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2.3.1 Équation de continuité . . . . . . . . . . . . . . . . . . . . 7
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5.7.1 Définition de capacité . . . . . . . . . . . . . . . . . . . . 15
5.7.2 Le condensateur . . . . . . . . . . . . . . . . . . . . . . . 15
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8.4.3 Énergie magnétique . . . . . . . . . . . . . . . . . . . . . 23
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9.3 Les équations de Maxwell . . . . . . . . . . . . . . . . . . . . . . 24
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1 Fluides au repos

1.1 Introduction

Definition 1.1 (Fluide). Corps à l’état liquide, gaz ou plasma. C’est un
système d’un grand nombre de particules qui est susceptible de s’écouler facile-
ment. Il est déformable et il n’a pas de forme propre.

1.1.1 Densité de fluide

Definition 1.2 (Densité). La densité est le rapport entre masse et volume.

ρ(r⃗, t) = lim
∆V→dV

∆m

∆V

Ici, dV = dxdydz, avec dx, dy, et dz des longueurs infinitésimales . En pratique,
on les considère petites aux échelles des variations des quantités fluides mais
grandes par rapport à la distance entre particules.

Exemple numérique. Aux conditions normales de température et de pression,
on a ρeau ≈ 1000kg/m3 et ρeau ≈ 1.29kg/m3. Typiquement le rapport de la
densité d’un liquide et d’un solide est environ un facteur 1000.

Avec la densité du fluide on peut calculer la masse d’un volume de fluide V :

m =

∫∫∫
V

ρ(r⃗, t)dV

On note ici aussi que la masse qui traverse une surface S par unité de temps
est donnée par (voir série 1):

ϕ =

∫∫
S

ρu⃗ · dS⃗

1.1.2 Pression dans un fluide

Definition 1.3 (Pression). La pression dans un fluide est la force par unité de
surface exercée par le fluide sur une parois ou sur une autre partie du fluide.

Elle est perpendiculaire à la surface. L’unité de la pression est le Pascal

[p] =
N

m2
= Pascal = Pa

La pression est un champ scalaire et elle est isotrope dans le cas où il n’y a pas
des forces de cisaillement (voir série 2).

1.2 Pression hydrostatique

Quelle est la pression p(r⃗) pour un fluide en repos ? On suppose ici le cas où le
fluide est incompressible (ρ = const). On a montré que :

p = p0 + ρgh
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Ceci suggère que la variation de pression dans un fluide au repos ne dépend
que de la profondeur h, indépendant de la forme du fluide, et en particulier ne
varie pas perpendiculairement à g⃗.

Principe 1.1 (de Pascal). Un changement de la pression appliquée sur un fluide
incompressible et au repos est transmise à chaque partie du fluide et à chaque
portion des parois.

Application 1.2. Machines hydrauliques :

F1

S1
= p1 = p2 =

F2

S2
→ F1 =

S1

S2
F2

La force exercée par la pression est

F = pS := pression fois surface

1.3 Densité de force associée à la pesanteur

Nous calculons la force exercée sur un volume de fluide infinitésimale dV =
dxdydz due à la pression. On trouve que la densité de force associée à la
pression est −∇p. Ceci nous donne que, pour la force de pression totale exercée
sur un volume arbitraire V du fluide, on a :

F⃗p =

∫∫∫
V

−∇⃗pdV

Maintenant : p = p0 − ρgz pour z < 0. On trouve,

F⃗p = mge⃗z

Ceci reste valable même si le volume V est un solide. Il en suit :

Principe 1.3 (Poussée d’Archimède). Tout corps plongé dans un fluide reçoit
de celui-ci une poussée verticale égale au poids du fluide déplacé.

1.4 Tension superficielle

1.4.1 Origine et définition de la tension superficielle

Il y a moins d’interactions moléculaires (moins de “liaisons intermoléculaires”)
pour une molécule à la surface d’un liquide qu’à l’intérieur. Pour l’amener là-bas
et agrandir la surface S par une valeur ∆S, il faut un travail.

∆W = γ∆S

Tension superficielle =: γ, [γ] = N
m .

F⃗γ = l · γ, l := longueur de la ligne de contact

La force F⃗γ est tangentielle à la surface du liquide et perpendiculaire à son bord.
Elle cherche à minimiser la surface.

