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1 Introduction et résumé

Une onde est une perturbation qui se propage dans l'espace et le temps. Dans ce
cours, nous étudierons les phénomenes ondulatoires dits linéaires, c¢’est-a-dire ou 'onde
se propage dans un milieu en le perturbant suffisamment peu, pour que cela ne mod-
ifie pas les propriétés de propagation de l'onde. Signalons cependant que de nom-
breux phénomenes peuvent apparaitre lorsque 'amplitude de la perturbation devient
importante (ondes dites non-linéaires): ondes de choc, auto-focalisation, désintégration
paramétrique, etc.

Expérience du cours: ondoscope. Dans cette expérience, ou des tiges rigides sont
reliées entre elles par une corde élastique, la perturbation est perpendiculaire a la direction
de propagation: on parle d’onde transverse. Un autre exemple d’onde transverse est
I'onde EM dans le vide (voir chapitre précédent), ou la perturbation (champs E et ﬁ)

est perpendiculaire a la direction de propagation k. L’expérience de ’ondoscope permet
de mettre en évidence les phénomenes de réflexion et d’amortissement.

Expérience du cours: chaine linéaire. Dans cette expérience, ou des corps sont
reliés entre eux par des ressorts, la perturbation est parallele a la direction de propaga-
tion: on parle alors d’onde longitudinale. Un autre exemple d’onde longitudinale est
I’onde sonore, que nous allons étudier plus en détail dans la Section suivante. Voir aussi
I’expérience de propagation de 'onde sonore dans I'hélium.

Expérience du cours: superposition d’ondes. Lorsque plusieurs ondes sont émises
par plusieurs sources, ou que plusieurs ondes sont le résultat de réflexions, il y a super-
position des perturbations associées. Pour de petites amplitudes, cette superposition
est linéaire: la perturbation résultante est, en tout point de I'espace- temps, la somme
des perturbations de chacune des ondes.

Ce qui se transmet lorsqu’une onde se propage n’est pas de la matiere (ce n’est pas une
convection), mais c’est une perturbation. Cette perturbation est dans certains cas (ex.
onde sonore) associée & un mouvement de matiere, mais ce n’est pas la matiere qui se
déplace a la vitesse de propagation de 'onde. Voir p.ex. des vagues sur la mer.

Une onde transmet aussi de I’énergie et de I'information.

On trouvera a l'adresse http://www.falstad.com/mathphysics.html plusieurs applets il-
lustrant les différents phénomenes ondulatoires dont nous allons parler dans ce cours.
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2 ONDE DE PRESSION DANS UN FLUIDE PARFAIT GAZ PARFAIT

2 Onde de pression dans un fluide parfait gaz parfait

Soit un fluide parfait, gaz parfait, d’indice d’adiabaticité -, initialement statique, uni-
forme, a 1’équilibre:

- 0F, 0Py dpo dpo
P =0, — =0 =0,— =0 =0. 1
0, P05 Vo ) at ) 3% ) (975 ’(9382- ( )
Soit une perturbation de cet équilibre. Ainsi
P(Z,t) = Py + P'(Z,t), p(Z,t) = po+ p(Z,t), U(Z t)=70(Z1). (2)

Pour des ondes linéaires, on fait I’hypothese de petites perturbations:
P << Py, p<<po, (3)
de telle sorte que I'on négligera les termes quadratiques ou d’ordre supérieur:
(P')%,(p)%, ()2, P, Py ete, (4)

Cette opération s’appelle la linéarisation des équations. (D’ou le terme d’onde
linéaire). Le but de ce qui suit est de

1. montrer qu’a partir de ces hypotheses, on peut trouver des équations pour la per-
turbation qui sont de la forme:

0 vHy
—p =1=vip 5

et de méme pour p’ et ¥');
p

2. établir des relations entre les composantes de la perturbation, c.a.d. entre P, o', ';

3. montrer que ces équations ont des solutions ondulatoires, de vitesse de propagation

Ll (6)

/Uh—
P
ﬁO

On fera la démonstration détaillée dans le cas unidimensionnel, c’est- a-dire ou les quan-
tités perturbées ne dépendent que de (z,t). Les équations de base du modele sont
celles du fluide parfait, gaz parfait, donc ’équation d’Euler, I’équation de continuité et
I'équation d’état (voir Ch.I). Puisque l'on a supposé Py et pg uniformes, cela revient a
dire que l'on a négligé la pesanteur pg. Il vient:

o’ »

Euler : (po + o) (E + (V- V)ﬂ”) =-V(R+P) (7)
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Ap+¢)

Continuité : 5 T V- ((po+p)0") =0 (8)
Etat : (% + (v - V)) (Po+P)po+p)7)=0 (9)

Eliminant les termes non linéaires, ces équations deviennent:

v,  OP" 0Ov, v,

Euler : | po 5~ o’ Bt 0, e 0 (10)
y op o,
Continuité : | — £ =0 11
ontinuité Er + po e (11)
oP" Py oy

Etat : - = 12
A TR T (12)

On tire de (10) que v, = const et v, = const, et comme initialement les vitesses sont
nulles, v, = 0 et v, = 0. Il nous reste donc un systeme de 3 équations (10,11,12), aux
dérivées partielles, couplées, linéaires, a coefficients constants, pour 3 fonctions inconnues
de (z,t): P p, .

T

La méthode de résolution de ce systeme est d’éliminer v/, et p' et
d’obtenir une équation pour P’.

0 0!, 0* P!
2.0 PG T T o (13)
o 82?}/ 82,0/
—(11) : L= 14
g Pogiar = o (14)
) azp/ 00 92p’
—(12) : = 1
815( ) o2 ~vyPBy ot? (15)
Substituant les 2 dernieres Eqs dans la premiere:
O*P' Py, 0*P'
_ 1to (16)
ot? po  0x?

N.B. A partir des Eqgs (10,11,12), on peut obtenir des équations de forme similaire pour
P et vl
v, Py 0%,

17
ot? po 0z (17)
82 / P 82 /
ot? po Ox?
La généralisation de I'Eq.(16) au cas de perturbations dépendant de (x,y, z,t) est:
P*P' AP,
— 10 g2p (19)
ot Po

L’Eq.(19) est du type appelé équation d’Alembert. On étudiera ses solutions a la
Section suivante.
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3 EQUATION D’ALEMBERT. ONDES INDEFORMABLES

Les Eqgs.(10,11,12) donnent les relations entre les différentes composantes de la perturba-
tion P', p, vl

La perturbation de vitesse ¢/ est parallele a la direction de propagation: c¢’est donc une
onde longitudinale.

