
Cours de physique générale III (SV) – Prof. Ambrogio Fasoli – Swiss Plasma Center

Semestre Automne (25.01.2021)

Corrigé de l’examen

Exercice 1 (20 points)

a) On déssine les lignes de champ de manière qualitative. On distingue les propriétés suivantes :

Extérieur de la grande sphère :

— Lignes de champ radiales dirigés vers l’extérieur.

— La densité des lignes est plus petite du côté de la cavité.

Intérieur de la cavité :

— Le champ pointe vers le haut sur l’axe central.

— Ailleurs, le champ est incliné vers le haut et vers l’axe central.

b) On peut utiliser le principe de superposition pour décomposer le système en deux sphères remplies. On
a une sphère de rayon 2R et de densité de charge ρ centrée en (0,0,0) et une deuxième sphère de rayon R,
densité de charge −ρ centrée en (0,R,0).

On utilise la loi de Gauss pour trouver le champ électrique créé par chacune des sphères :∫
S

~E · ~dA =
QS
ε0

(1)

avec S la surface de Gauss qu’on devra choisir nous-même, et QS la quantité de charge qui se trouve à
l’intérieur de S. Ici, on applique la loi de Gauss à une sphère avec une densité de charge volumique uni-
forme. L’idée est de prendre une surface de Gauss sphérique et de rayon r variable, ce qui nous permettra
de trouver le champ électrique pour n’importe quel r.

Par symétrie, le champ électrique créé par chacune des sphères pointe dans la direction radiale et sa norme
sera constante sur la surface de Gauss S. On a donc :∫

S

~E · ~dA = E(r) · 4πr2 (2)

On doit maintenant calculer QS . Comme chaque sphère a une densité de charge volumique uniforme, la
charge dans S ne dépendra que du volume contenu dans S, et donc du rayon r qu’on choisit. Pour la grande
sphère,

QS(r) = ρ
4

3
πr3 (3)
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et pour petite sphère,

QS(r′) = −ρ4

3
πr′3 (4)

où r′ est la distance à un point mesurée depuis le centre de la petite sphère, en (0, R, 0).

Finalement, les champs ~E1 et ~E2 crées par la grande et petite sphère, respectivement, sont

~E1(r) = +
ρr

3ε0
r̂ (5)

E2(r
′) =− ρr′

3ε0
r̂′ (6)

où r̂ et r̂′ sont les vecteurs unitaires radiaux pour chacune des sphères.

Sur l’axe y, le champ doit par symétrie être entièrement selon y, donc on évalue et ajoute simplement les
champs aux 3 points donnés, en faisant attention au signe de chaque contribution :

— (0,0,0), r = 0 , r′ = R, r̂′ · ŷ = −1 , Ey = + ρR
3ε0
ŷ

— (0,R,0), r = R, r′ = 0, r̂ · ŷ = +1 , Ey = + ρR
3ε0
ŷ

— (0,2R,0), r = 2R, r′ = R, r̂ · ŷ = +1 , r̂′ · ŷ = +1 , Ey = + ρR
3ε0
ŷ

Application numérique :

— ρR
3ε0

= 0.6 V/m

c) La force à laquelle est sujette une charge q0 = −30e, placée au centre de la cavité, est :

— ~F = q0 ~E

— |F | = 30e ρR3ε0 = 2.88 · 10−18 N

d) La direction de cette force est vers le bas, selon −ŷ.
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Exercice 2 (20 points)

a) On commence par l’évaluation de la tension à travers les résistances pour calculer Va,

V − Va = R1i, (7)

Va − 0 = R2i. (8)

Avec ces deux équations, on peut trouver le courant qui passe à travers les résistances, qui est le même car
elles sont en série,

i =
V

R1 +R2
= 1.5 A. (9)

Donc on trouve Va = 4.5 V .

Maintenant, on doit considérer la tension autour des condensateurs pour trouver Vb (même si le courant à
travers les condensateurs est nul avec S ouvert),

V − Vb =
Q1

C1
, (10)

Vb − 0 =
Q2

C2
. (11)

Vu que les condensateurs sont en série, ils auront la même charge, donc Q1 = Q2 = Q, et on trouve donc,
en combinant ces deux équations,

Vb =
C1

C1 + C2
V (12)

Ce qui donne Vb = 12V.

