
Cours de physique générale III (SV) – Prof. Ambrogio Fasoli – Swiss Plasma Center

Semestre Automne (20.01.2022)

Corrigé de l’examen

Exercice 1 (20 points)

a) Principe de superposition : E⃗ = E⃗plan − E⃗disque

Pour trouver le champ créé par le plan, on applique la loi de
Gauss

Va =
1

4πϵ0
(1)

2EplanS =
σ0S

ϵ0
(2)

Eplan =
σ0
2ϵ0

(3)

Le champ créé par le disque n’est pas assez symétrique pour
pouvoir facilement appliquer la loi de Gauss. Alors on décom-
pose le disque en éléments de charge infinitésimaux dq. Chaque
élément crée un champ dE⃗ :

dE⃗ =
dq

4πϵ0l2
· l⃗

|l|
(4)

avec l =
√
r2 + z2.

Par symétrie, on s’attend à un champ uniquement selon êz sur l’axe du disque. Puisque les autres compo-
santes de E⃗ vont s’annuler lors de l’intégration, on peut simplifier le calcul en ne tenant compte que de la
composante Ez

dEz = dE cosα = dE · z
l

(5)

On exprime dq en coordonnées cylindriques

dq = σ0dS = σ0rdrdϕ (6)

On obtient alors l’expression pour le champ infinitésimal créé par chaque point du disque

dEz =
σ0

4πϵ0z2
· rdrdϕ(

1 + r2

z2

) 3
2

(7)

Pour utiliser l’intégrale indiqué dans l’énoncé, on effectue un changement de variable
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Pour utiliser l’intégrale indiqué dans l’énoncé, on effectue un changement de variable

x =
r2

z2

dx =
2r

z2
dr

dEz =
σ0
8πϵ0

· dxdϕ

(1 + x)
3
2

(8)

Edisque =

∫ ϕ=2π

ϕ=0

∫ r=R

r=0
dEz (9)

Edisque = 2π

∫ x=R2

z2

x=0

σ0
8πϵ0

· dx

(1 + x)
3
2

(10)

Edisque =
σ0
2ϵ0

(
1− z√

R2 + z2

)
(11)

On peut finalement combiner les contributions du plan et du disque pour trouver le champ total sur l’axe z

E(z) =
σ0
2ϵ0

· z√
R2 + z2

(12)

b)

Le cylindre est immergé dans le champ (noté Eext) calculé au
point a), et va créer un champ électrique Epol supplémentaire qui
s’y oppose. Par définition de la constante diélectrique, le champ
à l’intérieur du cylindre sera réduit d’un facteur K

Eext − Epol =
Eext

K
(13)

Epol =

(
1− 1

K

)
Eext (14)

Ce champ de polarisation est dû à des charges liés qui apparaissent sur les faces du cylindre, avec une
densité de charge σpol. Epol peut donc être approximé comme le champ créé par un condensateur :

Epol =
σpol
ϵ0

(15)

En remplaçant le champ Eext par l’expression trouvé au point a) et évalué en z = H, on obtient

σpol =
σ0H

2
√
R2 +H2

(
K − 1

K

)
(16)

Pour trouver la charge totale de polarisation, on multiplie σpol par l’aire de la face du cylindre r2π :

Qpol =
σ0Hr2π

2
√
R2 +H2

(
K − 1

K

)
(17)
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c)

Les charges de polarisation vont subir une force F = qE dû au champ externe créé par le plan. La force
totale sur le cylindre est donné par

F = Qpol · E(z = H + h)−Qpol · E(z = H) (18)

F = Qpol
σ0
2ϵ0

(
H + h√

R2 + (H + h)2
− H√

R2 +H2

)
(19)

En faisant l’approximation H + h ≈ H dans le dénominateur, on a

F ≈ Qpol
σ0
2ϵ0

h√
R2 +H2

(20)
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Exercice 2 (20 points)

a) La loi de Gauss nous permet de lier le champ élec-
trique à la charge enfermée dans une surface Gaus-
sienne fermée,

ϕ = E⃗ · dS⃗ =
Q

ϵ0
. (21)

Considérant le cylindre bleu dans la figure, nous avons
ϕ = ϕsup + ϕinf + ϕlat, où ϕsup = 0 car le champ
électrique à l’intérieur d’un conducteur est nul.

