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1 Fluides au repos

1.1 Introduction

Definition 1.1 (Fluide). Corps a ’état liquide, gaz ou plasma. C’est un
systeme d’un grand nombre de particules qui est susceptible de s’écouler facile-
ment. Il est déformable et il n’a pas de forme propre.

1.1.1 Densité de fluide

Definition 1.2 (Densité). La densité est le rapport entre masse et volume.
lim A—m

AV—dv AV

Ici, dV = dadydz, avec dx, dy, et dz des longueurs infinitésimales . En pratique,

on les consideére petites aux échelles des variations des quantités fluides mais
grandes par rapport a la distance entre particules.

Exemple numérique. Auz conditions normales de température et de pression,
0N @ Pequ ~ 1000kg/m? et pequ ~ 1.29kg/m3. Typiquement le rapport de la
densité d’un liquide et d’un solide est environ un facteur 1000.

Avec la densité du fluide on peut calculer la masse d’un volume de fluide V:

m:///vp(f',t)dV

On note ici aussi que la masse qui traverse une surface S par unité de temps

est donnée par (voir série 1):
¢ = / / pii - dS
s

1.1.2 Pression dans un fluide

Definition 1.3 (Pression). La pression dans un fluide est la force par unité de
surface exercée par le fluide sur une parois ou sur une autre partie du fluide.
Elle est perpendiculaire a la surface. L’unité de la pression est le Pascal

N
[p] = — = Pascal = Pa

m2
La pression est un champ scalaire et elle est isotrope dans le cas ou il n'y a pas
des forces de cisaillement (voir série 2).
1.2 Pression hydrostatique

Quelle est la pression p(7) pour un fluide en repos ? On suppose ici le cas ou le
fluide est incompressible (p = const). On a montré que :

p = po + pgh



Ceci suggere que la variation de pression dans un fluide au repos ne dépend
que de la profondeur h, indépendant de la forme du fluide, et en particulier ne
varie pas perpendiculairement a g.

Principe 1.1 (de Pascal). Un changement de la pression appliquée sur un fluide
incompressible et au repos est transmise a chaque partie du fluide et a chaque
portion des parois.

Application 1.2. Machines hydrauliques :

F1 F2 Sl
5 P ThRTg T
La force exercée par la pression est

F = pS := pression fois surface

1.3 Densité de force associée a la pesanteur

Nous calculons la force exercée sur un volume de fluide infinitésimale dV =
dzdydz due a la pression. On trouve que la densité de force associée a la
pression est —Vp. Ceci nous donne que, pour la force de pression totale exercée
sur un volume arbitraire V' du fluide, on a :

F;:// —VpdV
|4

Maintenant : p = py — pgz pour z < 0. On trouve,

—

F, = mge;
Ceci reste valable méme si le volume V' est un solide. Il en suit :

Principe 1.3 (Poussée d’Archimede). Tout corps plongé dans un fluide recoit
de celui-ci une poussée verticale égale au poids du fluide déplacé.

1.4 Tension superficielle
1.4.1 Origine et définition de la tension superficielle

Il y a moins d’interactions moléculaires (moins de “liaisons intermoléculaires”)
pour une molécule a la surface d’un liquide qu’a 'intérieur. Pour I’amener la-bas
et agrandir la surface S par une valeur AS, il faut un travail.

AW =~yAS

N

Tension superficielle =: v, [y] = +=.

ﬁ, =1-7, [ :=longueur de la ligne de contact

La force F_‘; est tangentielle & la surface du liquide et perpendiculaire & son bord.
Elle cherche a minimiser la surface.

Dans plusieurs cas il y a deux surfaces de contact, il ne faut pas oublier la
deuxieme dans le calcul.



1.4.2 Interface solide/liquide/gaz et angle de contact
Loi 1.1 (de Young).
Yig

cosf =

1.4.3 Loi de Laplace

Loi 1.2 (de Laplace). A travers la surface d’un liquide avec une courbure, il y
a un saut de pression:

1 1
=p2+ — + =
pP1=p2T7 < R, R2>
ot Ry et Ry sont les rayons de courbures principales au point de la surface
considérée.

Cas a connaitre :

e Sphére: Ry = Ry =R

e Cylindre : Ry = R, Ry = c©
e Plan: Ry = Ry = ©

Loi 1.3 (de Jurin).
_ 2ycosf

pgr

h

2 Dynamique des fluides

2.1 Introduction

Les fluides en mouvement sont décrits par la densité, la pression et la vitesse.