Dans plusieurs cas il y a deux surfaces de contact, il ne faut pas oublier la
deuxième dans le calcul.
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1.4.2 Interface solide/liquide/gaz et angle de contact

Loi 1.1 (de Young).

cos θ =
γsg − γsl

γlg

1.4.3 Loi de Laplace

Loi 1.2 (de Laplace). A travers la surface d’un liquide avec une courbure, il y
a un saut de pression:

p1 = p2 + γ

(
1

R1
+

1

R2

)
où R1 et R2 sont les rayons de courbures principales au point de la surface
considérée.

Cas à connâıtre :

• Sphère : R1 = R2 = R

• Cylindre : R1 = R, R2 = ∞

• Plan : R1 = R2 = ∞

Loi 1.3 (de Jurin).

h =
2γ cos θ

ρgr

2 Dynamique des fluides

2.1 Introduction

Les fluides en mouvement sont décrits par la densité, la pression et la vitesse.

Remarque. La vitesse est celle d’un élément fluide infinitésimale à r⃗ et t. Ce n’est
pas la vitesse “thermique” des atomes/molécules, mais leur vitesse moyenne
dans un tel élement.

En général ∂u⃗
∂t ̸= 0. Dans ce cas, les lignes de courant sont en général

différentes à la trajectoire des éléments fluides.
Types d’écoulements :

• Écoulement statique : u⃗(r⃗, t) = 0 ∀r⃗, t

• Écoulement stationnaire : ∂u⃗
∂t = 0, ∂ρ

∂t = 0, ∂p
∂t = 0

• Écoulement laminaire : “Couches successives du fluide se déplacent douce-
ment et régulièrement l’une à côté de l’autre” → typiquement à basse
vitesse

• Écoulement turbulent : Si non-laminaire. Mouvement irrégulier et chao-
tique. → typiquement à haute vitesse
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2.2 Dérivée convective

Attention : ∂u⃗
∂t est la variation de u⃗ par unité de temps à un endroit fixe. Ce

n’est pas l’accélération de l’élément fluide. Et ∂p
∂t est la variation de pression

par unité de temps à la position r⃗ fixe. Ce n’est pas la variation de p vue par
un observateur entrâıné par l’écoulement.

La variation temporelle de p le long de la trajectoire est :

Dp

Dt
:=

(
∂

∂t
+ u⃗ · ∇⃗

)
p

De même la variation temporelle de u⃗ le long de la trajectoire (l’accélération)
est :

Du⃗

Dt
:=

(
∂

∂t
+ u⃗ · ∇⃗

)
u⃗ = a⃗

On définit la dérivée convective d’une fonction f comme :

D

Dt
(f) :=

(
∂

∂t
+ u⃗ · ∇⃗

)
(f)

Il y a deux manières de décrire un écoulement :

• Description Lagrangienne d’un fluide : Mesure des quantités pression,
densité et vitesse en des endroits qui se déplacent avec le fluide.

• Description Euleriènne d’un fluide : On mesure les quantités pression,
densité et vitesse au cours du temps en un endroit fixe.

2.3 Équations fluides

Pour déterminer l’évolution des cinq fonctions ρ, p, u⃗ (fonction vectorielle) il faut
cinq équations.

2.3.1 Équation de continuité

Dρ

Dt
+ ρ(∇⃗ · u⃗) = 0

Ceci est équivalent à :
∂ρ

∂t
+ ∇⃗ · (ρu⃗) = 0

Definition 2.1 (Fluide incompressible). On appelle un fluide incompressible si
ρ = const.

Dans ce cas, l’équation de continuité devient :

∇⃗ · u⃗ = 0
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2.3.2 Équation d’Euler

Definition 2.2 (Fluide parfait). On appelle un fluide parfait s’il n’a pas de
frottements internes (pas de viscosité) ni conduction de chaleur.

Pour les fluides parfaits nous avons l’équation d’Euler :

ρ
Du⃗

Dt
= ρg⃗ − ∇⃗p

2.3.3 Équation d’état

• Gaz parfait, sans échange de chaleur entre élements fluides (processus
adiabatique). Sans conduction de chaleur, on a pV γ constant le long de
la trajectoire, où γ est l’indice ”d’adiabaticité”.L’équation d’état pour un
gaz parfait est, dans ce cas :

D

Dt
(pρ−γ) = 0

Pour un fluide uniforme, au repos, après linéarisation, cette équation de-
vient

∂p1
∂t

− γ
p0
ρ0

· ∂ρ1
∂t

= 0

• Liquide
On fait souvent l’approximation d’un fluide incompressible. Donc, l’équation
de continuité est simplifiée en ∇⃗ · u⃗ = 0.

