l’expression que nous avons obtenue pour le courant pour trouver la puissance :

P (t) = RI2 = RI2max cos
2 ωt. (41)
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W = I2maxR

∫ T

0
cos2 ωtdt = 0.5I2maxR

∫ T

0
(1 + cos 2ωt)dt = 0.5I2maxR

(
T +

sin 2ωT

2ω

)
=

0.5(1.58 · 106A)20.0033 Ohm
(
3600 s +

0.85

300 Hz

)
= 1.48 · 1013 J. (42)

avec T le temps égal à la durée de la tempête.

Exercice 4

a) Si plusieurs petites antennes avaient la même fréquence, il y aurait des régions d’interférence constructives ou
destructives entre les signaux. Cela résulterait typiquement dans des zones sans signal.

b) L’intensité I de la radiation, i.e. d’une onde électromagnétique, peut s’écrire pour une onde d’émission sphérique
comme

I(r) =
Pantenne

4πr2
(43)

avec r la distance radiale de l’antenne. On veut que l’intensité soit plus grande que 5mW/m2 partout, i.e. le plus
loin de l’antenne.

Pantenne ≥ I · 4πr2 = 5 · 10−3W/m24π · (3.6 · 103m)2 = 814.3kW (44)

Dans le cas des 7 petites antennes, on voit que le rayon que chacune couvre, est environ un tiers de la grande
antenne, i.e. 3rpetit = rgrand. Comme l’intensité est proportionnelle à I ∝ r−2, nous avons que

Pantenne,petit =
1

9
Pantenne ≈ 90.5kW (45)

Alternative : Dans le cas des petites antennes, nous avons ici choisi r tel que les différentes sphères se touchent.
On pourrait aussi résoudre la situation des 7 petites antennes en cherchant à ne pas avoir de coins du tout avec
moins d’intensité. Dans ce cas, les sphères doivent se superposer un peu. Le rayon dans ce cas peut s’écrire comme
rpetit =

√
4/27 rgrand, ce qui vient de l’analyse de la distance entre chaque coin d’un triangle équilatéral au point

centrale du triangle. La puissance correspondante de chaque petite antenne serait Pantenne,petit = 120.6kW et
la réponse c) devient que 7 · Pantenne,petit > Pantenne. Cette réponse est considérée comme juste aussi, si pro-
prement argumentée. L’approximation que la surface de chaque petite antenne était 1/7 de la grande, tel que
rpetit =

√
1/7 rgrand et 7 · Pantenne,petit = Pantenne est considérée comme partiellement juste.

c) Dans le b), nous avons trouvé que la puissance des petites antennes est de 90.5kW. Pour le totales des 7
antennes, cela revient donc à 633kW et donc inférieur à la grande antenne. On note que l’énergie est la puissance
consommée fois le temps d’opération.

d) L’intensité de la radiation est égale à la moyenne temporelle de l’amplitude du vecteur de Poynting, i.e.

I = ⟨S⟩t = ⟨ 1

µ0
|E⃗ × B⃗|⟩t =

1

2
ϵ0cE

2
0 (46)

avec E0 l’amplitude du champ électrique. En calculant que l’intensité de la radiation de la grande antenne à une
distance de 80m est Iantenne(80m) ≈ 10.1W/m2, on peut calculer l’amplitude du champ électrique comme

E0(80m) =
√

2cµ0I(80m) ≈ 87.3V/m (47)
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On dépasse donc la limite de risque.

e) En utilisant le lien entre le champ électrique et magnétique d’une onde électromagnétique comme E = cB,
nous pouvons évaluer l’amplitude du champ magnétique comme

B0 =
E0

c
= 2.91 · 10−7T (48)

f) Comme nous savons que dans le cas des petites antennes, nous avons que Pantenne,petit =
1
9Pantenne, nous savons

donc que la distance minimale peut être 1/3 de la distance pour la grande antenne, car I = Pantenne/(4πr
2). Et

donc la distance minimale est de 26.7m. Si on calculait explicitement, on obtiendrait

I(r) =
Ppetite,antenne

4πr2
=

1

2
ϵ0cE

2
0 (49)

r =

√
Ppetite,antenne

4πI(80m)
=

√
Ppetite,antenne

2πϵ0cE2
0

(50)

g) La loi de Faraday s’écrit comme

ε = −
dΦC

B

dt
= −N

dΦB

dt
= −N

d

dt
(BA) = −N

d

dt

(
B
1

4
πD2

)
(51)

où N est le nombre de tours dans la bobine, ΦB est le flux magnétique à travers un tour de la bobine et nous
savons que B = B0sin(ωt). Avec cela, nous pouvons écrire