3 Equation d’Alembert. Ondes indéformables

3.1 L’équation d’Alembert et sa solution générale

Les équations que nous avons établies pour de petites perturbations dans un fluide parfait
gaz parfait sont de la forme (cas 1D):

G
ot? ox? |’

(20)

ou ¥ = Y (x,t) représente la perturbation soit de pression, soit de densité, soit de vitesse,
et u = +/7Py/po. Dans le cas des ondes EM dans le vide, on peut montrer, a partir des
Eqgs. de Maxwell, que les composantes des champs E et B satisfont aussi une équation
d’Alembert, avec u = ¢. Les autres exemples sont nombreux (cordes vibrantes, ondes
élastiques, etc). L’Eq. d’Alembert semble donc représenter une structure mathématique
commune a de nombreux phénomenes ondulatoires. Le but de cette Section est d’obtenir
la solution générale de cette équation.

La solution générale de 'Eq. d’Alembert est:

Y(z,t) = fx —ut) + gz + ut)|, (21)

ou f et g sont deux fonctions arbitraires, deux fois différentiables, d'une variable réelle.

Preuve. Soit a(z,t) =z —ut et f(x,t) =z +ut. On a(z,t) = f(a(z,t)) + g(B(z,t)).
De la reégle de dérivation des fonctions composées, on obtient de (21):
00 _df o dg 5
ot da ot dp ot

Redérivant par rapport a t,

= f(-uw)+ gu

62 1 " " 7
—g—— f(—u)(—u) + ¢g"uu = uQ(f +4")
De meéme,
61/} r/ / 62 e 7
Az tg = 922 T

La comparaison des deux derniéres équations montre que ’'Eq. d’Alembert est bien
satisfaite.
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3.2 Analyse de la solution générale

0)

f(x,t

-5 0 5
X

Figure 1: Solution de I’Eq. d’Alembert: Perturbation dans l’espace a t = 0 (haut) et a
t =ty (bas), pour une onde progressive (gauche) et pour une onde rétrograde (droite).

3.2 Analyse de la solution générale

Signification de f(x —ut) et g(x + ut). Perturbation dans ’espace a un instant
donné. Voir Figure 1. Dans le cas ou ¢(z,t) = f(x — ut) = f(«), f(«) représente la
forme (dans l'espace) de perturbation au temps t = 0: ¥(x,t = 0) = f(«).

On obtient la forme de la perturbation (dans I’espace) a un instant ¢; > 0 par ¢(z,t =
t1) = f(a = x — uty). Par exemple, au point A, en x = 0, la perturbation est ¥4 =
¥(0,t1) = f(—utl). Au point B, en x = uty, la perturbation est ¢¥p = ¥(utl,tl) =
f(utl —utl) = f(0). Au point C, en x = 2uty, la perturbation est ¥¢ = ¥ (2utl, tl) =
f(2utl —wutl) = f(utl). Et ainsi de suite. En d’autres termes, la forme de la perturbation
(dans l’espace) au temps t = t; est identique a la forme de la perturbation (dans ’espace)

II1. Ondes L. Villard - CRPP - EPFL 7



3 EQUATION D’ALEMBERT. ONDES INDEFORMABLES

1
0.5
=
0
x O
T
c
~0.5
1 ‘ ‘ ‘ 1 ‘ ‘ ‘
o 05 1 15 2 o 05 1 15 2
{ t

Figure 2: Solution de I’Eq. d’Alembert: Perturbations dans le temps a une position x = x
fixée (gauche) et a une position x = xo > x1 firée (droite).

au temps t = 0, décalée de la quantité ut,, donc vers les x positifs.
On parle ainsi d’onde progressive indéformable.

Dans le cas ou ¢(z,t) = gz + ut) = g(), g(B) représente la forme (dans l’espace) de
perturbation au temps ¢t = 0: ¢ (z,t = 0) = ¢g(). Un raisonnement similaire conduit
au résultat que dans ce cas la forme de la perturbation (dans l’espace) au temps t = t;
est identique a la forme de la perturbation (dans l'espace) au temps t = 0, décalée de la
quantité —uty, donc vers les x négatifs .

On parle ainsi d’onde rétrograde indéformable.

Signification de f(x—ut) et g(x+ut). Perturbation dans le temps & une position
donnée. Voir Figure 2. 1l s’agit donc des signaux temporels a un endroit donné z; fixe.
soit h(t) ce signal: h(t) = 1(x1,t) = f(x1—ut) = f(a = x1—ut). Le graphe de la fonction
h(t) est donc semblable a celui de la perturbation instantanée dans l'espace (renversé a
cause du signe “-” devant ut).

Le signal a un endroit x5 fixé est de forme identique (dans le temps) a celui en z; fixé,
mais décalé dans le temps de la quantité At = (zo — 1) /u, qui n’est autre que le temps
de propagation du signal entre z; et x,.

Dans le cas d’une onde rétrograde, le signal a un endroit x5 fixé est de forme identique
(dans le temps) a celui en z; fixé, mais décalé dans le temps de la quantité At = —(xq —
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3.3 Exemple de I'onde de pression dans un fluide parfait gaz parfait

x1)/u, qui n’est autre que le temps de propagation du signal entre x; et x».

La solution générale de ’Eq.d’Alembert est donc la superposition d’une onde
progressive indéformable et d’une onde rétrograde indéformable. La vitesse
de propagation est +u.

3.3 Exemple de 'onde de pression dans un fluide parfait gaz
parfait

Ona vy =P (ouv =p ou =v.). La vitesse de propagation de l'onde sonore est

_
u= plk (22)

On peut récrire cette expression en utilisant la loi des gaz parfaits, Py = (N/V)okgT), ol
kp = 1.38 x 1072]J /K est la constante de Boltzmann, Ty est la température d’équilibre,

et (N/V)g est la densité numérique du gaz a ’équilibre; comme py est la densité de masse
a 1’équilibre, on a Py = (po/m)kpTy, oi m est la masse d’une molécule de gaz. On a ainsi

w0 (23)
m

On constate que la vitesse du son est proportionnelle a la vitesse thermique. Pour I'air aux
conditions atmosphériques standard, Py = 1.01 x 10°Pa, py = 1.29kg/m?, Ty = 293K,

v~ 1.4, ma29%1.67 x 107%kg ' | on trouve [u ~ 340 ms™~! ~ 1220 km/h |

Pour de I'hélium (masse atomique 4) a la pression et température de I’atmoshphere
standard, on trouve u ~ 1000 ms~* ~ 3600 km/h. La vitesse du son dans I'hélium est 3
fois plus élevée que dans l'air. Dans I’expérience du cours, la voix est modifiée vers les
hautes fréquences: en effet les “cordes vocales” et I’ensemble de la cage thoracique sont des
“cavités résonantes” (voir Section 5.3), dont les fréquences propres sont proportionnelles
a la vitesse de propagation wu.

ATTENTION, la vitesse u n’a RIEN A VOIR AVEC la VITESSE v': alors

que u est la vitesse du son, v’ est la vitesse fluide du gaz dans la perturbation.
Voir I’expérience de la chaine linéaire d’oscillateurs.

Perturbations de pression, de densité et de vitesse.