De plus, on doit aussi considérer les conditions aux limites pour résoudre les
équation des fluides.

2.3.4 Théorème de Bernoulli

Théorème 2.1 (de Bernoulli). Ici on considère un fluide parfait, incompressible
en écoulement stationnaire dans un champ de pesanteur g⃗ constant. Nous avons
que

1

2
ρu2 + ρgz + p = const le long d’une ligne de courant

2.4 Viscosité, écoulement d’un fluide visqueux

2.4.1 Définition de la viscosité

Observation des expériences du cours : Pour la même fréquence angulaire, le
moment de force nécessaire pour faire tourner le cylindre plongé dans un fluide
(eau, glycérine, . . .) dépend du type de fluide.

Il nous faut agir contre une force de cisaillement

Fx = ηS
u0

h
, η := coefficient de viscosité dynamique (1)

= ηS
∂ux

∂y
(2)
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2.4.2 Force de viscosité par unité de volume et équation de Navier-
Stokes incompressible

Dans le cas général pour un fluide incompressible (et Newtonien) la force de
viscosité par unité de volume est :

F⃗ = η∆u⃗

Ici on définit ∆ comme l’opérateur Laplace de la forme suivante :

∆ = ∇⃗2 =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Maintenant on peut écrire l’équation de Navier-Stokes incompressible :

ρ
Du⃗

Dt
= ρg⃗ − ∇⃗p+ η∆u⃗

3 Phénomènes ondulatoires

3.1 Onde transverse et longitudinale et l’équation d’onde

Une onde transporte de l’énergie et/ou de l’information, pas de matière !

Definition 3.1 (Onde transverse). Perturbation perpendiculaire à la direction
de propagation de l’onde. Par exemple une onde sur une corde.

Definition 3.2 (Onde longitudinale). Perturbation parallèle à la direction de
propagation de l’onde. Par exemple une onde de pression (onde sonore) ou une
onde le long d’un ressort.

Nous avons l’équation d’onde en 1D :

∂2y0
∂t2

= c2
∂2y0
∂x2

Pour une corde c =
√

T
µ

Les solutions de l’équation d’onde peuvent être écrites comme

y0(x, t) = f(x− c t) + g(x+ c t)

3.2 Ondes sinusöıdales

Cas particulier des ondes :

y0(x, t) = A cos(ωt− kx+ φ)

Nous avons :
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A : Amplitude de l’onde

k : Nombre d’onde

ω : Pulsation ou fréquence angulaire

φ : Déphasage

ω t− k x+ φ : La phase de l’onde

c =
ω

k
: La vitesse de propagation (de phase) de l’onde

De plus, on a :

λ =
2π

k
: La longueur d’onde

T =
2π

ω
: La période

ν =
1

T
: La fréquence

On a aussi que :

c =
ω

k
= ν λ

Souvent, on utilise la notation complexe pour les ondes, en rappelant que la
partie physique est la partie réelle.

ỹ0 = Ãei(ωt−k x)

3.3 Ondes stationnaires

Revenons au cas de la corde : points P1 et P2 fixés (conditions aux bords).
Nous avons les solutions suivantes (ondes stationnaires) :

y0(x, t) = d sin
(nπ

l
x
)
cos
(cπ

l
nt+ φ

)
On a :

k =
nπ

l
=

2π

λ
=⇒ λ =

2l

n
=

2π

k

On a trouvé les modes normaux de la corde (= solutions à une fréquence
precise). Les fréquences propres de la corde sont données par

ν =
c

λ
=

c n

2l
, n = 1, 2, . . .

Tout mouvement arbitraire de la corde en régime linéaire est une somme
(infinie) des modes normaux.
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3.4 Ondes en 3D

En 3D l’équation d’onde devient :

∂2y0
∂t2

= c2∆y0

Les ondes sinusöıdales deviennent des ondes sinusöıdales planes :

ỹ0 = Ãei(ωt−k⃗·r⃗)

Une surface équiphase est définie par

ωt− k⃗ · r⃗ = const

Elles sont des plans qui se déplacent le long de k⃗ à vitesse c = ω
k .

