Cours de physique générale III (SV) — Prof. Ambrogio Fasoli — Swiss Plasma Center

Semestre Automne (20.01.2023)

Corrigé examen

Exercice 1

a) Le potentiel électrique généré sur le point P par les charges ponc-
tuelles (a), (b) et (c) est donné par :

1 2q
Vasp = mi(L/Q) (1)
I —q
Vosp = Rm (2)
_ L@
Vesp = 41eq (\/§L/2) ®)

Par superposition, il est possible d’exprimer le potentiel au point P
par la somme des potentiels appliqués sur le point P. Pour que il soit
nul,

1 1 2
0=Visp+Vosp+Veup= 7*(461—2(14-*62)-

drreg L V3 )

Finalement, on obtient
Q=-V3¢=—-V3x2x1075~ —-3.46x 1076 (5)
b) L’énergie potentielle pour deux charges est :

_ 1 ae
dmey 119

©Q

(@) +2q

L’énergie potentielle totale du systéme peut étre, donc, écrite comme suit

Utot = Uab + ch + Uca

11
= Trec Z(—2q2 +V3¢% - 2V3¢%)
1 1

T Ax7x88x10-120.03
~ —4.5J.

c) Comme le noyau de 'atome de fer contient 26 ptorons et 30
neutrons, sa masse et sa charge sont équivalentes & Qo = 26e =
4.16x10718C et myper =~ 56m; ~ 9x10~26kg. Alors, la force appliquée
par les charges simples (a), (b) et (c) sur le noyau du fer peut étre
exprimée comme suit
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ou l'on a divisée les forces par la constante diélectrique K, car dans un milieu diélectrique le champ électrique (et
donc les forces) sont réduits par ce facteur K. Alors 'amplitude de la force totale est égale a

Fiot = |/ F2 + F2 (18)

= /(12.54 x 10712)2 4+ (2.41 x 1012)2 ~ 1.28 x 1071 N (19)

En utilisant la relation trigonométrique de chaque composante, il est possible de trouver un angle

Fiotcos0 = Fy = Fy_yger + Fyser = 12.54 x 107 12N (20)
Fiotsinf = Fy = F, ey = 2.41 x 10712N (21)
conduisant &

F, 241
=T =" 22
tand =5 = 1551 (22)

2.41
0 =tan ' —— ~ 10.9° 2

an~! o0 =109 (23)

Enfin, accélération peut étre obtenue

_ Fe  1.28x107H

= = ~ 1.43 x 10"4m/s? 24
e 56 x 1.6 x 1027 X 10%m/s (24)
avec
_ Fx ~ 14 2

ag = ~1.4x10"m/s (25)

Mter
ay = 1~ o7 103m/s? (26)

= ~ 2.
Mier



Exercice 2

a)

Pour calculer la capacité de la sphére, on utilise la relation C = Q/AV. On suppose que 'on a déposé une
charge QQ sur la sphére, et on calcule la différence de potentiel que cette charge crée entre les armatures du
condensateur. Dans notre cas, on suppose que la deuxiéme armature est a I'infini.

On part de 'expression pour le champ électrique créé par une sphére uniformément chargée, en incluant 1’effet
du diélectrique :
Q

_ 27
4dreqKr? (27)

K=2powr R<r<R+a
K=1pourr>R+a

Le potentiel de la sphére est calculé de la maniére suivante :

o) R+a o
AV:/ EdT:/ der—k/ Qer
R r  8mer Raq 4meor

Q@ 9 . Q
8repR  8meg(R+a)  4meg(R + a)
__5Q
~ 24wegR

(avec R = 2a)

Finalement, on utilise la définition de la capacité :

o 24
= — = — ~ 13.4 pF 2
AV 57T€0R 34p (28)

Lorsque 'on connecte la batterie de Vj = 9 V, la capacité se charge selon la relation suivante :

Qt) = CVy (1- ¢ 70) (29)

On cherche le temps ¢, lorsque la capacité porte une charge Qp = 10710 C.
t
Qs = Qts) = OV (1 - 7% (30)

