Cours de physique générale III (SV) — Prof. Ambrogio Fasoli — Swiss Plasma Center

Semestre Automne (25.01.2021)

Corrigé de ’examen

Exercice 1 (20 points)

a) On déssine les lignes de champ de maniére qualitative. On distingue les propriétés suivantes :

Extérieur de la grande sphére :

— Lignes de champ radiales dirigés vers l'extérieur. i\
— La densité des lignes est plus petite du coté de la cavité. R 7~ % /
1V .
Intérieur de la cavité : — S
— Le champ pointe vers le haut sur ’axe central. / / I \_,
v

— Ailleurs, le champ est incliné vers le haut et vers I’axe central.

b) On peut utiliser le principe de superposition pour décomposer le systéme en deux sphéres remplies. On
a une sphére de rayon 2R et de densité de charge p centrée en (0,0,0) et une deuxiéme sphére de rayon R,
densité de charge —p centrée en (0,R,0).

On utilise la loi de Gauss pour trouver le champ électrique créé par chacune des sphéres :

/E.d}x:QS (1)
S

€0
avec S la surface de Gauss qu’on devra choisir nous-méme, et Qg la quantité de charge qui se trouve a
Iintérieur de S. Ici, on applique la loi de Gauss & une sphére avec une densité de charge volumique uni-
forme. L’idée est de prendre une surface de Gauss sphérique et de rayon r variable, ce qui nous permettra
de trouver le champ électrique pour n’importe quel r.

Par symétrie, le champ électrique créé par chacune des sphéres pointe dans la direction radiale et sa norme
sera constante sur la surface de Gauss S. On a donc :

/ E-dA = E(r) - Amr? (2)
S

On doit maintenant calculer Qg. Comme chaque sphére a une densité de charge volumique uniforme, la
charge dans S ne dépendra que du volume contenu dans S, et donc du rayon r qu’on choisit. Pour la grande
sphére,

Qs(r) = p%m‘” (3)



et pour petite spheére,
4
Qs(r') = —pymr”
ou 7’ est la distance & un point mesurée depuis le centre de la petite sphére, en (0, R, 0).
Finalement, les champs E et Ey crées par la grande et petite sphére, respectivement, sont
- pr .
Ey(r) =+ —7 5
(1) =+ 2 )
/
.
Ey(r) = — £o (6)
3€o

o 7 et 7' sont les vecteurs unitaires radiaux pour chacune des sphéres.
Sur I'axe y, le champ doit par symétrie étre entiérement selon y, donc on évalue et ajoute simplement les

champs aux 3 points donnés, en faisant attention au signe de chaque contribution :

Mg =1,

|
=

T (07070)7 74:07 r
Py =+1, Ey:-i-BEOQ

— (O,R,0), r=R, =0, 7-5=
— (02R0), r=2R, r'=R, i-g=+1, ¥ j=+1, E, =+
Application numeérique :
— 28 —06V/m
c) La force a laquelle est sujette une charge gy = —30e, placée au centre de la cavité, est :
— F=qkE

— |F| =30e£E =288.10"18 N
3eg

d) La direction de cette force est vers le bas, selon —g.



Exercice 2 (20 points)

a) On commence par I’évaluation de la tension & travers les résistances pour calculer V,
V= Va = R, (7)

V, — 0 = Ryi. (8)

Avec ces deux équations, on peut trouver le courant qui passe a travers les résistances, qui est le méme car
elles sont en série,

Vv
) = — = 1.5 A. 9
! Ri 4+ Ry ©)

Donc on trouve V, =45V .

Maintenant, on doit considérer la tension autour des condensateurs pour trouver V;, (méme si le courant a
travers les condensateurs est nul avec S ouvert),

@

V—Vb—*cl, (10)
Q2

Vi-0=5 (11)

Vu que les condensateurs sont en série, ils auront la méme charge, donc @1 = @2 = @, et on trouve donc,

en combinant ces deux équations,
Cy

Vp=——"7--V
b Ch1+Cy

(12)
Ce qui donne V, = 12V.