ε = −NB0
1

4
πD2 d

dt
(sin(ωt)) = −NB0ω

1

4
πD2cos(ωt) (52)

et pour l’application numérique, nous avons, avec ω = 2πf ,

|ε| = NB0ω
1

4
πD2 = 5170V (53)

Exercice 5

a) La puissance dissipée par la résistance R est P = I2R, où I est le courant passant à travers R vers le bas de
la figure. Nous devons donc trouver I.
La loi des noeuds nous dit que I = i1 − i2, où i2 est le courant passant par R2 vers le bas. Nous trouvons i2 avec
la loi des mailles, i2R2 − IR = 0. Donc il nous reste à trouver i1.
Nous avons deux options, nous pouvons réduire le circuit à une batterie et une seule résistance, Req (comme dans
la figure ci-dessous), ou nous pouvons résoudre le système directement avec la loi des mailles.

ReqV0

aa!!

i1
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Méthode 1 : Le circuit se réduit premièrement en combinant les deux résistances en parallèles (R2, R), qui
deviennent une résistance de (1/R2+1/R)−1, puis toutes les résistances restantes seront en série et nous trouvons,

Req = R0 +R1 + (1/R2 + 1/R)−1 (54)

Par la loi des mailles, nous savons que V0 + i1Req = 0, et donc :

i1 = − V0

Req
= − V0(R+R2)

(R0 +R1)(R+R2) +RR2
(55)

Cela nous donne :
I = i1 − i2 = − V0(R+R2)

(R0 +R1)(R+R2) +RR2
− IR

R2
(56)

I(1 +
R

R2
) = − V0(R+R2)

(R0 +R1)(R+R2) +RR2
(57)

I = − V0R2

(R0 +R1)(R+R2) +RR2
(58)

Méthode 2 : En prenant la grande maille externe du circuit, nous trouvons,

−i1R1 − IR− i1R0 − V0 = 0, (59)

i1 = −V0 + IR

R0 +R1
(60)

I = −V0 + IR

R0 +R1
− IR

R2
(61)

I(1 +
R

R2
+

R

R0 +R1
) = − V0

R0 +R1
(62)

I = − V0R2

(R0 +R1)(R+R2) +RR2
(63)

Maintenant que nous avons le courant I, nous pouvons calculer la puissance,

P = I2R =
V 2
0 R

2
2R

((R0 +R1)(R2 +R) +RR2)2
. (64)

Pour trouver la résistance R qui donne une puissance maximale, nous devons résoudre ∂P
∂R = 0 :

∂P

∂R
=

V 2
0 R

2
2

((R0 +R1)(R2 +R) +RR2)2

[
1− 2R(R0 +R1 +R2)

(R0 +R1)(R2 +R) +RR2

]
= 0 (65)

Cela nous donne :
R =

R0R2 +R1R2

R0 +R1 +R2
. (66)

L’application numérique nous donne R = 25 Ω pour une puissance maximale dissipée à travers R.

b) Dans la partie (a), nous avons trouvé que i1 = − V0
Req

. Pour R = 25 Ω, nous avons Req = 66.7 Ω. Donc nous
trouvons i1 = −1.5 A.
c) Dans la partie (a), nous avons trouvé :

i2 = −IR

R2
= − V0R

(R0 +R1)(R2 +R) +RR2
= −0.5 A (67)

8



R0

V0

R1

R2

R

L

C

aa!!

i1

d) La tension à travers la résistance est : VR(t) = V (t)− i1(t)(R1 +R0) et donc donc VR(t) et V (t) doivent être
en phase.
Le nouveau circuit est montré dans la figure ci-dessous. Nous avons maintenant que VR trouvé précédemment est
la tension totale sur la branche RLC. Donc, nous pouvons écrire VR(t) = I(t)Ztot, où Ztot est l’impédance totale
de la branche RLC.

Ztot = ZR + ZC + ZL = R+
1

iωC
+ iωL. (68)

Nous pouvons réécrire l’impédance totale comme Ztot = |Ztot|eiϕ, où ϕ représente la phase pour VR(t) et donc
aussi la phase relative à V (t), la source de tension alternative,

|Ztot| =
√

R2 + (ωL− 1

ωC
)2, (69)

ϕ = arctan

(
ωL− 1

ωC

R

)
. (70)

Pour garder la même phase rélative que précédemment, nous devons trouver la valeur de L pour ϕ = 0 :

0 = arctan

(
ωL− 1

ωC

R

)
→

ωL− 1
ωC

R
= 0 (71)

L =
1

ω2C
= 28 µH (72)
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