3.5 Quelques conséquences du principe de superposition
linéaire

Il y a deux vitesses :

• Vitesse de phase (propre à l’onde, de propagation) : c = ω
k

• Vitesse de groupe (vitesse de l’enveloppe de l’onde) : vG = ∂ω
∂k

Une perturbation dans un milieu dispersif (cas où ∂ω
∂k ̸= const.):

• Se déforme au cours de la propagation

• Se déplace avec la vitesse de groupe

Plus général : Une onde sinusöıdale se déplace avec la vitesse de phase.
Tandis qu’un pulse se déplace avec la vitesse de groupe. C’est-à-dire que
l’information se déplace avec la vitesse de groupe.

4 Ondes dans les milieux fluides

4.1 Ondes dans un fluide uniforme

Les ondes dans un fluide uniforme sont longitudinales.
On considère des petites perturbations ρ1, u⃗1, p1 telles que ρ1 ≪ ρ0, p1 ≪ p0,

|u⃗1| ≪ c. On a ρ = ρ0 + ρ1, p = p0 + p1 et u⃗ = u⃗1.
Nous avons les suivantes équation d’onde

ρ1(r⃗, t) =
ρ0
γp0

p̃1e
i(ωt−kz)

u⃗1(r⃗, t) =
k

ωρ0
p̃1e

i(ωt−kz)

p1(r⃗, t) = p̃1e
i(ωt−kz)

c =
ω

k
=

√
γ
p0
ρ0

=

√
γ
KBT

m

11



4.2 Quelques mots sur les ondes linéaires à la surface d’un
fluide parfait

Les vagues sur l’eau sont une combinaison d’onde transverse et longitudinale.

5 Électrostatique

5.1 Charge électrique

Definition 5.1. Un corps est dit neutre si les charges positives et négatives
s’annulent.

Un corps est dit chargé s’il y a un excès d’un type de charge.

Principe 5.1. La quantité de charge totale est conservée dans toutes les expériences.

5.2 Loi de Coulomb

On a deux charges ponctuelles q1 et q2. La force exercée par q1 sur q2 est :

F⃗1→2 =
1

4πε0

q1q2

|r⃗12|2
r⃗12
|r⃗12|

Principe 5.2 (de superposition). Force de n charges ponctuelles qi à r⃗i sur une
charge q à r⃗ :

F⃗ =

n∑
i=1

1

4πε0

qiq

|r⃗ − r⃗i|2
r⃗ − r⃗i
|r⃗ − r⃗i|

5.3 Champ électrique

Definition 5.2 (Champ magnétique). Le champ électrique généré par une
charge q1 à r⃗1 dans un point r⃗ dans l’espace est défini par :

E⃗(r⃗) =
1

4πε0

q1

|r⃗ − r⃗1|2
r⃗ − r⃗1
|r⃗ − r⃗1|

Le principe de superposition nous permet de définir le champ électrique
généré par n charges qi à position r⃗i :

E⃗(r⃗) =

n∑
i=1

1

4πε0

qi

|r⃗ − r⃗i|2
r⃗ − r⃗i
|r⃗ − r⃗i|

Le champ E⃗ est dans la direction de la force ressenti par une charge positive.
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5.3.1 Champ E⃗ dû à une distribution de charge quelconque

Nous allons traiter deux cas.

• Densité de charge ρel

ρel(r⃗) = lim
∆V→dV

∆q

∆V

=⇒ E⃗(r⃗) =
1

4πε0

∫∫∫
V

ρel(r⃗
′)(r⃗ − r⃗′)

∥r⃗ − r⃗′∥3
dV ′

• Densité de surface σel

σel(r⃗) = lim
∆S→dS

∆q

∆S

=⇒ E⃗(r⃗) =
1

4πε0

∫∫
S

ρel(r⃗
′)(r⃗ − r⃗′)

∥r⃗ − r⃗′∥3
dS′

5.3.2 Lignes de champ électrique

Definition 5.3 (Lignes de champ électrique). Elles sont définies comme les

lignes qui sont tangentielles à E⃗ et tout point.

5.4 Loi de Gauss

Loi 5.1 (de Gauss). Le flux du champ électrique à travers une surface S fermée
est égale à la somme des charges électriques contenues dans le volume V délimité
par S, divisé par la permittivité du vide.∫∫

S

E⃗ · d⃗S =
1

ε0

∫∫∫
V

ρeldV

Nous avons aussi la forme différentielle de la loi de Gauss :

∇ · E⃗ =
ρel
ε0

5.5 Le potentiel électrostatique

En électrostatique on peut définir une fonction scalaire ϕ(r⃗) tel que E⃗ = −∇ϕ.
On appelle ϕ le potentiel électrostatique.