Cela nous donne une différence de potentiel Vb − Va = 7.5V avec Vb > Va.

b) Quand S est fermé, on a que Va = Vb toujours. A t = 0, la charge dans les condensateurs est la même que
quand S était ouvert, alors Vb ne change pas, et puis Va = Vb = 12V. Puis, un courant commence à passer à
travers les condensateurs et la charge sur chaque condensateur commence à changer. Après un long temps,
à t = ∞, il n’aura plus de courant à travers les condensateurs de nouveau, et puis on aura Va = 4.5V,
comme quand S était ouvert. Puis, vu que Vb = Va toujours, on aura Vb = 4.5V.

c) On veut trouver le temps charactéristique pour la rééquilibration de la charge entre les deux branches, τ .
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On doit premièrement trouver l’équation qui décrit la dynamique de ce
système, et pour cela on utilise la loi de Kirchhoff. On défini les courants
entre chaque noeud comme dans la figure, et puis on écrit de la loi de
Kirchhoff,

iR1 = iR2 + I (13)

iC1 + I = iC2 (14)

et donc
iR1 = iR2 + iC2 − iC1. (15)

Puis, en se servant de Va = Vb ≡ U(t), on trouve,

(V − U(t))

R1
=
U(t)

R2
+ C2

dVC2

dt
− C1

dVC1

dt
, (16)

où VC1 et VC2 sont le tensions aux bornes de chaque condensateur : VC1 = V − U et VC2 = U .

(V − U(t))

R1
=
U(t)

R2
+ C2

dU(t)

dt
+ C1

dU(t)

dt
. (17)

(C1 + C2)
dU

dt
=

V

R1
−
(

1

R1
+

1

R2

)
U (18)

On peut récrire cela comme,
dU

dt
=

V

R1(C1 + C2)
− U

τ
(19)

où on identifie
τ = ReffCeff =

C1 + C2

1/R1 + 1/R2
= 20.25µs (20)

Exercice 3 (points)

a) Tout d’abord on exprime le flux magnétique à travers le cir-
cuit,

ΦB =

∫
~B · ~ds = lBx (21)

si on appelle x la position de la barre selon l’axe horizontal avec
x = 0 la position de la résistance. Si la barre bouge vers la
gauche, donc si elle a une vitesse vx < 0, alors la variation de ce
flux est

dΦB

dt
= Bvxl < 0 (22)

et donc la force électromotrice induite dans le circuit est E > 0,
ce qui va induire un courant i dans le sens horaire (dessin).
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b) La puissance instantanée est P = E2
R , et donc la puissance moyenne est, en utilisant les résultats du

point (a),

〈P 〉 =
〈E2〉
R

=
B2l2〈v2x〉

R
=
B2l2v2rms

R
(23)

On résoud pour la résistance,

R =
B2l2v2rms
〈P 〉

≈ 0.29 Ω (24)

c) La vitesse de la barre oscille de manière périodique, donc on peut écrire

v(t) = v0 cos(ωt) (25)

avec vrms =
√
〈v2〉 = v0√

2
, donc v0 =

√
2vrms. De manière similaire, en intégrant la vitesse, on trouve la

position de la barre, qui elle aussi oscille de manière périodique, avec la même fréquence,

x(t) =
v0
ω

sin(ωt) = xmax sin(ωt) (26)

et l’excursion totale est 2xmax = 0.6, donc la fréquence est donnée par

f =
ω

2π
=

v0
2πxmax

=

√
2vrms

2πxmax
≈ 2.2 Hz (27)

Exercice 4 (20 points)

— L’onde électromagnétique, et donc les champs élec-
triques et magnétiques, se propage le long de l’axe x.

— Puisque l’onde est polarisée dans la direction de l’axe
y, le champ électrique n’a que la composante Ey.

— La perturbation du champ magnétique se produit donc dans la direction z : il a seulement la com-
posante Bz.

— La fonction qui décrit ce type d’onde électromagnétique est donc

E(x, t) = Ey(x, t) = E0cos(kx− ωt) (28)
B(x, t) = Bz(x, t) = B0cos(kx− ωt) (29)

avec E0/B0 = c, k = 2π/λ.

a) Maintenant, on considère l’effet du champ électrique de l’onde sur le circuit.
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— La force électromotrice générée dans le circuit par le
champ électrique est :

εE =

∮
C
Ey(x, t)~ey · ~dl (30)

avec C le contour de le circuit.