1L air est composé a peu pres de 3/4 d’azote (No, masse atomique 2*14), et 1/4 d’oxygene (O2, masse
atomique 2*16), donc une masse atomique moyenne d’environ 29

II1. Ondes L. Villard - CRPP - EPFL 9



3 EQUATION D’ALEMBERT. ONDES INDEFORMABLES

Soit l'expérience suivante. On donne, en z = 0, un signal h(¢) sous la forme d’une
perturbation de pression
h(t) = P'(x = 0,1t)

et on suppose que le signal se transmet par une onde progressive. La question est de
calculer les perturbations de pression P'(x,t), de densité p(xz,t) et de vitesse v/ (x,t) en
tout point de ’esapce-temps.

1

0.8

0.6

0.4

Figure 3: Perturbations de pression P’, de vitesse v) et de densité p' dans une onde
sonore.

Comme on sait que P’ est solution progressive de 'Eq. d’Alembert, on a P'(z,t) = f(a) =
f(z —wut). En particulier, en z = 0, donc f(—ut) = h(t), autrement dit f(a) = h(—a/u).
Ainsi,
Plz,t)=h (—E + t) .
u

La perturbation de vitesse v, (z,t) s’obtient de I'Eq.(10):

ov,  10F
ot po Ox
Or,
oP' dh 1
ox - dt’ t'=t—z/u u
Donc .
1 dh 1 1
o (2, ) = —/ a ' = —h — L Plat)
Pol Jo dt’ t'=t—x/u PoU t=t—z/u Pol

La perturbation de densité s’obtient de I'Eq.(12):

o _ po 0P _ 1 0P
ot Py 0t w2 Ot
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et en intégrant sur le temps, on obtient

1
Pz, t) = EP/(x,t) :

Les perturbations de pression, densité et vitesse sont esquissées a la Figure 3.Elles ont la
méme forme, et sont en phase. On notera que le temps t' = ¢ — x/u est un temps retardé

de la durée de la propagation du signal entre son “émission” en x = 0 et sa “réception”
en x # 0.

4 Principe de superposition linéaire

Soit une source no.l (p.ex. un haut-parleur) produisant un signal h(t). L’onde émise
est notée ¢ (7, 1).

Soit une source no.2 (p.ex. un haut-parleur) produisant un signal hy(t). L’onde émise
est notée 1y (T, t).

L’onde résultant du signal hq(t) amplifié d'un facteur a; est a1 ().
L’onde résultant du signal hy(t) amplifié d'un facteur ag est asi)o(7, t).

Lorsque les 2 sources sont en fonction, l'onde résultant du signal hy(t) amplifié d’'un
facteur a; et du signal hy(t) amplifié d’'un facteur ay est:

lb(fa t) = a1¢1(f’ t) + az%(ﬁ t) . (24)

Ce principe dit de superposition linéaire est vrai pour toute solution d’équations
linéaires. Physiquement, cela correspond a des amplitudes suffisamment petites.

Pratiquement toute la suite de ce chapitre est consacré a des applications de ce principe
de superposition linéaire. On mentionnera les applications et expériences suivantes:

Croisement d’ondes indéformables

Réflexion d’ondes

Onde progressive + onde rétrograde = onde stationnaire

2 ondes sinusoidales de fréquences différentes w, et wp = battement de fréquence
jwa — wa|

2 sources de méme fréquence, a deux endroits différents = interférences

II1. Ondes L. Villard - CRPP - EPFL 11



5 ONDES SINUSOIDALES. NOTATION COMPLEXE. RELATION DE
DISPERSION

N sources de méme fréquence, a N endroits différents = diffraction

e N signaux sinusoidaux de fréquences nwy, avec n entier, < n’importe quel signal
de période T' = 27 /wy (Fourier, spectre en fréquence, spectre en longueur d’onde)

e Modulation de fréquence, modulation d’amplitude
e (Cavités résonantes: ondes stationnaires dans les 3 directions de I'espace

e Guides d’ondes: ondes stationnaires dans 2 directions de 'espace, propageantes
dans une direction

e “Paquets d’ondes”: voir aussi représentation quantique d’une particule, Ch.IV

e 2 ondes de méme fréquence, méme direction de propagation, perturbations dans
des directions différentes, déphasées = polaisations linéaire, circulaire, elliptique

5 Ondes sinusoidales. Notation complexe. Relation
de dispersion

Dans cette section, nous nous restreindrons au cas unidimensionnel dans l’espace. La
généralisation au cas 3D sera faite a la Section suivante.

5.1 Définitions. Cas de I’Eq. d’Alembert

Une onde sinusoidale pour une perturbation ¢ s’écrit, dans le cas unidimensionnel (1D):

W(x,t) = cos(kx — wt + ) (25)

On a les définitions suivantes: 1& est 'amplitude, k est le nombre d’onde [m™'], w est la
fréquence angulaire [s7!], ¢ est le déphasage, kx —wt + ¢ est la phase, une surface définie
par phase=const est appelée surface de phase. ¥, k, w et ¢ sont des constantes.

Les graphes de la perturbation en fonction de x a t fixé, et en fonction de t a x fixé sont
représentés a la Figure 4. La longueur d’onde A est définie comme la périodicité spatiale
de la perturbation a t fixé. On a

2m
A=—. 26
. (26)
La période T" dans le temps a x fixé est
2
T=—. 27
- (27)

12 II1. Ondes L. Villard - CRPP - EPFL



5.1 Définitions. Cas de I’Eq. d’Alembert

A NS

0 0.5 1 1.5 2
X

Figure 4: Onde sinusoidale a t fixé (gauche) et a x fixé (droite).

La fréquence v (unité : Hertz, [Hz]), est le nombre d’ oscillations par unité de temps a z

fixé:
e 1 w
V= —

T on
Si le systeme est tel que la perturbation doive satisfaire une équation de type d’Alembert,

(28)

alors on sait que toute solution doit pouvoir s’écrire comme une fonction de z + ut. On
peut récrire 'onde sinusoidale (25) comme

P(z,t) = U cos [k: (x — %t) + cp]

D’Alembert est satisfait si

Z=ul & [w=ru]. (29)

C’est la relation de dispersion pour I'Eq. d’Alembert. Elle lie le nombre d’onde et la

fréquence angulaire, autrement dit la longueur d’onde et la fréquence:

- (30)

La vitesse de propagation u s’appelle dans ce cas vitesse de phase |v,, = w/k| Clest

en effet la vitesse a laquelle les surfaces de phase se déplacent.

Exemple 1: onde sonore dans l'atmosphere standard, son “la”: v = 440[Hz]. On a
u = 340[m/s|, et on trouve A\ = 0.772[m], k = 8.14[m™!], w = 2764.6[s7!], T =
2.273 x 1073 [s].

Exemple 2: lumiere rouge dans le vide. C’est une onde EM. On a u = ¢ = 3 x 10%, la
longueur d’onde du rouge est A = 0.6 [um]. Donc v =5 x 10"[Hz|, w = 3.14 x 10"°[s7!],
k= 1.047 x 107[m~Y], T = 2 x 10~15[s].