Qb
tp,=—RCln(1—— ) ~1.2 31
b n < Vo ns ( )
L’énergie nécessaire pour charger le condensateur est égale a I'intégrale de la puissance Pyyy = Vpi(t) délivrée

par la batterie, avec le courant i(t) = dQ/dt :

iy
it = / Voi(t)dt = VoQy (32)
0

Remarquons que ceci est différent de 1’énergie stockée dans le condensateur . En effet, une partie de ’énergie
délivrée par la batterie est dissipée par la résistance pendant la charge du condensateur. Si on ajoute la perte
totale sur la résistance ( fgb Ri?(t)dt) et I'énergie finale dans le condensateur (Q%/(2C)), on retrouve le méme
résultat.



d) Si on ajoute une inductance au circuit, le temps de charge va augmenter.

Sans inductance, le courant traversant le circuit passe de 0 a Vy/R
instantanément lorsque l'on connecte la batterie. L’inductance
ralentit la variation du courant, et donc le chargement du conden-
sateur. En effet, I’équation différentielle de ce circuit est :

d’Q Q ,dQ

a2z~ ¢ at " (33)

ce qui est équivalent a celle d’un oscillateur harmonique avec frot-
tement (R) et forcage (Vp). L’'inductance L joue le role de masse et

donc d’inertie. Comme on a, pour L = 1 nH, que Vo =
R? 4
———>0 34
L2 LC (34)

alors on est en régime "sur-amorti", donc sans oscillations, et la
charge du condensateur va se faire de maniére monotone mais avec
un temps plus long que sans L.




Exercice 3

Bosin(wt)

azoduc
En raison de la variation du champ magnétique tout au long de o

la tempéte, le flux du champ magnétique & travers la boucle du
tuyau change également. La géométrie du probléme est donnée dans
I’image : 0

a) Pour trouver le champ électrique dans I’espace du tuyau, nous pouvons utiliser la loi de Faraday. Nous pouvons
évaluer le changement de flux magnétique a travers la boucle de tuyau de la maniére suivante :
0®  O(BgsinwtAcos)

o5 p = —wByA coswt cos V. (35)

gind = -

Ici, nous avons pris en compte le fait qu’en fonction de ¥ la projection du champ magnétique sur la normale & la
boucle change, atteignant son maximum au pdle Nord.

Avant que 'air dans ’espace du tuyau ne soit ionisé, aucun courant ne circule dans le tuyau et &;,4 est appliqué
a ’espace entre les extrémités du tuyau. En supposant que le champ électrique atteigne une valeur critique, nous
pouvons estimer wept.

Eeritd = max(Eina) = werit BoA; (36)
Eeud  3-10° V/m 0.001 m
BoA ~ 2-107 T 2105 m?
b) Pour la fréquence critique doublée, nous pouvons avoir cos ¢ aussi petit que 0.5 et toujours remplir la premiére
égalité dans (36). Cela signifie que I'ionisation se produira partout dans la plage ¥ = 0 — 60°.

= 150H 2. (37)

Werit =

c) D’aprés le résultat de b), nous savons que pour ¢ = 30° I'air sera ionisé et le tuyau se transformera en boucle
avec résistance. Pour trouver la résistance, il faut connaitre la longueur de la boucle et sa section. La longueur
peut étre estimée en sachant que A = 100 km? :

A
L = 2Ry = 2my/ — = 35.45km. (38)

La section du tuyau est un anneau, son aire Ag.ss €st égale a 7 ((7“ + 6)2 — 7,2) = 0.28 m?. Enfin, nous pouvons
trouver la résistance du tuyau et le courant qui le traverse.

pL  2.6-107% Ohm m 3.545 - 10*m

R= = 0.00330hm. 39

Avross 0.28 m?2 m (39)
v QweritBoAcos?  300Hz 21077 T 10® m2 /3

Ima:p _ Ymaz _ Werit (2 COS _ VA m £ — 1.58MA. (40)
R L 0.0033 Ohm 2

d) Nous pouvons utiliser I'expression que nous avons obtenue pour le courant pour trouver la puissance :

P(t) = RI? = RI?

max

cos® wt. (41)



T T .
2wT
W = IfmmR/ cos® wtdt = O.5Iger/ (1 + cos2wt)dt = 0.5I%,, R <T + s1112w> =
0 0 w

300 Hz

0.5(1.58 - 106A)20.0033 Ohm <3600 s+ > —=1.48 101 J. (42)

avec T' le temps égal a la durée de la tempéte.