Remarque. La vitesse est celle d’un élément fluide infinitésimale a 7et . Ce n’est
pas la vitesse “thermique” des atomes/molécules, mais leur vitesse moyenne
dans un tel élement.

En général % # 0. Dans ce cas, les lignes de courant sont en général
différentes a la trajectoire des éléments fluides.
Types d’écoulements :

e Ecoulement statique : u(r,t) =0 Vit

] ; ire: 94— 9% _ 9 _

e Ecoulement stationnaire : G = 0,37 =0, 57 =

e Ecoulement laminaire : “Couches successives du fluide se déplacent douce-
ment et régulierement l'une & coté de 'autre” — typiquement a basse
vitesse

e Ecoulement turbulent : Si non-laminaire. Mouvement irrégulier et chao-
tique. — typiquement a haute vitesse



2.2 Dérivée convective

Attention : % est la variation de « par unité de temps a un endroit fixe. Ce

n’est pas 'accélération de I'élément fluide. Et % est la variation de pression
par unité de temps a la position 7 fixe. Ce n’est pas la variation de p vue par
un observateur entrainé par ’écoulement.

La variation temporelle de p le long de la trajectoire est :

Dp 0 -
— = — TRV
Dt (87,‘ o ) b
De méme la variation temporelle de @ le long de la trajectoire (I’accélération)
est : Dit 5
[ -
—=|=+u-V])i=a
Dt ( ot +u ) u=da
On définit la dérivée convective d’une fonction f comme :

2= (grav)w

Il y a deux manieres de décrire un écoulement :

e Description Lagrangienne d’un fluide : Mesure des quantités pression,
densité et vitesse en des endroits qui se déplacent avec le fluide.

e Description Eulerienne d’un fluide : On mesure les quantités pression,
densité et vitesse au cours du temps en un endroit fixe.

2.3 Equations fluides
Pour déterminer 1’évolution des cing fonctions p, p, @ (fonction vectorielle) il faut

cinq équations.

2.3.1 Equation de continuité

Eer(Vu):O

Ceci est équivalent a :

op = o
a-l-v-(pu)—o

Definition 2.1 (Fluide incompressible). On appelle un fluide incompressible si
p = const.

Dans ce cas, ’équation de continuité devient :

V.i=0



2.3.2 Equation d’Euler

Definition 2.2 (Fluide parfait). On appelle un fluide parfait s’il n’a pas de
frottements internes (pas de viscosité) ni conduction de chaleur.

Pour les fluides parfaits nous avons I’équation d’Euler :

Du -
P S v/
th Py p

2.3.3 Equation d’état

e Gaz parfait, sans échange de chaleur entre élements fluides (processus
adiabatique). Sans conduction de chaleur, on a pV” constant le long de
la trajectoire, ol v est I'indice ”d’adiabaticité”.L.’équation d’état pour un
gaz parfait est, dans ce cas :

D
o~ =0
D)
Pour un fluide uniforme, au repos, apres linéarisation, cette équation de-
vient
Op1  po Op1
=2
ot £o ot
e Liquide

On fait souvent 'approximation d’un fluide incompressible. Donc, ’équation
de continuité est simplifiée en V - 4 = 0.

De plus, on doit aussi considérer les conditions aux limites pour résoudre les
équation des fluides.

2.3.4 Théoréme de Bernoulli

Théoréme 2.1 (de Bernoulli). Ici on considere un fluide parfait, incompressible
en écoulement stationnaire dans un champ de pesanteur g constant. Nous avons
que

1
§pu2 + pgz + p = const le long d’une ligne de courant

2.4 Viscosité, écoulement d’un fluide visqueux
2.4.1 Définition de la viscosité

Observation des expériences du cours : Pour la méme fréquence angulaire, le
moment de force nécessaire pour faire tourner le cylindre plongé dans un fluide
(eau, glycérine, ...) dépend du type de fluide.