II1. Ondes L. Villard - CRPP - EPFL 13



5 ONDES SINUSOIDALES. NOTATION COMPLEXE. RELATION DE
DISPERSION

Pour les ondes EM dans la matiere, on définit 'indice de réfraction N comme le rapport
de la vitesse de propagation dans le vide et celle dans la matiere:

k
N = € = d (31)
W
5.2 Notation complexe, démarche générale
On peut récrire une onde sinusoidale comme:
bl t) = Re et | (32)

c’est-a-dire comme la partie réelle d’une champ complexe U(z,t) = ¢ expli(kz — wt)]. La

~

constante ¢ est 'amplitude complexe, qui peut s’écrire en représentation polaire:
b= [Yle’”. (33)

On a |1ﬂ] qui est amplitude réelle. Les quantités k,w, ¢ sont des constantes réelles 2.
Mais w et k ne sont pas completement arbitraires: il existe une relation (la relation de
dispersion) qu'ils doivent satisfaire, pour que (32) soit une solution possible des équations
du systeme.

La démarche est schématiquement la suivante.

e Equations de base du systeme considéré (en général: systeme d’EDP nonlinéaires
pour les champs(z,t))

e Ecrire les champs comme des champs d’équilibre + perturbation(z, t)
e Hypothese des petites perturbations: linéariser les équations

e Systeme d’EDP linéaires

e Recherche de solutions sinusoidales complexes de la forme (32)

e Substitution dans le systeme d’EDP linéaires

o Substituer formellement

0 :

5 W (34)
0 :

— ik (35)

2Pour des ondes amorties, k et w peuvent étre complexes
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5.3 Réflexion d’ondes sinusoidales, ondes stationnaires et cavités résonantes 1D

e Systeme d’équations algébriques linéaires pour les amplitudes complexes. Soit Z le
vecteur des amplitudes complexes. Le systeme peut s’écrire avec une matrice M:

Mi =0 (36)

e (Ce systeme n’a de solution non triviale que si son déterminant est nul:

ldet M = 0| & |w=w(k)]. (37)

C’est la relation de dispersion cherchée

e La solution générale du systeme d’EDP linéarisées s’obtient en superposant des
solutions sinusoidales de type (32) qui satisfont chacune d’elles la relation de dis-
persion; on prend finalement la partie réelle du résultat.

Nous avons déja appliqué cette méthode pour trouver des solutions ondulatoires des
équations de Maxwell (Chapitre II, Electromagnétisme). Nous appliquerons cette méthode
dans le cas des ondes sonores, en exercice.

La solution s’écrit donc formellement
I

si on cherche des solutions périodiques en x, et

“+o00

Y(x,t) = Re { P (k)eilk=wk)) dk] (39)

— 00

dans le cas non-périodique; on voit, de ces deux dernieres expressions, que les v; sont les
coefficients de la série de Fourier de 1, et 1(k) est la transformée de Fourier de .

5.3 Réflexion d’ondes sinusoidales, ondes stationnaires et cavités
résonantes 1D

Expérience du cours: ondes sonores, ondes dans une corde vibrante, ondes
EM

Par exemple, considérons une onde sinusoidale incidente dans une corde vibrante attachée
a une de ses extrémités (point fixe). Voir Figure 5. La perturbation incidente se réfléchit.
La perturbation résultante est donc

@D(CE, t) = %Z)Iei(—kz—wt) + /&Rei('i‘kx—wt)
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5 ONDES SINUSOIDALES. NOTATION COMPLEXE. RELATION DE
DISPERSION

Figure 5: Onde incidente, onde réfliéchie, onde stationnaire résultante.

La condition au bord est:

Y(x=0,t) =0, Vt,

et donc
l/Jje_Wt + @/)Re_zwt =0, Vi = wR = —’(ﬁ] .

On voit que 'amplitude de 1'onde réfléchie est I'opposé de celle de I'onde incidente. La
perturbation résultante s’écrit donc:

w(x’ t) _ 1&[ (ei(kafwt) - e’i(+kx7wt)) _ _lﬁlefiwt (eikm . efikx> _ —22.1&[(37%)7&82'71(]{727)

La solution physique est la partie réelle de . Ecrivant I’amplitude complexe ¢; = a+ il;,
on a

Re(p(z,t)) = 2bsin(kz) cos(wt)

Cette solution est appelée onde stationnaire: elle représente une oscillation dans le
temps (~ cos(wt)), avec une amplitude fonction de x (~ sin(kz)). On notera 'existence
de points d’amplitude nulle, appelés noeuds, entre des points d’amplitude maximale,
appelés ventres de I'onde stationnaire.

Si, en plus de fixer la corde en & = 0, on la fixe aussi en x = L, alors on doit avoir
(x=L,t) =0, Vt

donc I )
sin(k:L):O@k:L:nw(:)k::%@AzQ—@L:%.
n

Autrement dit, seules certaines longueurs d’onde sont permises: on doit avoir un
nombre entier de demi-longueurs d’onde le long de la corde. Voir Figure 6. Comme les
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Figure 6: Modes propres dans une cavité résonante 1D.

fréquences et les longueurs d’onde sont liées par la relation de dispersion (w = w(k)), cela
implique que seules certaines fréquences sont permises. Dans le cas d'une relation
de dispersion du type w = ku, ces fréquences sont
nm nu
w=—u S v= T
On les appelle les fréquences propres ou fréquences de résonance du systeme, qui
constitue ce qu’on appelle une cavité résonante. La fréquence pour n = 1 est appelée
fondamentale, les fréquences pour n > 2 sont appelées harmoniques. A chacune de
ces fréquences propres correspond un mouvement ondulatoire particulier, appelé aussi
mode propre. Chaque mode propre est donc caractérisé par sa fréquence propre et une

structure spatiale particuliere de noeuds et ventres.

Expériences du cours: modes propres dans une corde, dans une plaque, dans du verre,
etc.

6 Ondes planes et ondes sphériques

Ce sont des généralisations a ’espace 3D.

e Une onde plane est une onde sinusoidale de direction de propagation quelconque. On
I’écrit, en représentation complexe,

(@, 1) = Re e E70] | — [l cos(k - 7~ wt + ) (40)
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6 ONDES PLANES ET ONDES SPHERIQUES

avec zZAJ = |1$|ew amplitude complexe, k vecteur de nombres réels est appelé vecteur
d’onde, w fréquence angulaire réelle, ¢ déphasage réel. La phase de 1’onde est § =
k-7 —wt+ .

Une surface de phase est définie comme le lieu géométrique des points de ’espace o,
a un instant ¢ donné, la phase de 1'onde est une constante donnée. Dans le cas de 'onde
plane, une surface de phase est donc donnée par

k- & = const.