Exercice 4

a) Si plusieurs petites antennes avaient la méme fréquence, il y aurait des régions d’interférence constructives ou
destructives entre les signaux. Cela résulterait typiquement dans des zones sans signal.

b) L’intensité I de la radiation, i.e. d’une onde électromagnétique, peut s’écrire pour une onde d’émission sphérique
comme

P
I(r) = = o5 (43)

avec r la distance radiale de I’antenne. On veut que I'intensité soit plus grande que 5mW /m? partout, i.e. le plus
loin de 'antenne.

Pantenne > I -4mr? =5 -1073W/m?4r - (3.6 - 10°m)? = 814.3kW (44)

Dans le cas des 7 petites antennes, on voit que le rayon que chacune couvre, est environ un tiers de la grande

antenne, i.e. 3rperit = Tgrand- Comme l'intensité est proportionnelle a I o r~2, nous avons que

1
Pantenne,petit = §Pantenne ~ 90.5kW (45)

Alternative : Dans le cas des petites antennes, nous avons ici choisi r tel que les différentes sphéres se touchent.
On pourrait aussi résoudre la situation des 7 petites antennes en cherchant & ne pas avoir de coins du tout avec
moins d’intensité. Dans ce cas, les sphéres doivent se superposer un peu. Le rayon dans ce cas peut s’écrire comme
Tpetit = \/4/27 Tgrand, ce qui vient de I'analyse de la distance entre chaque coin d'un triangle équilatéral au point
centrale du triangle. La puissance correspondante de chaque petite antenne serait Pyptennepetit = 120.6kW et
la réponse c) devient que 7 - Puptennepetit > Pantenne. Cette réponse est considérée comme juste aussi, si pro-
prement argumentée. L’approximation que la surface de chaque petite antenne était 1/7 de la grande, tel que
Tpetit = \/ 1/7 Tgrand €t 7+ Pantenne,petit = Pantenne €st considérée comme partiellement juste.

c) Dans le b), nous avons trouvé que la puissance des petites antennes est de 90.5kW. Pour le totales des 7
antennes, cela revient donc a 633kW et donc inférieur & la grande antenne. On note que ’énergie est la puissance
consommeée fois le temps d’opération.

d) L’intensité de la radiation est égale a la moyenne temporelle de 'amplitude du vecteur de Poynting, i.e.

1 - = 1
I=(S);=(—|E x B|); = ~eocE} (46)
I 2

avec Fy ’amplitude du champ électrique. En calculant que 'intensité de la radiation de la grande antenne a une
distance de 80m est Iyptenne(80m) ~ 10.1W/ m?, on peut calculer ’amplitude du champ électrique comme

Ey(80m) = /2cuol(80m) ~ 87.3V/m (47)



On dépasse donc la limite de risque.

e) En utilisant le lien entre le champ électrique et magnétique d’une onde électromagnétique comme E = ¢B,
nous pouvons évaluer 'amplitude du champ magnétique comme

E

By="2=291-10"T (48)

c
f) Comme nous savons que dans le cas des petites antennes, nous avons que Pyptenne petit = %Pameme, Nnous savons
donc que la distance minimale peut étre 1/3 de la distance pour la grande antenne, car I = Pypenne/ (4772). Et
donc la distance minimale est de 26.7m. Si on calculait explicitement, on obtiendrait

() = Ppetz‘Z,Tz:;tenne _ %eoc 2 (49)
- \/ Phetite antenne _ \/ Ppetite, antenne (50)
47 I(80m) 2megc Bl
g) La loi de Faraday s’écrit comme
= ‘df = _Nd% = —N% (BA) = —N% (BiwD2> (51)

ou N est le nombre de tours dans la bobine, ®p est le flux magnétique a travers un tour de la bobine et nous
savons que B = Bysin(wt). Avec cela, nous pouvons écrire

1 d 1
€= —NBUZWDQ% (sin(wt)) = —NBowaD%os(wt) (52)

et pour 'application numérique, nous avons, avec w = 27 f,

1
le| = NB()UJZTI'DZ = 5170V (53)

Exercice 5

a) La puissance dissipée par la résistance R est P = I?R, ou I est le courant passant & travers R vers le bas de
la figure. Nous devons donc trouver I.