Il nous faut agir contre une force de cisaillement

F,=nS %, n:= coefficient de viscosité dynamique (1)
ou

=S == 2

57, (2)



2.4.2 Force de viscosité par unité de volume et équation de Navier-
Stokes incompressible

Dans le cas général pour un fluide incompressible (et Newtonien) la force de
viscosité par unité de volume est :

F =nAd
Ici on définit A comme 'opérateur Laplace de la forme suivante :

0 9* 9 >

A = =2 — (= _ R
v <8x2 + oy? + 022

Maintenant on peut écrire ’équation de Navier-Stokes incompressible :

—

u -
— =pg— + nAu
Py = P9 — VP +nAd

3 Phénomenes ondulatoires

3.1 Onde transverse et longitudinale et ’équation d’onde

Une onde transporte de Iénergie et/ou de I'information, pas de matiére !

Definition 3.1 (Onde transverse). Perturbation perpendiculaire & la direction
de propagation de I’onde. Par exemple une onde sur une corde.

Definition 3.2 (Onde longitudinale). Perturbation parallele & la direction de
propagation de 'onde. Par exemple une onde de pression (onde sonore) ou une
onde le long d’un ressort.

Nous avons I’équation d’onde en 1D :

aQyO — 2 32y0
ot? 0x?

Pour une corde ¢ = \/%

Les solutions de I’équation d’onde peuvent étre écrites comme
yo(z,t) = f(x —ct) + g(z + ct)
3.2 Ondes sinusoidales
Cas particulier des ondes :
yo(z,t) = Acos(wt — kx + ¢)

Nous avons :



: Amplitude de 'onde

: Nombre d’onde

: Pulsation ou fréquence angulaire
Déphasage

wt—kx+ ¢ : La phase de I'onde

(e}
I
Ew € € =

: La vitesse de propagation (de phase) de 'onde

De plus, on a :

2
A= % : La longueur d’onde
2
=" La période
w
1
V= T . La fréquence
On a aussi que :
w
= — = )\
c=L=v

Souvent, on utilise la notation complexe pour les ondes, en rappelant que la
partie physique est la partie réelle.

y~0 _ Aei(wtfk z)

3.3 Ondes stationnaires

Revenons au cas de la corde : points P; et P, fixés (conditions aux bords).
Nous avons les solutions suivantes (ondes stationnaires) :

CTt

yo(z,t) = dsin (?m) cos ( ; nt + <p)

On a:
nwt 27 21 s

l A n k
On a trouvé les modes normaux de la corde (= solutions & une fréquence
precise). Les fréquences propres de la corde sont données par
c cn
V:X:717 n:172,...
Tout mouvement arbitraire de la corde en régime linéaire est une somme
(infinie) des modes normaux.
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3.4 Ondes en 3D
En 3D I’équation d’onde devient :

2
9 yo
ot?

Les ondes sinusoidales deviennent des ondes sinusoidales planes :

= 02 Ayo

Yo = Aei(wt%f)
Une surface équiphase est définie par
wt — k - 7 = const

Elles sont des plans qui se déplacent le long de k & vitesse ¢ = -

3.5 Quelques conséquences du principe de superposition
linéaire
Il y a deux vitesses :
e Vitesse de phase (propre a l'onde, de propagation) : ¢ = ¢
e Vitesse de groupe (vitesse de Ienveloppe de l'onde) : vg = %
Une perturbation dans un milieu dispersif (cas ou g—‘; # const.):
e Se déforme au cours de la propagation

e Se déplace avec la vitesse de groupe

Plus général : Une onde sinusoidale se déplace avec la vitesse de phase.
Tandis qu’'un pulse se déplace avec la vitesse de groupe. C’est-a-dire que
I'information se déplace avec la vitesse de groupe.

4 Ondes dans les milieux fluides

4.1 Ondes dans un fluide uniforme

Les ondes dans un fluide uniforme sont longitudinales.

On considere des petites perturbations py, @1, p1 telles que p1 < po, p1 < Po,
1| < c. Ona p=po+p1, p=po+p1etd=dui.

Nous avons les suivantes équation d’onde

(7 t) = Lo el ha)
YPo

E
iy (7 t) = Eﬁl elwi=kz)
0

p1 (—*7 z(wt kz)

v go KBT
L W

11




4.2 Quelques mots sur les ondes linéaires a la surface d’un
fluide parfait

Les vagues sur ’eau sont une combinaison d’onde transverse et longitudinale.

5 Electrostatique

5.1 Charge électrique

Definition 5.1. Un corps est dit neutre si les charges positives et négatives
s’annulent.
Un corps est dit chargé s’il y a un exces d'un type de charge.