C’est I’équation d’un plan perpendiculaire a k. D’olt le nom “onde plane”. Les plans
de phase se déplacent a la vitesse de phase w, parallele au vecteur d’onde k: par

| =

- w - -
i = =, |4 = |d]

= 41
7 (41)

=

Pour trouver les relations entre les amplitudes, et la relation de dispersion, la méthode
est la méme que présentée a la section 5.2. La seule différence est la substitution formelle
pour l'opérateur V:

% — —iw (42)
V — ik (43)
Ainsi, par exemple:
VP - iP||V- 5 ik ||V x E— ik x B (44)
e Une onde sphérique sinusoidale s’écrit:
U(, 1) = Re [d(r)e 0] | = [§(r)| cos(kr —wt + ) (45)

Elle correspond a une perturbation dont les surfaces de phase sont des spheres, se
déplagant a la vitesse u = w/k dans la direction radiale. L’amplitude de la pertur-
bation est fonction de la distance r. Si k et w ont le méme signe, la propagation est vers
les r croissants: c’est une onde divergente (image: vagues créées par un caillou jeté
dans I'eau). Le point r = 0 joue ainsi le role de source ponctuelle émettant dans toutes
les directions 3. Si k et w sont de signes opposés, les surfaces de phase se propagent vers
les r décroissants: c’est une onde convergente (image: vagues créées dans une tasse de
café émises depuis la circonférence). Voir Figure 7.

30n peut généraliser les ondes sphériques aux cas oll I’amplitude dépend non seulement de r, amis
aussi de #: voir par exemple le champ EM rayonné par une particule accélérée, Chapitre II Electro-
magnétisme, Section 5.5.1.
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Figure 7: Surfaces de phase d’une onde sphérique divergente (gauche) et d’une onde
sphérique convergente (droite).

Pour obtenir la relation entre les amplitudes des différentes composantes des champs
d’onde, ainsi que la relation de dispersion, la méthode est similaire a celle présentée a
la section 5.2. La seule différence est la substitution formelle pour 'opérateur V, qui
doit étre exprimé en coordonnées sphériques. La dérivée partielle 9/0r qu’il contient
opere a la fois sur I'exponentielle et sur 'amplitude. Le systeme d’EDP des équations
de base linéarisées devient ainsi un systeme d’équations différentielles ordinaire pour les
amplitudes ().

Dans le cas de I'onde sonore, a partir des équations de base, Eqs.(7-9), apres linéarisation
puis utilisation de ’Ansatz d’onde sphérique sinusoidale, Eq.(45), on trouve finalement
une solution de la forme:

A
P'(r,t) = = cos(kr — wt + ¢) (46)
r
Al C
—f . - _ - . _ —
' (r,t) = our cos(kr —wt + @) + = sin(kr — wt + @) | é, (47)

avec la relation de dispersion

w:ku:kHW—PO. (48)
Po

On remarque que 'amplitude de la perturbation de pression varie avec la distance a la
source en ~ 1/r; 'amplitude de la perturbation de vitesse a un ler terme en ~ 1/r, qui
va dominer, pour de grandes distances, sur le 2e terme en ~ 1/r?. [Dans le cas du champ
EM émis par une charge accélérée, on trouve aussi une combinaison de termes en ~ 1/r
et en ~ 1/r?, voir Chapitre II Electromagnétisme, Section 5.5.1].

Une application des ondes sphériques est le principe de Huygens, voir Section 9.
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7 VITESSE DE PHASE ET VITESSE DE GROUPE

1.5 - 0.2
(a) u,>ug (b) Us <Up
0.15;
1}
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0.5¢
0.05¢
0 0
0 0.5 1 0 0.5 1
K K
X X

Figure 8: Relations de dispersions. Cas (a) et (b).

7 Vitesse de phase et vitesse de groupe

Il y a des cas ou la vitesse de phase ne dépend pas de la longueur d’onde (ni donc de la
fréquence), autrement dit u = w/|k| est indépendant de k et de w. On dit alors que le
milieu considéré est non dispersif pour les ondes. Les ondes sont indéformables. C’est
le cas de tout systeme obéissant a des équations de type d’Alembert, par exemple 'onde

sonore u = /v P/ po.

Mais il y a aussi des cas ou la vitesse de phase dépend de la longueur d’onde (ou de la
fréquence). Voir Figure 8. On dit alors que le milieu considéré est dispersif pour les
ondes. Les ondes sont déformables. On peut avoir des cas ot les courtes longueurs d’onde
(A) ont une vitesse de phase supérieure aux grandes longueurs d’onde (B) (Fig.8a). On
peut avoir des cas ou les grandes longueurs d’onde (D) ont une vitesse de phase supérieure
aux courtes longueurs d’onde (C) (Fig.8b).

Le but de ce qui suit est d’introduire la notion de vitesse de groupe ;. La démarche
est la suivante.

e Faire un “paquet d’onde” en superposant des ondes sinusoidales de fréquences
voisines.

e Regarder comment 'amplitude (“l’enveloppe”) de la perturbation se propage.
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Figure 9: Superposition de deuzr ondes de fréquences voisines.

e Montrer que I'enveloppe se propage a la vitesse

ot w = w(k) = w(ky, k,, k) est la relation de dispersion.

Cas 1D. Battements

Superposons 2 ondes planes de méme amplitude, de fréquences angulaires voisines, w;
et wy. Soit w = w(k) la relation de dispersion. Voir Figure 9. Les nombres d’onde
correspondants, ki et kg seront également voisins.

Ak
kl - ]€0 - 7
Ak

Par la relation de dispersion, on a donc

Ak dw| Ak
wr = (k - 7) ~wko) =50l 5
Ak dw| Ak
Wy = W (k0+7) Nw(ko)—f-% kOT . (51)
Soit y
w
wo = w(ko) vy, = PR
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7 VITESSE DE PHASE ET VITESSE DE GROUPE

L’onde résultante s’écrit alors

w(l’, t) = 1& (ei(klx—wlt) + ei(kgx—a)2t))
~ 1) (ei[(kzo—Ak/2)x—(wo—uQAk/2)t} + ei[(ko+Ak/2)x—(w0+ngk/2)t])

_ 77Zei(k:():tc—z,uot) (e—i(Akx/Z—ngkt/Q) + ei(Aka:/Q—ngkt/Q))

= ;[A;ei(ko”c_wot) 2 cos (%(m — Ugt)> (52)

Ceci représente une onde plane de fréquence angulaire wy égale a la moyenne arithmétique

2

1.5
1
0.5
—_~
o
s
> 0
N
=
-0.5
=
-1.5
-2
X
0.9 i i i 0.9
0.8 b 0.8
0.7 B 0.7
0.6 b 0.6
0.5F b 0.5F
~ 3
= =
0.4 b 0.4
0.3 b 0.3
0-27 ~ 0-2,
0.1 b 0.1
k1 k0 k2 o, |w, |0,
0 . 1 . 0 . I .
(] 0.5 1 1.5 2 (] 0.5 1 1.5 2
Kk [

Figure 10: Battement résultant de la superposition de 2 ondes de fréquences voisines.

des 2 fréquences, dont 'amplitude est modulée par le terme en ~ cos. Cette modulation
d’amplitude, donc “I’enveloppe” de la perturbation, est du type f(z—uv,t), donc
se propage a la vitesse v,. Voir Figure 10.