Cela nous donne une différence de potentiel V;, — V, = 7.5V avec V, > V.

b) Quand S est fermé, on a que V, =V}, toujours. A ¢ = 0, la charge dans les condensateurs est la méme que
quand S était ouvert, alors V} ne change pas, et puis V, = V}, = 12V. Puis, un courant commence & passer a
travers les condensateurs et la charge sur chaque condensateur commence a changer. Aprés un long temps,
a t = oo, il n’aura plus de courant a travers les condensateurs de nouveau, et puis on aura V, = 4.5V,
comme quand S était ouvert. Puis, vu que V}, = V,, toujours, on aura Vj, = 4.5V.

c) On veut trouver le temps charactéristique pour la rééquilibration de la charge entre les deux branches, 7.



V=18.0V

On doit premiérement trouver 1’équation qui décrit la dynamique de ce
systéme, et pour cela on utilise la loi de Kirchhoff. On défini les courants
entre chaque noeud comme dans la figure, et puis on écrit de la loi de
Kirchhoff,

iRl =tpo + 1 (13)
ic1+1 =109 (14)

et donc
iRl =1iRr2 +ic2 — ic1- (15)

Puis, en se servant de V,, = V;, = U(t), on trouve,

(V-U®) _UW (o, dVe, _(, dVe,

Ry Ry dt dt ’

out Vi, et Vi, sont le tensions aux bornes de chaque condensateur : Vo, =V —U et Vg, = U.

(V-U(t) U() dU (t) dU (t)
i = R + Cy a + C T
au v 1 1
Ci+Cy)—=——-|=—+—=—|U
( Lt 2) dt R, (R1+R2>
On peut récrire cela comme,
w__ v U
dt R1(01 + 02) T
ou on identifie O 4O
= RefiCoff = ————2— = 20.25
T e R T 1/R, Hs
Exercice 3 (points)
a) Tout d’abord on exprime le flux magnétique a travers le cir-
cuit,
dp = /é -ds = |Bx (21) Ky

>
7/ Y
si on appelle x la position de la barre selon ’axe horizontal avec
x = 0 la position de la résistance. Si la barre bouge vers la
gauche, donc si elle a une vitesse v, < 0, alors la variation de ce R

-« o
QA

flux est

ddp
—2 = Bu,l <0 22
o Vgl < (22)

et donc la force électromotrice induite dans le circuit est £ > 0,
ce qui va induire un courant ¢ dans le sens horaire (dessin).

4

6 uF

3 uF

(16)



b) La puissance instantanée est P = %, et donc la puissance moyenne est, en utilisant les résultats du
point (a),

(€?) B2 B2

()= == o (23)

On résoud pour la résistance,

B2
R= =115 (.29 O (24)
(P)

c) La vitesse de la barre oscille de maniére périodique, donc on peut écrire

v(t) = vg cos(wt) (25)

avec Uyms = 4/ (V%) = %, donc vg = v2uums. De maniére similaire, en intégrant la vitesse, on trouve la
position de la barre, qui elle aussi oscille de maniére périodique, avec la méme fréquence,

v
x(t) = - sin(wt) = Tpax sin(wt) (26)
w
et I’excursion totale est 2z,,,x = 0.6, donc la fréquence est donnée par

f o w Vo o \/ivrms

= = ~22H 27
2 2MTmax 2T Tmax 5 (27)

Exercice 4 (20 points)

— L’onde électromagnétique, et donc les champs élec-
triques et magnétiques, se propage le long de 'axe .

— Puisque 'onde est polarisée dans la direction de I'axe > >
y, le champ électrique n’a que la composante E,,. / /
B

— La perturbation du champ magnétique se produit donc dans la direction z : il a seulement la com-
posante B,.

4

— La fonction qui décrit ce type d’onde électromagnétique est donc

E(z,t) = Ey(x,t) = Egcos(kx — wt) (28)
B(z,t) = B,(x,t) = Bocos(kx — wt) (29)
avec Ey/By = ¢, k =21/

a) Maintenant, on considére l'effet du champ électrique de 'onde sur le circuit.