Principe 5.1. La quantité de charge totale est conservée dans toutes les expériences.

5.2 Loi de Coulomb

On a deux charges ponctuelles q; et go. La force exercée par ¢ sur ¢o est :

g oo L ae 12
152 = ——— 5=
471'50 |r12‘ ‘7’12|

Principe 5.2 (de superposition). Force de n charges ponctuelles q; d 7; sur une

charge q a T :
n — —
P 1 4%q T—Ti
= e T A ETF
— Ameo |7 — 7 |7 — 7]

5.3 Champ électrique

Definition 5.2 (Champ magnétique). Le champ électrique généré par une
charge ¢; a r; dans un point 7 dans ’espace est défini par :

— —

_ 1 —
E(f’) q1 r—r

= S 2=

dmeg |7 — 7| |7 — 7]

Le principe de superposition nous permet de définir le champ électrique
généré par n charges ¢; a position 7} :
n

_— 1 i =T

E(r) = E = Zﬂ 2|7 —»Z

— Ameg |7 — 7?7 — 7
i=1 ?

Le champ E est dans la direction de la force ressenti par une charge positive.

12



5.3.1 Champ E di & une distribution de charge quelconque
Nous allons traiter deux cas.

e Densité de charge pg;

Aq
par(r) = A&lﬁdv AV

— E() ///p” =) gy
" 4reg 17— |

e Densité de surface o

()= lm =4
TellT AS—>dS AS

— B //pel - )dS’
47‘(’50 ||rf

5.3.2 Lignes de champ électrique

Definition 5.3 (Lignes de champ électrique). Elles sont définies comme les
lignes qui sont tangentielles & E et tout point.

5.4 Loi de Gauss

Loi 5.1 (de Gauss). Le flux du champ électrique a travers une surface S fermée
est égale a la somme des charges électriques contenues dans le volume V' délimité
par S, divisé par la permittivité du vide.

[ 55=2 ff
S €0 A%

Nous avons aussi la forme différentielle de la loi de Gauss :

pel
€0

V.-E=

5.5 Le potentiel électrostatique

En électrostatique on peut définir une fonction scalaire ¢(7) tel que E = —V¢.
On appelle ¢ le potentiel électrostatique.
Si on a une seule charge ponctuelle ¢; a 71 le potentiel est donné par :

1 q1
o(T) = —— ——=— + const
D= T 7

Remarquons que nous pouvons généraliser cette expression a n charges avec le
principe de superposition.
Avec une distribution de charge arbitraire

o(F) = / / / pai(T” + const
dreq |7 —

13




Pour une densité de charge de surface :

1 oe(™)dS’
¢(T_p) = e, //S H,” + const

|7 — 7

5.5.1 Quelques propriétés de ¢ et de E en électrostatique

1. Nous avons

Vx(V-¢)=0

2. Le travail pour déplacer une charge ¢ dans un champ E de A A B ne
dépend pas du chemin suivi et est égal & g(¢(B)d(A))

Definition 5.4 (Surface équipotentielle). On définit les surfaces équipotentielles
par

() = const

Comme E = —V ¢ les lignes du champ E sont perpendiculaires aux surfaces
équipotentielles.

5.6 Le role des conducteurs en électrostatique
5.6.1 Propriétés de base

En électrostatique, pas de courant.
1. E = 0 & Dintérieur du conducteur
2. V-E=0= et = pe =0 a l'intérieur du conducteur
3. Le potentiel ¢ est constant dedans le conducteur

4. E = V¢ = E est perpendiculaire a la surface du condensateur parce
que cette surface est équipotentielle

5. Des charges peuvent se trouver seulement & la surface du conducteur (o #
0 possible)

5.6.2 Densité de charge de surface par influence

Il peut arriver que des densités de surfaces de charges soient générées par influ-
ence pour assurer que F = 0 dans le conducteur.

5.6.3 Effet de pointe

Autour des pointes d'un conducteur le champ E peut étre tres élevé.