De plus, ϕlat = 0 car E⃗inf et dS⃗lat sont perpendiculaires. Cela nous laisse,

ϕ = ϕinf = EinfS =
σinfS

ϵ0
(22)

Pour une densité de charge positive sur le côté inférieur de 2, nous avons un champ électrique vers le bas,
E⃗inf = −Einfe⃗y. Donc, on trouve,

E⃗inf = −σinf

ϵ0
e⃗y (23)

b) Nous pouvons trouver la différence de potentiel entre deux plaques à partir du champ électrique, ∆V =
−Ed, où d est la distance entre les plaques. Alors, nous avons,

V3 − V2 = −Einfdinf, (24)

et,
V2 − V1 = Esupdsup. (25)

De suite, de la façon que dans la partie a), nous trovons,

E⃗sup = σsup/ϵ0e⃗y. (26)

Donc, nous trouvons,

V3 − V2 = −σinfdinf

ϵ0
, (27)

et,

V2 − V1 =
σsupdsup

ϵ0
. (28)

c) Plaques 2 et 3 sont connectées à terre et donc V1 = V3 = 0, et puis,

σsupdsup = σinfdinf. (29)

De plus, nous savons que la charge totale de la plaque 2, Q, doit être répartie seulement sur les côtés de
surface S de la plaque,

Q = σsupS + σinfS. (30)
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Ces deux équations servent à trouver les deux inconnus, σsup et σinf,

σsup =
Q

S(1 + dsup/dinf)
= 9× 10−6Cm−2, (31)

et
σinf =

Q

S(1 + dinf/dsup)
= 3× 10−6Cm−2. (32)

Vu que V1 = V3 = 0, le potentiel V2 est,

V2 =
σsupdsup

ϵ0
=

9× 10−6 · 1× 10−3

8.85× 10−12
= 1.02× 103 V (33)

5



Exercice 3 (20 points)

a) Lorsque l’interrupteur passe en position B, le circuit change
comme indiqué sur la figure ci-contre.
En appliquant la loi de Kirchoff au maillage de gouche on ob-
tient :

V0 −R1i1 − VC1 −R2i1 = 0 (34)

Req = R1 +R2 (35)

VC1 = V0 −Reqi1 (36)

Pour trouver les équations du transitoire pour t> 0 on écrit :

Q1

C1
= V0 −Req

dQ

dt
(37)∫ Q

QC10

dQ

CV0 −Q
=

1

RC

∫ t

0
dt (38)

D’où l’on trouve :
VC1 = V0 + e−

t
RC
(
VC10

− V0

)
(39)

Il est donc nécessaire de connaître l’état initial du condensateur.
Avant que l’interrupteur ne soit déplacé sur B, le système était
dans un état stationnaire et le circuit peut être représenté comme
sur la figure ci-contre. Le condensateur C1 est complètement
chargé donc aucun courant ne circulera dans la résistance R2.

En appliquant la loi de Kirchoff au maillage de gouche on obtient :

VC10
= V0 − i10R1 (40)

Pour calculer i10 nous appliquons la loi de Kirchhoff au maillage extérieur.

V0 = i10(R1 +R3) (41)

Donc :
i10 =

V0

R1 +R3
=

200

20 + 30
= 4A (42)

VC10
= V0 − i10R1 = 200− 4 · 20 = 120V (43)

L’indice "0" de i10 et VC10
indique que nous nous référons aux conditions stationnaires correspondant au

moment t = 0.
Nous pouvons maintenant appliquer l’équation (39) :

VC1 = 200 + e−
t

625·10−4 (120− 200) = 200− 80e−
t

625·10−4 V (44)
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b) Pour t > 0, la boucle droite du circuit correspond à un circuit LC.
Le condensateur C2 va commencer à se charger et par la suite le courant va osciller entre les deux composants
suivant la loi :

iL(t) = I0cos(ωt+ ϕ) (45)

Les valeurs de I0 et ϕ sont déterminées en connaissant les conditions initiales. Alors que i = dQ
dt la charge

dans le condensateur suivra évidemment la loi :

QC2(t) =
I0
ω
sin(ωt+ ϕ) = Q0sin(ωt+ ϕ) (46)

A t = 0, C2 est complètement déchargé donc :

QC2(t = 0) = Q0sin(ϕ) = 0 (47)

Donc :
ϕ = 0 (48)

A l’instant t = 0 le courant circulant dans l’inductance L correspond à i10 calculé dans l’équation (42).

iL(t = 0) = I0cos(0) = i10 (49)

Donc :
I0 = 4A (50)

Et enfin :

ω =

√
1

LC2
=

√
1

160 · 10−3 · 625 · 10−6
= 100rad/s (51)

iL(t) = 4cos(100t)A (52)

c) Le temps nécessaire à l’énergie magnétique accumulée dans l’inducteur pour passer de la valeur maximale
(t = 0) à zéro est égal au quart de la période d’oscillation T .