22 II1. Ondes L. Villard - CRPP - EPFL



Cas 3D. Paquet d’ondes

On généralise au cas 3D et en superposant linéairement plusieurs ondes planes de vecteurs
d’onde k différents. C’est la généralisation de I’'Eq.(39). Omettant Re dans ce qui suit,

W(F, 1) = @W—l)m /// ()i EE=®rn) g3, (53)

avec I'amplitude complexe
D(k) = [(k)|e™ (54)

qui est la transformée de Fourier 3D de (Z,0). On suppose lamplitude |¢)(k)| maximale

X

Figure 11: Paquet d’onde dans lespace réel a un instant donné (a) et dans l’espace de
Fourier k (b).

en Eo, localisée autour de /;0, (Figure 11), et on fait des développements limités au premier

ordre:
. . L9y
(k) ~ (ko) + (k — ko)% i,
- - - o Ow
~ w(k — C—
w(k) =~ w(ky) + (k — ko) i
Notons
. _84,0 L Ow - -

= e s = —= 5 - k y - k
Zo Py Vg ok i<k %o 80( 0) wo w( 0)
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8 ENERGIE ET INTENSITE D’'UNE ONDE

Ainsi
— 1 ~ = i “".4 ﬁ.ff 7“‘0.17
¢<5I3, t) = ( )3/2 ﬂ ‘w(k)’G [LPO (k‘fko) O+k wot (k‘*k‘o) gt] lgk
— ( 1)3/2 ei(Eo-fwotJrlpo)// ’”(ﬁ(k}” i(EfEO)(i‘ffofﬁgt) lgk ( )

L’intégrale ci-dessus donne un résultat de module maximal lorsque & — Zy — v, = 0, donc

|9(Z,t)| maximal & T = 2y + U,t (56)

ce qui veut dire que le pic de “I’enveloppe” de I'onde se déplace a la vitesse

0
ok

—

Ug

(57)

La vitesse de groupe 7, est ainsi la vitesse a laquelle des impulsions (donc
I’information) se propage. C’est la vitesse a laquelle la modulation d’amplitude
se propage.

8 Energie et intensité d’une onde

Nous venons de voir qu’une onde transporte de 'information. Nous allons voir qu’elle
transporte aussi de 1’énergie.

8.1 Généralités

L’ intensité d’une onde est définie comme le flux d’énergie, quantité d’énergie traversant
une surface, par unité de temps et par unité de surface. Unités: [W/m?].

our les ondes sinusoidales (~ ¢ on définit I’intensité m nnée sur un ari :
Pour 1 d dal wh) on définit I’intensité moyennée s e période

1 to+T
<I>:—/ Idt. (58)
T Ji

L’intensité est une quantité quadratique de la perturbation
Ioc o  <I>oc [ (59)

ou, plus généralement,

I oty <1 o | <ty >= liullii] cosd = SRe [didh] = sRe [udi] |
(60)

24 II1. Ondes L. Villard - CRPP - EPFL



8.1 Généralités

ou ¢ est le dépahsage entre 772(1 et QZJb, qui sont les amplitudes complexes de 2 composantes
de la perturbation, et * indique le complexe conjugué. Preuve:

1
<z/;a1pb>:f

1

to+T .1
=T / |¢a||l/)b|§ (cos(pa — wp) + cos(2kx — 2wt + @, + p)) dt
to

1~ - 1~ -
= S ¥alld] cos(a = pp) = S[Wal ] cosd .

to+T R R
/ [tha] 1| cos(kx — wt + p,) cos(kx — wt + ¢y) dt

to

Avec U = [thy|e™0 et by = [p|e’?, on a

1 Al A 1 A 1~ -
Z * - i(pa—ps) | — =
SRe (i) = 5Re [[dal lale® =) = S {ialli] cos

[ N.B. On définit parfois une amplitude dite effective Ve ff = 0 / V2| ]

Le principe de superposition étant valable pour les quantités linéaires, les perturbations
s’additionnent, mais en général PAS les intensités. On note que

Re(ir)Re(v) # Re (Y1¢s) (61)

Par exemple, le membre de gauche est, pour 2 composantes d’ondes de méme longueur
d’onde (donc méme k et méme w), mais de déphasages @1 # ©a,

|@/A11||@ZA)2| cos(kx — wt + 1) cos(kx — wt + p9)
alors que le membre de droite est
|1$1H1722’ cos(2kx — 2wt + o1 + pa) .

On distingue 2 cas limites:

1. Dans la réalité, bien des sources d’ondes sont constituées d’'un nombre immense
d’atomes qui émettent du rayonnement; par exemple, dans le cas d'une lampe a incan-
descence, ce sont les atomes chauffés qui émettent du rayonnement électromagnétique,
et les émissions d’atomes différents ne sont pas corrélées: on parle alors de sources in-
cohérentes: les phases entre les différentes émissions sont aléatoires, donc la phase de
I’'onde résultante aussi.

2. Dans certains cas, comme le LASER par exemple, les émissions de lumiere sont
cohérentes et la phase de 'onde résultante est bien déterminée.

Prenons le cas de 2 ondes, de méme fréquence, incohérentes, c.-a-d qui ont un déphasage
aléatoire, alors l'intensité résultante est

<I>=<L>+<1I,> (62)
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8 ENERGIE ET INTENSITE D’'UNE ONDE

Si les 2 ondes, de méme fréquence, sont cohérentes, c.-a-d ont un déphasage bien
déterminé, alors l'intensié résultante est

<I>=<h>4+<L>42\/<1 ><Iy>cos0 < 1 >+ < I >]|. (63)

Preuve: I'onde résultante s’écrit
b(x,t) = Re [Ml‘ei(kxwtﬂm) 4 ’¢2|ei(kx7wt+<pz)
Et l'intensité de I'onde résultante est donc
< I>oc < [ >= [y [* + [¢ha]* + 204y [[tha] < cos§ >

ou & = g — 1 est le déphasage entre les 2 ondes. Ainsi, dans le cas (1.) d’ondes
incohérentes, le déphasage 0 est une variable aléatoire de densité de probabilité uniforme
entre 0 et 27. Sa moyenne sur un intervalle de temps T est 0. Etona < [ >=<[; > + <
I, >. Dans le cas (2.) d’ondes cohérentes, le déphasage J a une valeur bien déterminée
et constante dans le temps. Sa moyenne sur un intervalle de temps 7" est . On a donc

<I>=<li>+<lh>+2y< I >< 1y >cos) .

8.2 Intensité d’une onde plane dans un gaz parfait fluide parfait

Soit un gaz parfait fluide parfait de densité de masse pg, pression F, indice d’adiabaticité
v, initialement au repos vy = 0. Soit une onde de fréquence angulaire w se propageant
dans la direction z. Soit une section de fluide de surface perpendiculaire a x, d’aire A, a
une position x fixée. Voir Figure 12. On a, a I'endroit = de la section,

P' = |P|cos(kx —wt + @) T = |0 cos(kx — wt + ©)&,

(en effet les perturbations de pression et de vitesse sont en phase, voir section 3.3, et la
perturbation de vitesse est parallele a la direction de propagation, voir section 2).