14



5.6.4 Traitement générale, équation de Laplace et de Poisson

Souvent on ne peut plus utiliser la loi de Gauss pour trouver le champ électrique
(pel(7) n’est pas connue).
On connait le potentiel a la surface de chaque conducteur mais pas oel.

e Si pel = 0 dans l'espace a 'extérieur des conducteurs. Alors V - E=0
avec ' = —V ¢ on trouve ’équation de Laplace :

A¢p =0

e Si pel # 0 entre conducteurs alors on a 1’équation de Poisson :

Ap— —pel
€o

Théoréme 5.1. Pour les conditions au limites ¢ = ¢; sur la surface du con-
ducteur i € {1,2,...} et lim|F] — oop = 0, alors la solution de l’équation de
Poisson (ou de Laplace) est unique.

5.7 Capacité et condensateur
5.7.1 Définition de capacité

Deux condensateurs initialement non chargés. Charge —¢q enlevé de d’un con-
ducteur et placée sur 'autre. Nous avons :

q

—————— =const =C
$(A) — ¢(B)
Pour alléger la notation nous écrivons
U= ¢(4) - ¢(B)

Dans le vide la capacité ne dépend que de la géométrie des deux condensa-
teurs.

5.7.2 Le condensateur

Definition 5.5 (Condensateur). Systéme de deux condensateurs avec charge
+¢q. Normalement, la géométrie est choisie pour maximiser la capacité.

Condensateur cylindrique : deux cylindres de conducteurs, un placé dedans
I’autre. La capacité de ce condensateur est :

2mepl

ln(%)

C:

Condensateur plan : deux plaques de conducteurs placées I'une a coté de

I’autre. La capacité est :

C = 5050

15



5.7.3 Energie stockée dans un condensateur d’énergie électrique

Considérons un condensateur arbitraire. Le travail pour déplacer une charge
—dgq de conducteur A au condensateur B est

a4

AW = ~U(~dq) = &

dq
Alors le travail pour déplacer une charge ¢ est :
a 1
W= / dW = =CU?
0 2
Pour un condensateur plan on a :
1 2
W = §€OE Sed

Ce travail est stockée dans le champ E. On pose

1
ep = §€0E2

la densité d’énergie électrique dans le vide.

5.7.4 Capacité avec un diélectrique

Un diélectrique est utilisé pour diminuer la tension donc augmenter la capacité.

Definition 5.6 (Moment dipolaire). On pose
p= Z Tid;
i

le moment dipolaire. On a
1. p ne dépend pas du choix du systeme de coordonnées
2. Dans un champ E uniforme la force sur le systeme est nulle
3. Par contre, le moment de force en général est non nul.

Dans un diélectrique les électrons ne peuvent pas bouger librement. Mais
un champ F a quand-méme des effets :

1. Moment dipolaire induit. Tres faible déplacement d’électrons.

2. En présence de moments dipolaires permanentes le diélectrique forme une
densité de charge de surface.

16



Si le diélectrique est homogene et isotrope, et E nest pas trop fort :
op = X0

ou x est la susceptibilité électrique. Posons ¢, := 1x la permittivité relative.
Considérons un condensateur plan avec un diélectrique, nous avons :

q
E =
S.e0Er
qd
U =
S.e0Er
£0&rSe
C =
d

En général la capacité d’un condensateur ne dépend que de sa géométrie et
du diélectrique.

6 Circuits électriques

En électrostatique, pas de courent implique pas de champ électrique dedans les
conducteurs.

Definition 6.1 (Appareil a force électromotrice). Appareil qui fourni une ten-
sion entre deux bornes.
6.1 Définition de courant

Definition 6.2 (Courant). Le courant est le flux de charge par unité de temps

A travers une surface S. p
q

I=
dt

Definition 6.3 (Densité de courant). La densité de courant J est donnée par :

7= pa(7t) - a7t

I(t)://sf~d§

6.2 La résistance R, la loi d’Ohm et ’effet Joule

Definition 6.4 (Résistance). On définit la résistent comme le voltage appliqué
sur le courant :

Nous avons

U
R=7

Dans certains cas le courant est proportionnel a la tension, donc la résistance
est constante. on parle de la loi de Ohm.
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Loi 6.1 (de Ohm).
U
R = — = const

De maniére plus générale on écrit la loi de Ohm de la forme suivante
. L1 -
j=0.-E=—"-F
Pc

Avec o, la conductibilité électrique et p. la résistivité électrique.

A partir de la loi de Ohm on peut déduire U = RI. Donc,

_ pel _
k= S 0.8

= const

la résistance dépend de la géométrie et du type de conducteur.