∆t =
T

4
=

1

4f
=

2π

4ω
=

2π

400
= 0, 016s (53)

7



Exercice 4 (20 points)

a) Since the conducting bar is connected to the battery, there is
a current flowing through it I0 = E/R, which given the image is
flowing from right to left. That in turn means that the Lorentz
force is acting on the bar F⃗ = I⃗ lB⃗ and is directed upwards. The
only other force acting on the bar is gravity.
If the bar is in a state of balance, it means that both its velocity
ż and acceleration z̈ are zero. That means the force balance can
be written as :

0 = −mg +
ElB
R

(54)

And the value of magnetic field required to balance the bar is
B = mgR/(El) = 0.1225T .
b) In a more general case, the bar might be moving along the
direction z. That means that we can write the equation of motion
as :

m ¨z(t) = −mg + I(t)lB; (55)

Initially at t = 0 the bar is not moving, so I = I0. However,
once it starts moving, the area encircled by the circuit will start
changing, meaning the magnetic flux through it will start chan-
ging too. That means, that due to Faraday’s law of induction,
an additional voltage EB = −∂ΦB

∂t is induced. Since the magnetic
field is constant, the change of the flux is directly connected to
the change of the area encircled but the circuit :

EB = −∂ΦB

∂t
= −B

∂A

∂t
= −B

∂lz

∂t
= −lBż; (56)

This induced e.m.f. acts in a way to compensate for the change of
magnetic flux. This means that the total current running through
the circuit is given by the formula I = I0 − lBż

R .
Finally, we can write the total equation of motion :

mz̈ = −mg +
ElB
R

− l2B2ż

R
; (57)

c) To find the behavior of the bar, we would in principle need to solve equation (57), which can be done
by integrating it once in time and then solving homogeneous part of it. However, since we only want to
find the terminal velocity at infinite time, we can just consider the situation when acceleration of the bar
becomes zero z̈ = 0. In such a case, equation (57) gives us :
Finally, we can write the total equation of motion :

0 = −mg +
ElB
R

− l2B2ż

R
; (58)
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And we can find the terminal velocity ż :

ż =
ElB −mgR

l2B2
=

6 ∗ 0.1 ∗ 0.8− 9.8 ∗ 0.025 ∗ 0.3
0.120.82

=
0.48− 0.0735

0.0064
= 63.52

m

s
; (36)

From this expression we can confirm that condition given in b) results in the bar being stationary. Since
the magnetic field is stronger than this "critical" value, it overpowers gravity and the bar ends up flying
upwards with a velocity of 63.52m/s.

Exercice 5 (20 points)

a) L’onde se propage selon z. La vitesse de propagation est u = c
n = c√

Kair
≈ c = 3×108 m/s, et la longeur

d’onde est λ = u/f ≈ 0.3 m.

b) Le champ magnétique de l’onde satisfait l’équation de Faraday ∂B⃗
∂t = −∇× E⃗ =

∂Ey

∂z e⃗x − ∂Ex
∂z e⃗y. Donc

on trouve que ∂B⃗
∂t = −E0k sin (kz − ωt)e⃗x + E0k cos (kz − ωt)e⃗y. En intégrant une fois dans le temps, on

trouve B⃗ = −B0 cos (kz − ωt)e⃗x −B0 sin (kz − ωt)e⃗y, avec B0 = E0k/ω = E0/c.

c) L’intensité d’une onde électromagnétique est donnée par I = ⟨|S⃗|⟩, où S⃗ = E⃗ × B⃗/µ0 est le vecteur
de Poynting, qui n’a qu’une composante selon z. Alors, Sz = (ExBy − EyBx)/µ0 = E0B0(sin

2 (kz − ωt) +
cos2 (kz − ωt))/µ0 = E0B0/µ0 qui est constant dans le temps, et donc I = cϵ0E

2
0 . Finalement, on trouve

E0 =
√

I/cϵ0 ≈ 1.372 V/m. On en déduit alors que B0 = E0/c ≈ 4.574 nT.

d) La lame agit comme un miroir parfait et donc la pression de radiation est p = 2I/c. La force sur la
surface (100 m2) de la lame est donc F = pA = 2I × 100/c ≈ 3.33 nN (force ridicule).

e) La position du premier maximum après le pic d’intensité est tel que kD sin (θ)/2 ≈ 3π/2, avec sin θ ≈
L/H, et donc H = 2DL/3λ. Alors, H = 2× 1× 3/(3× 0.3) = 6.6 m. Noter que techniquement la valeur de
u = kD sin (θ)/2 au pic est donnée par la solution de l’équation ( sin

2(u)
u2 )′ = 0, ce qui donne tan(u) = u et

donc u ≈ 4.5 ce qui est proche de 3π/2 ≈ 4.7.
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