— Cette intégrale est égale à zéro dans les segments de circuit parallèles à l’axe x, car Ey ~ey · ~dl = 0.

— On a donc :

εE = εEAB + εECD (voir le dessin) (31)

= E0cos(−ωt)
∫ B

A
dy + E0cos(

2π

λ

λ

2
− ωt)

∫ D

C
dy (32)

= E0
λ

2
cos(ωt) + E0

λ

2
cos(ωt) (33)

= E0λcos(ωt) (34)

b) Maintenant, on considère l’effet du champ magnétique de l’onde sur le circuit.

— La force électromotrice générée dans le circuit par le champ magnétique est :

εB = −dΦB

dt
(35)

— Le flux magnétique est :

ΦB =

∫
S
Bz(x, t)~ez · ~ndS (36)

avec S la surface du circuit, délimitée par le contour C, et ~n le vecteur unitaire normal à la surface
élémentaire dS et orienté selon la règle de la main droite.

— Dans ce cas, en considérant la circulation dans le sens ABCD, ~ndS = −dxdy ~ez

ΦB = −λ
2

∫ λ
2

0
B0cos(kx− ωt)dx (37)

et donc

ΦB = −λ
2

B0

k
(sin(k

λ

2
− ωt)− sin(−ωt)) (38)

= −λ
2

B0

k
(sin(π − ωt) + sin(ωt)) (39)

= −λB0

k
sin(ωt) (40)
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— Finalement, la f.é.m est donnée par

εB = λ
B0

k
ωcos(ωt) (41)

= λcB0cos(ωt) (42)
= λE0cos(ωt) (43)

c) Les champs électriques et magnétiques sont liés entre eux. En particulier, par la loi de Faraday la force
force électromotrice induite εE = εB, puisque

∂ ~B

∂t
= −~∇× ~E (44)

où de manière plus évidente en forme intégrale,∮
C

~E · ~dl = − d

dt

∫
S

~B · ~ndS (45)

Exercice 5 (20 points)

a) Le signal peut être réduit à cause du
phénomène d’interférence : si les deux ondes
(directe et réfléchie) se superposent de manière
destructive alors le signal est localement annulé.
Ceci requiert un déphasage particulier.

b) Pour avoir interférence destructive maximale, il faut que (voir dessin ci-dessus)

2l −D =
λ

2
(46)

avec l =
√
H2 +D2/4 et λ = c/f où f est la fréquence de l’onde. On résoud pour H et on trouve :

H =
1

2

√
λD + λ2/4 (47)

On a donc, avec lambda ≈ 350 m, une valeur pour la hauteur minimale de la ionosphère de H ≈ 1.622 km.

c) Maintenant, en supposant des interférences constructives, on pourrait avoir un champ magnétique maxi-
mal |B| = B0,1 + B0,2, i.e. la somme des amplitudes des champs de chacune des deux ondes (directe et
réfléchie). Pour calculer ces amplitudes, on utilise la relation entre la puissance d’émission P0 (connue) et
l’intensité I d’une onde à une certaine distance,

I =
P0

4πR2
(48)

ainsi que la relation entre l’intensité I, qui est la valeur moyenne temporelle du vecteur de Poynting, et
l’amplitude du champ de l’onde,
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I = 〈S〉 =
1

2
ε0cE

2
0 (49)

ce qui nous donne, en utilisant E0 = cB0,

P0

4πR2
=

1

2
ε0c

3B2
0 (50)

et donc une amplitude de champ magnétique

B0 =

√
2P0

ε0c34πR2
(51)

Pour l’onde directe, on a R = D, et pour l’onde réfléchie, on a R = 2l, avec cette fois-ci la condition
d’interférence constructive,

2l −D = λ (52)

et donc 2l = D + λ. Finalement, on trouve donc, pour le maximum théorique du champ magnétique total,

|Bmax| =
√

2P0

ε0c34π

(
1

D
+

1

D + λ

)
(53)

L’application numérique donne environ |Bmax| ≈ 1.76× 10−10 T.
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