Effet Joule : Si une charge ¢ se déplace de A a B, le travail exercé par le
champ F sur la charge est Ug. Dans une résistance cette énergie est transformée
en chaleur. Nous avons une puissance P définie par :

U2
P=="—=JU=1I°R
R

Cette puissance est fournie par I'appareil & fem.

6.3 Conservation de charge, équation de continuité
Equation de continuité pour la charge :

Opel

V-j=0
or TV

6.4 Circuits électriques et lois de Kirchhoff
Considérons les éléments suivants :

e Source de tension continue

e Résistance

U U=RI

Résistance équivalente en série : Requit = ), Ri

-1
Résistance équivalente en parallele : Regui = (Zl Ri)
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e Condensateur et capacité

Cas 1:
C
e
— d
U -4 ;Y
v C dt
Cas 2:
C
-
U v-4 ;_—%

e
-1
Capacité équivalente en série : Ceqyir = (ZZ Ci)
Capacité équivalente en parallele : Ceguir = Y, C;

Loi 6.2 (Loi des noeuds). La somme de tous les courants qui arrivent a un
noeud d’un circuit est égale a la somme de tous les courants qui le quittent. Pas
d’accumulation de charge dans les noeuds.

Loi 6.3 (Loi des mailles). La somme algébrique des variations de potentiel le
long de toutes les mailles fermées d’un circuit est nulle.

fﬁdi:o

Valable que en électrostatique/magnéto-statique ou si les variations temporelles
ne sont pas trop importantes.

Application 6.1 (lois de Kirchhoff sur un circuit). Pour un circuit quelconque
il faut :

1. Définir le sens des courants.
2. Indiquer la direction de l’augmentation de potentiel.
3. Ecrire les équations pour les noeuds sauf 1 et pour les mailles indépendantes.

4. Si on trowve I; <0, la direction de I; est différente que indiquée dans le
dessin. A part ¢a, le calcul reste juste.

Remarque. Loi des mailles = +¢;,47
Si 'orientation de dS et la direction du choix de I sont selon la regle de vis
et la loi est évaluée dans le sens de I. Alors on a

Loi de mailles = —¢;,4
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7 Magnétostatique

7.1 Définition du champ B et force de Lorentz
On trouve expérimentalement la force de Lorentz
F=q(E+7xB)

et on définit la norme de B pour que I’égalité d’en haut soit vraie.
Une autre expression de la force de Lorentz est :

dF = Idl x B

7.2 Loi d’Ampere

Loi 7.1 (Loi d’Ampere). Considérons un contour C' fermée et des conducteurs
portant des courants I,,. Dans ce cas :

Version intégrale de la loi d’Ampere :

?{E-df:uo//j’-dg
¥ S

Version différentielle de la loi d’Ampere :

V x B = poj

—

7.3 Loi de Gauss pour B

Loi 7.2 (Loi de Gauss). Considérons un champ magnétique B et une surface
fermée S alors :

V-B=0
7.4 Loi de Biot-Savart

Loi 7.3 (Loi de Biot-Savart). Quel est le champ B crée par un fil mince de
forme abstraite parcouru par un courant I ?

- pol [ dix7
B(p =f/
D= NG
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8 Phénomenes d’induction magnétique

8.1 Loi d’induction de Faraday

Interprétation d’un champ électrique induit avec la loi d’Ohm :

Donc

On appelle €;,4 la tension induite ou force électromotrice. Cette tension
dans le fil peut étre induite par :

e Le mouvement d’un aimant

e Par le champ magnétique généré par une bobine
e Un aimant (ou bobine) fixe mais on bouge le fil
e La variation temporelle du champ magnétique

Loi 8.1 (Loi d’induction de Faraday).

gmd:j{];dr:;d /é.dgz;dcp
g dt /g dt

ou on définit :
b= // B-dS = flux du champé a travers S
s

Remarque. Nous remarquons que
e Llorientation de dl et dS est relative et selon la regle de vis.

e La loi de Faraday reste valable si Porientation et/ou la forme du fil varie
au cours du temps.

8.2 Loi de Faraday différentielle

Avec le théoreme de Stokes nous pouvons écrire la loi de Faraday sous forme
différentielle : .
-~ —O0B
VXE=——

ot
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8.3 La regle de Lenz
Quelle est la direction du courant et du champ E induit ?