Par définition, I'intensité moyennée sur une période est le travail effectué sur la section
de fluide par unité de temps, divisé par A, et moyenné sur une période:

f it
< [ >mg JEOFVRORE (Py+ P')(vg + ') >
surface

I -
<] >= 7 / (Po + | P| cos(kx — wt + <p)> |0| cos(kx — wt + ) dt
0

Avec

1 / (kx —wt+¢)dt =0, et 1 / 2(kr — wt + p)dt = L
cos(kr —w cos”(kr —w
T Jo 7 T Jo 2’

on obtient

1, -
<I>= §‘PH@‘ (64)
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8.2 Intensité d’une onde plane dans un gaz parfait fluide parfait

//section du fluide

-1 I I I
0 0.5 1 1.5 2
X

Figure 12: Onde plane sonore dans un fluide parfait gaz parfait. Calcul de ['intensité.

ou, de fagon équivalente, en représentation complexe et en notant .* le complexe conjugué,

1 /- .
<1>=Re (P@*) = Re (P*@) . (65)

Cette intensité est mesurée perpendiculairement a la direction de propagation
ér = k/|k|. On définit le flux d’énergie associé a l'onde,

<S>=<I>¢ (66)

On a donc

~y
<P

(67)

DN | —

A partir des équations linéarisées, Eqs(10,11, 12), et de la relation de dispersion u =

w/k = \/vPy/po, pour une onde plane en représentation complexe, on obtient des ex-
pressions équivalentes pour l'intensité:

ov! oP' . 1 -
oy 5 po(—iw)d = —i b= (68)
OP"  ~F,0p' .1
— ———=0=|p=—=P 69
ot po Ot P= 2 (69)

Si € est le champ de déplacement selon la direction z, on a

%_Ul
o °

>

7as'
I

=

(70)

€| =
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8 ENERGIE ET INTENSITE D’'UNE ONDE

Lopp = Luiop = Lol = 12

P? = S poulo]” = §P0UW2\§|2 =5—1p

1 .
=< I >=—|P|lv| =
Sl :

(71)

2pou

N.B. En fonction des amplitudes effectives, P, = P / V2 ete, on a

- . 1 - . - u
< I >= |Pesysl|vess| = ﬁ|1’3eff|2 = poulbess|* = pouw?|Eeps? = —|Peff|2

N.B. On remarque que dans tous les cas l'intensité est une quantlte quadrathue des
amplitudes de la perturbation: < I > |¢a||¢b| avec g,y = 9 ou P ou £ ou p-

8.3 Mesure des intensités

On mesure les intensités, en particulier de ’onde sonore, sur une échelle logarithmique,
par rapport a une intensité de réffence < I, >. Pour I'onde sonore, on choisit

< Iy >=10""[W/m?]|,

ce qui correspond, pour les conditions atmosphériques standard (u = 343[m/s]), a une
amplitude de perturbation de pression

|Py| ~ 3 x 107°[Pa]|, ou ||Po|es; ~ 2.1 x 107°[Pa]

et on définit I'intensité en décibels, [dB], par

<I>

< I > |dB| =101 —
[ ] Og10<IO>

(72)

Un son d’intensité I + 10[dB] est 10 fois plus intense qu'un son d’intensité I[dB]. Un
son d’intensité I + 20[dB] est 100 fois plus intense qu'un son d’intensité I[dB]. Doubler
l'intensité = +3[dB]. Quadrupler l'intensité = +6[dB|. Et ainsi de suite.

Le seuil d’audibilité de l'oreille humaine “standard” se situe, pour un son de fréquence
v = 1000[Hz], aux environs de < I >= 2.5 x 107'2[W/m?], soit environ 4[dB]. En
exercice, on calculera a quelles amplitudes de perturbation de pression, de vitesse, de
déplacement et de densité cela correspond.

Le seuil de douleur pour l'oreille humaine se situe a environ < I >= 130[dB]. Cela
correspond a des amplitudes:

|P| = 94[Pa] |6| = 0.21[m/s] |€] = 0.034[mm]

L’oreille humaine n’est pas sensible de la méme facon a toutes les fréquences. La sensibilité
maximale est entre 1000 et 4000[Hz], et décroit rapidement en dehors de ces valeurs.
Fletcher et Munson, en 1933, ont mesuré les courbes d’intensité réelle, pour une intensité
percues subjectivement équivalente, en fonction de la fréquence.

Pour en savoir plus sur la perception physiologique des ondes sonores:
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8.4 Intensité d’une onde sphérique sinusoidale

http://www.phys.unsw.edu.au/”jw/dB.html
http://www.phys.unt.edu/ "matteson/1251-001/mwf14.ppt
http://www.inrp.fr/Acces/JIPSP/phymus/m_lexiq/lexbcl.htm

Expériences: bruits

Additionner 2 sources de bruit, de méme puissance, non corrélées (phase relative aléatoire):
+3[dB]. (Car I = I, + I, = 213, et 10log;,2 = 3.0103)

Additionner 2 sources de bruit, de méme puissance, en opposition de phase: ~ —15[dB].
(Les signaux en provenance directe des 2 hauts-parleurs s’annulent: ¢ = 1) + 19, et
1y = —1P1. On aurait donc —oo[dB]. Il ne reste que le son réfléchi par les parois de la
salle. D’ou, pour les conditions de 'expérience, les -15[dB].)

Additionner 2 sources de bruit, de méme puissance, en phase: +6[dB]. (On a ¢ =1 +
Yy = 29y, donc [ =9 = 4¢% =41.)

8.4 Intensité d’une onde sphérique sinusoidale

On a vu deux exemples d’ondes émises par des sources ponctuelles: 1'onde sonore et
I'onde EM. Dans les deux cas, I'intensité de la perturbation varie avec la distance r a la
source * comme ~ 1/r.

~

A
_ _ez(kr—wt)
4 r
L’intensité d’une telle onde, proportionnelle au carré de 'amplitude de la perturbation,
est donc
AP

L’intensité est inversément proportionelle au carré de la distance.

On peut en déduire la puisance de la source. En effet, si on considere une sphere ¥ de
rayon r centrée sur la source, la puissance totale de I'onde traversant X sera:

2| AP
P=q) <I>doodnr®—r-
r
qui est indépendant de r. Ceci nous indique que ’énergie transportée par 'onde est
conservée (toute la puissance de la source se retrouve sur la surface ¥, quelle que soit la

distance r).