Si on a une seule charge ponctuelle q1 à r⃗1 le potentiel est donné par :

ϕ(r⃗) =
1

4πε0

q1
∥r⃗ − r⃗1∥

+ const

Remarquons que nous pouvons généraliser cette expression à n charges avec le
principe de superposition.

Avec une distribution de charge arbitraire

ϕ(r⃗) =
1

4πε0

∫∫∫
V

ρel(r⃗
′)dV ′

∥r⃗ − r⃗′∥
+ const
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Pour une densité de charge de surface :

ϕ(r⃗) =
1

4πε0

∫∫
S

σel(r⃗
′)dS′

∥r⃗ − r⃗′∥
+ const

5.5.1 Quelques propriétés de ϕ et de E⃗ en électrostatique

1. Nous avons
∇× (∇ · ϕ) = 0

2. Le travail pour déplacer une charge q dans un champ E⃗ de A à B ne
dépend pas du chemin suivi et est égal à q(ϕ(B)ϕ(A))

Definition 5.4 (Surface équipotentielle). On définit les surfaces équipotentielles
par

ϕ(r⃗) = const

Comme E⃗ = −∇ϕ les lignes du champ E⃗ sont perpendiculaires aux surfaces
équipotentielles.

5.6 Le rôle des conducteurs en électrostatique

5.6.1 Propriétés de base

En électrostatique, pas de courant.

1. E⃗ = 0 à l’intérieur du conducteur

2. ∇ · E⃗ = 0 = ρel

ε0
=⇒ ρel = 0 à l’intérieur du conducteur

3. Le potentiel ϕ est constant dedans le conducteur

4. E⃗ = −∇ϕ =⇒ E⃗ est perpendiculaire à la surface du condensateur parce
que cette surface est équipotentielle

5. Des charges peuvent se trouver seulement à la surface du conducteur (σel ̸=
0 possible)

5.6.2 Densité de charge de surface par influence

Il peut arriver que des densités de surfaces de charges soient générées par influ-
ence pour assurer que E⃗ = 0 dans le conducteur.

5.6.3 Effet de pointe

Autour des pointes d’un conducteur le champ E⃗ peut être très élevé.
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5.6.4 Traitement générale, équation de Laplace et de Poisson

Souvent on ne peut plus utiliser la loi de Gauss pour trouver le champ électrique
(ρel(r⃗) n’est pas connue).

On connâıt le potentiel à la surface de chaque conducteur mais pas σel.

• Si ρel = 0 dans l’espace à l’extérieur des conducteurs. Alors ∇ · E⃗ = 0
avec E⃗ = −∇ϕ on trouve l’équation de Laplace :

∆ϕ = 0

• Si ρel ̸= 0 entre conducteurs alors on a l’équation de Poisson :

∆ϕ =
−ρel

ε0

Théorème 5.1. Pour les conditions au limites ϕ = ϕi sur la surface du con-
ducteur i ∈ {1, 2, . . . } et lim |r⃗| → ∞ϕ = 0, alors la solution de l’équation de
Poisson (ou de Laplace) est unique.

5.7 Capacité et condensateur

5.7.1 Définition de capacité

Deux condensateurs initialement non chargés. Charge −q enlevé de d’un con-
ducteur et placée sur l’autre. Nous avons :

q

ϕ(A)− ϕ(B)
= const = C

Pour alléger la notation nous écrivons

U = ϕ(A)− ϕ(B)

Dans le vide la capacité ne dépend que de la géométrie des deux condensa-
teurs.

5.7.2 Le condensateur

Definition 5.5 (Condensateur). Système de deux condensateurs avec charge
±q. Normalement, la géométrie est choisie pour maximiser la capacité.

Condensateur cylindrique : deux cylindres de conducteurs, un placé dedans
l’autre. La capacité de ce condensateur est :

C =
2πε0l

ln(R2

R1
)

Condensateur plan : deux plaques de conducteurs placées l’une à côté de
l’autre. La capacité est :

C =
ε0Sc

d
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5.7.3 Énergie stockée dans un condensateur d’énergie électrique

Considérons un condensateur arbitraire. Le travail pour déplacer une charge
−dq de conducteur A au condensateur B est

dW = −U(−dq) =
q

C
dq

Alors le travail pour déplacer une charge q est :

W =

∫ q

0

dW =
1

2
CU2

Pour un condensateur plan on a :

W =
1

2
ε0E

2Scd

Ce travail est stockée dans le champ E. On pose

eE =
1

2
ε0E

2

la densité d’énergie électrique dans le vide.