La loi des noeuds nous dit que I = i1 — 73, ol 42 est le courant passant par Ro vers le bas. Nous trouvons 75 avec
la loi des mailles, 19 Ry — IR = 0. Donc il nous reste a trouver iy.

Nous avons deux options, nous pouvons réduire le circuit & une batterie et une seule résistance, R, (comme dans
la figure ci-dessous), ou nous pouvons résoudre le systéme directement avec la loi des mailles.

1

s 2
1




Méthode 1 : Le circuit se réduit premiérement en combinant les deux résistances en paralléles (Re, R), qui
deviennent une résistance de (1/Ry+1/R) ™!, puis toutes les résistances restantes seront en série et nous trouvons,

Reg=Ro+ R+ (1/Ry+1/R)™? (54)
Par la loi des mailles, nous savons que Vg + i1 Req = 0, et donc :

! Req (Ro+ R1)(R+ R2) + RRy

Cela nous donne :

) ) Vo(R + R2) IR
T —ir — 0 — — _ 56
L2 T T Ry + R1)(R+ Rs) + RR2  R» (56)
R Vo(R + Ra)
114+ —=—)=— 57
( Rz) (Ro+ R1)(R+ R2) + RRy (57)
Vo R
I =— 58
(Ro+ R1)(R+ R2) + RR» (58)
Méthode 2 : En prenant la grande maille externe du circuit, nous trouvons,
—i1R1 — IR — 11 Ry — V =0, (59)
Vo+ IR
_ 60
“ Ry + R; ( )
VWw+IR IR
= _ _ 61
Ry + Ry Ry ( )
R R Vo
I+ + = - 62
( Ry R0+R1) Ry + Ry ( )
Vo R
I =— 63
(Ro+ R1)(R+ R2) + RR» (63)
Maintenant que nous avons le courant I, nous pouvons calculer la puissance,
V2R2R
P=1I’R= 0°-2 : 64
((Ro + R1)(Ra + R) + RRy)? (64)
Pour trouver la résistance R qui donne une puissance maximale, nous devons résoudre % =0:
o°P VER3 B 2R(Ry + R1 + R») _0 (65)
OR ~ ((Ro+ R1)(Rz2+ R) + RRp)? (Ro+ R1)(R2 + R) + RRy|
Cela nous donne : RoRo+ RiR
R = -0tz Ahe 66
Ro+ R1+ Ry ( )
L’application numérique nous donne R = 25 ) pour une puissance maximale dissipée a travers R.
b) Dans la partie (a), nous avons trouvé que i; = —RL;. Pour R = 25 (2, nous avons R.; = 66.7 2. Donc nous
trouvons i; = —1.5 A.
c) Dans la partie (a), nous avons trouvé :
1
= Yokt — 054 (67)

Ry (Ro + Rl)(RQ + R) + RRy o



d) La tension a travers la résistance est : Vg(t) = V() —i1(¢)(R1 + Rop) et donc donc Vg(t) et V (¢) doivent étre
en phase.

Le nouveau circuit est montré dans la figure ci-dessous. Nous avons maintenant que Vg trouvé précédemment est
la tension totale sur la branche RLC. Donc, nous pouvons écrire Vg(t) = I(t) Zior, o0l Zio est 'impédance totale

de la branche RLC. .
Ziot =24r+ Zc+ 2, = R+ — +wwlL. (68)
wC
Nous pouvons réécrire 'impédance totale comme Zyy = |Zior|e’®, ot ¢ représente la phase pour Vz(t) et donc
aussi la phase relative & V(t), la source de tension alternative,

1
|Ztot| = \/R2 + ((A)L — w)% (69)
I — L
¢ = arctan <W> . (70)
R
Pour garder la méme phase rélative que précédemment, nous devons trouver la valeur de L pour ¢ =0 :
wL — L wL — 2
0 = arct wC ) — wC =0 71
sectan < = ) - )
1