— La force électromotrice générée dans le circuit par le
champ électrique est :

EE = 7{ Ey(z,t)e, - dl (30)
C

avec C le contour de le circuit.

— Cette intégrale est égale a zéro dans les segments de circuit paralléles a I'axe x, car Eyé;, - dl =0.

— On a donc :
EE =€E,p T €Eop  (voir le dessin)

B D
2 A
= Eocos(—wt)/ dy + Eocos(—w— - wt)/ dy
A A2 c

= Eogcos(wt) + Eogcos(wt)
= EyAcos(wt)

b) Maintenant, on considére l'effet du champ magnétique de ’onde sur le circuit.

— La force électromotrice générée dans le circuit par le champ magnétique est :

e 15
B= """

— Le flux magnétique est :
bp = / B, (x,t)é; - idS
S

(31)

(32)

(33)
(34)

(35)

(36)

avec S la surface du circuit, délimitée par le contour C, et 71 le vecteur unitaire normal & la surface

élémentaire dS et orienté selon la régle de la main droite.

— Dans ce cas, en considérant la circulation dans le sens ABCD, 7idS = —dzdye;

A (2
Op = —2/ Bycos(kx — wt)dx
0

et donc
ABy, . A .
bp = —5 = (sin(k3 — wt) — sin(—
B 5 % (sm(k2 wt) — sin(—wt))
B
= —5?0(51'71(% — wt) + sin(wt))
B
= —)\?Osin(wt)

(37)



— Finalement, la f.é.m est donnée par

B = /\%wcos(wt) (41)
= AcBycos(wt) (42)
= AEycos(wt) (43)

c) Les champs électriques et magnétiques sont liés entre eux. En particulier, par la loi de Faraday la force
force électromotrice induite ey = €p, puisque

—

0B - -
— =—-VXxE 44
5 x (44)
ou de maniére plus évidente en forme intégrale,
L d [ = .
E-dl=—-— [ B-ndS (45)
c dat Js

Exercice 5 (20 points)

a) Le signal peut étre réduit a cause du J/ 7
phénomeéne d’interférence : si les deux ondes n
(directe et réfléchie) se superposent de maniére ¢
destructive alors le signal est localement annulé.
Ceci requiert un déphasage particulier. rT" > “Too

< > LI

D
b) Pour avoir interférence destructive maximale, il faut que (voir dessin ci-dessus)
A
20— D = 5 (46)

avec | = \/H? 4+ D?/4 et A =c¢/f ou f est la fréquence de 'onde. On résoud pour H et on trouve :

H= %\/)\D vy (47)

On a donc, avec lambda ~ 350 m, une valeur pour la hauteur minimale de la ionosphére de H ~ 1.622 km.

c) Maintenant, en supposant des interférences constructives, on pourrait avoir un champ magnétique maxi-
mal |B| = By + Bpz, i.e. la somme des amplitudes des champs de chacune des deux ondes (directe et
réfléchie). Pour calculer ces amplitudes, on utilise la relation entre la puissance d’émission Py (connue) et
I'intensité I d’une onde a une certaine distance,

P
= 0
47 R?
ainsi que la relation entre l'intensité I, qui est la valeur moyenne temporelle du vecteur de Poynting, et
I’amplitude du champ de ’onde,

(48)



ce qui nous donne, en utilisant Fy = cBy,

P 1
F%Q = §€0C3Bg (50)

et donc une amplitude de champ magnétique

2P,
eoc4mR?
Pour 'onde directe, on a R = D, et pour 'onde réfléchie, on a R = 2[, avec cette fois-ci la condition
d’interférence constructive,

By = (51)

20— D=\ (52)

et donc 2l = D 4+ A. Finalement, on trouve donc, pour le maximum théorique du champ magnétique total,

2P, (1 1
Bumax| = =+ — 53
[ Binax coc34m <D+D+)\> (53)

L’application numérique donne environ | Bpax| ~ 1.76 x 10710 T.