5.7.4 Capacité avec un diélectrique

Un diélectrique est utilisé pour diminuer la tension donc augmenter la capacité.

Definition 5.6 (Moment dipolaire). On pose

p⃗ =
∑
i

r⃗iqi

le moment dipolaire. On a

1. p⃗ ne dépend pas du choix du système de coordonnées

2. Dans un champ E⃗ uniforme la force sur le système est nulle

3. Par contre, le moment de force en général est non nul.

Dans un diélectrique les électrons ne peuvent pas bouger librement. Mais
un champ E⃗ a quand-même des effets :

1. Moment dipolaire induit. Très faible déplacement d’électrons.

2. En présence de moments dipolaires permanentes le diélectrique forme une
densité de charge de surface.

16



Si le diélectrique est homogène et isotrope, et E⃗ n’est pas trop fort :

σp = χε0E

où χ est la susceptibilité électrique. Posons εr := 1χ la permittivité relative.
Considérons un condensateur plan avec un diélectrique, nous avons :

E =
q

Scε0εr

U =
qd

Scε0εr

C =
ε0εrSc

d

En général la capacité d’un condensateur ne dépend que de sa géométrie et
du diélectrique.

6 Circuits électriques

En électrostatique, pas de courent implique pas de champ électrique dedans les
conducteurs.

Definition 6.1 (Appareil à force électromotrice). Appareil qui fourni une ten-
sion entre deux bornes.

6.1 Définition de courant

Definition 6.2 (Courant). Le courant est le flux de charge par unité de temps
à travers une surface S.

I =
dq

dt

Definition 6.3 (Densité de courant). La densité de courant j⃗ est donnée par :

j⃗ = ρel(r⃗, t) · u⃗(r⃗, t)

Nous avons

I(t) =

∫∫
S

j⃗ · dS⃗

6.2 La résistance R, la loi d’Ohm et l’effet Joule

Definition 6.4 (Résistance). On définit la résistent comme le voltage appliqué
sur le courant :

R =
U

I

Dans certains cas le courant est proportionnel à la tension, donc la résistance
est constante. on parle de la loi de Ohm.
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Loi 6.1 (de Ohm).

R =
U

I
= const

De manière plus générale on écrit la loi de Ohm de la forme suivante

j⃗ = σc · E⃗ =
1

ρc
· E⃗

Avec σc la conductibilité électrique et ρc la résistivité électrique.

À partir de la loi de Ohm on peut déduire U = RI. Donc,

R =
ρcl

S
=

l

σcS
= const

la résistance dépend de la géométrie et du type de conducteur.

Effet Joule : Si une charge q se déplace de A à B, le travail exercé par le
champ E⃗ sur la charge est Uq. Dans une résistance cette énergie est transformée
en chaleur. Nous avons une puissance P définie par :

P =
U2

R
= IU = I2R

Cette puissance est fournie par l’appareil à fem.

6.3 Conservation de charge, équation de continuité

Équation de continuité pour la charge :

∂ρel
∂t

+∇ · j⃗ = 0

6.4 Circuits électriques et lois de Kirchhoff

Considérons les éléments suivants :

• Source de tension continue

ε

I

• Résistance
R

U

I

U = RI

Résistance équivalente en série : Requil =
∑

i Ri

Résistance équivalente en parallèle : Requil =
(∑

i
1
Ri

)−1
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• Condensateur et capacité

Cas 1:
C

U

I

U =
q

C
I =

dq

dt

Cas 2:
C

U

I

U =
q

C
I =

−dq

dt

Capacité équivalente en série : Cequil =
(∑

i
1
Ci

)−1

Capacité équivalente en parallèle : Cequil =
∑

i Ci

Loi 6.2 (Loi des noeuds). La somme de tous les courants qui arrivent à un
noeud d’un circuit est égale à la somme de tous les courants qui le quittent. Pas
d’accumulation de charge dans les noeuds.

Loi 6.3 (Loi des mailles). La somme algébrique des variations de potentiel le
long de toutes les mailles fermées d’un circuit est nulle.∮

E⃗ · d⃗l = 0

Valable que en électrostatique/magnéto-statique ou si les variations temporelles
ne sont pas trop importantes.