Loi 8.2 (Regle de Lenz). Le courant induit I dans la boucle est orienté tel que
le champ B qu’il crée lui-méme s’oppose au changement du flux magnétique.

On a vu les exemples de la canette qui se comprime, et les courants de

Foucault.

8.4 Circuits électriques en présence de phénomenes d’induction
8.4.1 Self-inductance
Considérons une bobine
L
le champ magnétique B induit par la bobine est orienté par la loi de vis et

définit par :
B= Moln

ou n est le nombre de tours par metre de la bobine.
Alors le flux du champ magnétique par boucle de section S est :

®=BS=puINS
La bobine est de longueur [ alors le flux total est :
dror = pon®1SI
On définit
L = pon®lS := l'auto inductance ou ”self” de la bobine

On peut voir que la bobine induit une tension dans elle méme !

dl
Eind = _LE

Ce phénomene s’appelle self-inductance.

8.4.2 Circuit électrique avec une self

Nous allons présenter la solution I(t) pour un circuit RL et un circuit RLC.
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Circuit RL :

La solution du courant est :

Circuit RLC :

On a une équation différentielle ordinaire linéaire du second ordre donnée
par la loi des mailles :

a2 " Ldt LC

8.4.3 Energie magnétique

Nous trouvons que la densité d’énergie magnétique est :

Alors ’énergie magnétique stockée dans un volume par le champ magnétique

est :
W:///ede
A%
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9 Equations de Maxwell

9.1 Critique de I’équation V x B = o]

Les expériences nous montrent que la loi d’Ampere en général n’est pas valable
(8'il y a des dépendances temporelles).

9.2 Courant de déplacement de Maxwell
Maxwell a postulé un nouveau terme dans la loi d’Ampere si % # 0.
Loi 9.1 (Loi d’Ampeére-Maxwell).
= - OF
B = gy —
V x HoJ + oo 5

Forme intégrale d’Ampére-Mazwell :

- . OE
B-dl:,u//j—i—a—
ﬁ o[+

9.3 Les équations de Maxwell

Valables en générale. On présente les équation sous deux formes différentes.
Forme différentielle :

1. Loi de Gauss :

v.E="
€0
2. Loi de Faraday :
-~ OB
VXE=—-——
8 ot

3. Loi de Gauss pour le champ magnétique :

V-B=0
4. Loi d’Ampere Maxwell :

~ - OF
V x B = poj +MOEOE

Forme intégrale :

1. Loi de Gauss :

//E*.dgzi///pddv
S €0 \%
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2. Loi de Faraday :
fi-a-27 [[ 5as
- at /g

3. Loi de Gauss pour le champ magnétique :

/ / B-dS=0
S
4. Loi d’Ampere Maxwell :

Lo . OF .
B-dl:u// j+eo— | -dS
%v 0 S( 05

9.4 Ondes électromagnétiques dans le vide

Nous trouvons que E et B satisfait une équation d’onde dans le vide!

9E 1 -
92 - L AE
ot2  eopo

-
#B_ 1 &

o2 eopo
Nous avons que la vitesse de 'onde est
1
vV EoHo

Maxwell a correctement conclut que la lumiere est une onde électromagnétique.
Contrairement aux ondes sonores, les ondes électromagnétiques n’ont pas
besoin d’'un médium pour se propager.

c= = Vitesse de la lumiere

9.4.1 Ondes planes dans le vide

Nous cherchons des solutions du type d’onde sinusoidales planes. Nous trouvons
que la solution est :

E(F7 t) = E;O . €i(wt_E‘F+¢)
E(Fa t) = §0 . ei(“t—E~?+¢)
Ol nous avons :

k

Ww==cC-

11>
= ~|E,
c

By

Nous remarquons que E et B sont des ondes transverses et que E,E,E
forment un repére orthogonale droit. L’onde électromagnétique se propage dans
la direction de k.
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Nous avons aussi :

x>~
X
a1

Sl
I

Remarques additionelles :

e Dans un médium la vitesse de phase des ondes électromagnétiques peut
etre différente : ¢ — = ou n est I'indice de réfraction.

e Une onde électromagnétique transporte de 1’énergie :

1, = 1 =
EEM = /// eEMdV: /// *(€0E2+ fB2)dV
v v 2 1o

Nous définissons S I’énergie transportée le long de k par unité de surface
et de temps. Nous avons :

E x B
Ho

§:

:= Vecteur de Poynting
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