Application 6.1 (lois de Kirchhoff sur un circuit). Pour un circuit quelconque
il faut :

1. Définir le sens des courants.

2. Indiquer la direction de l’augmentation de potentiel.

3. Écrire les équations pour les noeuds sauf 1 et pour les mailles indépendantes.

4. Si on trouve Ii < 0, la direction de Ii est différente que indiquée dans le
dessin. À part ça, le calcul reste juste.

Remarque. Loi des mailles = ±εind?
Si l’orientation de dS⃗ et la direction du choix de I sont selon la règle de vis

et la loi est évaluée dans le sens de I. Alors on a

Loi de mailles = −εind
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7 Magnétostatique

7.1 Définition du champ B⃗ et force de Lorentz

On trouve expérimentalement la force de Lorentz

F⃗ = q(E⃗ + v⃗ × B⃗)

et on définit la norme de B⃗ pour que l’égalité d’en haut soit vraie.
Une autre expression de la force de Lorentz est :

dF⃗ = Id⃗l × B⃗

7.2 Loi d’Ampère

Loi 7.1 (Loi d’Ampère). Considérons un contour C fermée et des conducteurs
portant des courants Im. Dans ce cas :∮

C

B⃗ · d⃗l = µ0 ·
∑
m

Im

Version intégrale de la loi d’Ampère :∮
γ

B⃗ · d⃗l = µ0

∫∫
S

j⃗ · dS⃗

Version différentielle de la loi d’Ampère :

∇× B⃗ = µ0j⃗

7.3 Loi de Gauss pour B⃗

Loi 7.2 (Loi de Gauss). Considérons un champ magnétique B⃗ et une surface
fermée S alors :

∇ · B⃗ = 0

7.4 Loi de Biot-Savart

Loi 7.3 (Loi de Biot-Savart). Quel est le champ B⃗ crée par un fil mince de
forme abstraite parcouru par un courant I ?

B⃗(p⃗) =
µ0I

4π

∫
fil

d⃗l × r⃗

|r⃗|3
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8 Phénomènes d’induction magnétique

8.1 Loi d’induction de Faraday

Interprétation d’un champ électrique induit avec la loi d’Ohm :

E⃗ =
I

Sσc

d⃗l

dl

Donc ∮
γ

E⃗ · d⃗l = IR = εind

On appelle εind la tension induite ou force électromotrice. Cette tension
dans le fil peut être induite par :

• Le mouvement d’un aimant

• Par le champ magnétique généré par une bobine

• Un aimant (ou bobine) fixe mais on bouge le fil

• La variation temporelle du champ magnétique

Loi 8.1 (Loi d’induction de Faraday).

εind =

∮
γ

E⃗ · d⃗l = −d

dt

∫∫
S

B⃗ · dS⃗ =
−d

dt
Φ

où on définit :

Φ =

∫∫
S

B⃗ · dS⃗ := flux du champB⃗ à travers S

Remarque. Nous remarquons que

• L’orientation de d⃗l et dS⃗ est relative et selon la règle de vis.

• La loi de Faraday reste valable si l’orientation et/ou la forme du fil varie
au cours du temps.

8.2 Loi de Faraday différentielle

Avec le théorème de Stokes nous pouvons écrire la loi de Faraday sous forme
différentielle :

∇× E⃗ =
−∂B⃗

∂t
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8.3 La règle de Lenz

Quelle est la direction du courant et du champ E⃗ induit ?

Loi 8.2 (Règle de Lenz). Le courant induit I dans la boucle est orienté tel que

le champ B⃗ qu’il crée lui-même s’oppose au changement du flux magnétique.

On a vu les exemples de la canette qui se comprime, et les courants de
Foucault.

8.4 Circuits électriques en présence de phénomènes d’induction

8.4.1 Self-inductance

Considérons une bobine
I

le champ magnétique B⃗ induit par la bobine est orienté par la loi de vis et
définit par :

B = µ0In

où n est le nombre de tours par mètre de la bobine.
Alors le flux du champ magnétique par boucle de section S est :

Φ = BS = µ0INS

La bobine est de longueur l alors le flux total est :

ΦTOT = µ0n
2lSI

On définit

L = µ0n
2lS := l’auto inductance ou ”self” de la bobine

On peut voir que la bobine induit une tension dans elle même !

εind = −L
dI

dt

Ce phénomène s’appelle self-inductance.

8.4.2 Circuit électrique avec une self

Nous allons présenter la solution I(t) pour un circuit RL et un circuit RLC.
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Circuit RL :

R
I

L

I

ε

I

La solution du courant est :

I(t) = I0e
−R
L t +

ε

R

Circuit RLC :

R
I

L

I

C

I

ε

I

On a une équation différentielle ordinaire linéaire du second ordre donnée
par la loi des mailles :

d2I

dt2
+

R

L

dI

dt
+

1

LC
I = 0

8.4.3 Énergie magnétique

Nous trouvons que la densité d’énergie magnétique est :

eB =
1

2µ0
B2

Alors l’énergie magnétique stockée dans un volume par le champ magnétique
est :

W =

∫∫∫
V

eBdV
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9 Équations de Maxwell

9.1 Critique de l’équation ∇× B⃗ = µ0j⃗

Les expériences nous montrent que la loi d’Ampère en général n’est pas valable
(s’il y a des dépendances temporelles).

9.2 Courant de déplacement de Maxwell

Maxwell a postulé un nouveau terme dans la loi d’Ampère si ∂
∂t ̸= 0.

Loi 9.1 (Loi d’Ampère-Maxwell).

∇× B⃗ = µ0j⃗ + µ0ε0
∂E⃗

∂t

Forme intégrale d’Ampère-Maxwell :∮
γ

B⃗ · d⃗l = µ0

∫∫
S

(⃗j + ε0
∂E⃗

∂t
)

9.3 Les équations de Maxwell

Valables en générale. On présente les équation sous deux formes différentes.
Forme différentielle :

1. Loi de Gauss :
∇ · E⃗ =

ρel
ε0

2. Loi de Faraday :

∇× E⃗ = −∂B⃗

∂t

3. Loi de Gauss pour le champ magnétique :

∇ · B⃗ = 0

4. Loi d’Ampère Maxwell :

∇× B⃗ = µ0j⃗ + µ0ε0
∂E⃗

∂t

Forme intégrale :

1. Loi de Gauss : ∫∫
S

E⃗ · dS⃗ =
1

ε0

∫∫∫
V

ρeldV
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2. Loi de Faraday : ∮
γ

E⃗ · d⃗l = −∂

∂t

∫∫
S

B⃗ · dS⃗

3. Loi de Gauss pour le champ magnétique :∫∫
S

B⃗ · dS⃗ = 0

4. Loi d’Ampère Maxwell :∮
γ

B⃗ · d⃗l = µ0

∫∫
S

(
j⃗ + ε0

∂E⃗

∂t

)
· dS⃗

9.4 Ondes électromagnétiques dans le vide

Nous trouvons que E⃗ et B⃗ satisfait une équation d’onde dans le vide!

∂2E⃗

∂t2
=

1

ε0µ0
∆E⃗

∂2B⃗

∂t2
=

1

ε0µ0
∆B⃗

Nous avons que la vitesse de l’onde est

c =
1

√
ε0µ0

= Vitesse de la lumière

Maxwell a correctement conclut que la lumière est une onde électromagnétique.
Contrairement aux ondes sonores, les ondes électromagnétiques n’ont pas

besoin d’un médium pour se propager.

9.4.1 Ondes planes dans le vide

Nous cherchons des solutions du type d’onde sinusöıdales planes. Nous trouvons
que la solution est :

E⃗(r⃗, t) =
˜⃗
E0 · ei(ωt−k⃗·r⃗+ϕ)

B⃗(r⃗, t) =
˜⃗
B0 · ei(ωt−k⃗·r⃗+ϕ)

Où nous avons :
ω = c ·

∣∣∣⃗k∣∣∣∣∣∣ ˜⃗B0

∣∣∣ = 1

c

∣∣∣ ˜⃗E0

∣∣∣
Nous remarquons que E⃗ et B⃗ sont des ondes transverses et que E⃗, B⃗, k⃗

forment un repère orthogonale droit. L’onde électromagnétique se propage dans
la direction de k⃗.
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Nous avons aussi :

B⃗ =
k⃗ × E⃗

ω

Remarques additionelles :

• Dans un médium la vitesse de phase des ondes électromagnétiques peut
être différente : c → c

n où n est l’indice de réfraction.

• Une onde électromagnétique transporte de l’énergie :

EEM =

∫∫∫
V

eEMdV =

∫∫∫
V

1

2
(ε0E⃗

2 +
1

µ0
B⃗2)dV

Nous définissons S⃗ l’énergie transportée le long de k⃗ par unité de surface
et de temps. Nous avons :

S⃗ =
E⃗ × B⃗

µ0
:= Vecteur de Poynting
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