4Sauf tout pres de la source, ot on a un terme en ~ 1/72, voir Eq.(47); mais ce terme a une phase
telle qu’il ne contribue PAS & 'intensité moyennée sur une période.
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8 ENERGIE ET INTENSITE D’'UNE ONDE
8.5 Conservation de 1’énergie

Il existe une équation de continuité pour 1’énergie d’une onde. Soit S le flux d’énergie
[W/m?|. Soit € la densité d’énergie [J/m?®]. On a

€ -
5tV §=0 (74)

Avec le théoreme de Gauss (“de la divergence”), considérant un volume V' dont le bord
est la surface fermée notée OV,

a// 3 I
— Ed’r = — S -do 75
ot J)Jv ov (73)

Le terme de gauche est la variation par unité de temps de l'énergie de 'onde contenue

dans V. Le terme de droite est le flux entrant a travers la surface V. On a une analogie
avec l'équation de continuité de la masse dans le cas des fluides, voir CH.I. On a vu
également une équation de forme similaire pour I’énergie EM, voir CH.IL.

Preuve, cas de ’onde sonore.

Le flux d’énergie de 1’onde sonore est

S=P7i|, (76)

voir Eq.(67) dans le cas sinusoidal. Donc
V- §=VP -0 +PV ¥

De I'équation d’Euler linéarisée, Eq.(10), VP = —po(09' /0t); de I’équation de continuité
linéarisée, Eq.(11), V - 0" = (=1/po)(0p'/0t); avec I’équation d’état linéarisée, Eq.(12),
on tire V- o' = (=1/pou?) (0P’ /dt). Donc

; ¢ 1 0P 1
V.5 . O 0P a(

1
2 /2
- _ ——(Z) _—p )
ot pou? Ot ot \ 2 oY 2pou? )

C’est bien une équation de la forme recherchée. Ainsi,

1 1
£ = spov”? p? 7
5 Pov + 20002 (77)
est la densité d’énergie associée a 1’onde sonore.
Pour une onde sinusoidale, en moyennant sur une période, on a
< & 5= 2polof 4 | PP = ———|PP (78)
4 4pou? 2pou?
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Pour la 2e égalité, on a utilisé la relation = (1/pou) P, Eq.(68).

Rappel: on avait trouvé une intensité < [ >= 2/)%\]5\2, Eq.(71). Ainsi,

[<I>=<&>ul. (79)

Tout se passe comme si on avait une densité d’énergie £ se propageant a la vitesse u.

9 Interférences et Diffraction. Diffusion de Bragg

Nous allons considérer différentes superpositions d’ondes. Voir fin de la Section 4.

Considérons des superpositions d’ondes planes ou sphériques, de méme fréquence, mais
de directions de propagation k/k différentes.

rayon: L surf phase
/

/ ondes secondaires sph
I X~/ )
>
N ( )
/’/ ™ &
/ e =74 _

I
I

surf. phase

Figure 13: Illustration du principe de Huygens.

Principe de Huygens: chaque point atteint par une onde devient source d’une onde
secondaire sphérique.
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9 INTERFERENCES ET DIFFRACTION. DIFFUSION DE BRAGG

Voir Figure 13.

Chaque point sur une surface de phase “émet” une onde sphérique. La résultante de
toutes ces ondes créé une nouvelle surface de phase. On définit un rayon comme une
ligne perpendiculaire en tout point aux surfaces de phase. C’est le principe de base de
I'optique géomtrique.

9.1 Interférence d’ondes émises par 2 sources pontuelles

Considérons 2 sources ponctuelles A et B de méme fréquence, en phase, de méme puis-
sance. Soit P un point d’observation. Soit r, = |AP| et r, = |BP| (Figure 14). La
perturbation en P est

Figure 14: Interférence de 2 ondes émises par 2 sources ponctuelles en phase.

Soit

alors
¢(fp, t) = (¢a + 1/%) G_th 5
et I'intensité en P est
<I>(Zp) x [+ |
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9.1 Interférence d’ondes émises par 2 sources pontuelles

Soit le déphasage

2
d=k(ry—ry) = Tﬂ(rb —Ty)
On a alors
< I > (Zp) o [hal® + |1p]* + 2[t0al|the] cos d | . (80)

L’intensité en P est maximale lorsque cosd = +1 & , avec n entier. On dit
qu’il y a interférence constructive.
L’intensité en P est minimale lorsque cosd = —1 < [§ = (2n + 1)7 |, avec n entier. On

dit qu’il y a interférence destructive.

Avec § = 27/(ry, — r,), on a le résultat que ’intensité en P est maximale lorsque
la différence de longueur de parcours des rayons issus de A et B égale un
multiple de la longueur d’onde:

Ty —Tq = NA|. (81)

Pour chaque valeur de n (entier), c’est ’équation d’un hyperbole de révolution dont A

Figure 15: Figure d’interférence: surfaces d’amplitude mazimale(-) et minimale(...),
résultant des 2 ondes de la Fig.14.

et B sont les foyers (figure 15). La superposition des 2 ondes créé ce qu’on appelle une
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9 INTERFERENCES ET DIFFRACTION. DIFFUSION DE BRAGG

figure d’interférence. Dans notre cas, c’est en fait une onde stationnaire avec des noeuds
hyperboloides.

A des grandes distances des 2 sources, r >> a, on peut faire 'approximation dipolaire,
qui consiste a faire un développement limité au premier ordre en a/r (comme on 'a fait
pour le dipole électrique, CH.IT). En notant O le point milieu de AB, ro = |O¥’|, d=a/2,
0 'angle entre la perpendiculaire & AB et O_P, on a

Te =79+ dsing , (82)
?"b%TO—dSine. (83)
Ainsi la perturbation en P s’écrit:
A . . 2A
w('fPa t) ~ _ez(krofwt) (ezkdsme + efzkdsmé) _ _ez(krofwt) COS(kd sin 9)
To To

et 'intensité en P est:

Az
<[>(fp)0( ‘ |

cos?(kd sin 0) (84)

p)
T

0.9} . ]

0.7} / . i
0.6f - S i

0_5/ Na N

<I>

0.4

(0]
—1 -0.5 (¢} 0.5 1
sinO

Figure 16: Franges d’interférence: intensité en fonction de l’angle d’observation, a des
distances ro grandes par rapport a l’écartement des sources a.

Il y a des maxima en kdsinf = nm, donc pour

. nT nA  nA
s1n9—w—ﬁ—7, (85)
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9.2  Diffraction par une fente de largeur finie

et des minima en kdsinf = (n + 1/2)w, donc pour

gng— (nH1/2m (412N (n+1/2)A

kd 2d a

On obtient la figure de franges d’interférences (Figure 16). La séparation entre franges
est Asinf = \/a. Plus la distance entre les sources est petite, plus la séparation
entre les franges est grande. On ne voit donc des franges d’interférence que si .
La figure d’interférence découle du déphasage du a la différence de parcours entre les 2
rayons:

6 = k(r, —ry) ~ 2kdsin 6

Les franges d’interférence obtenues en (85) sont les directions des asymptotes des hyper-
boles trouvées en (81).

Diverses expériences du cours mettent en évidence ces propriétés.

9.2 Diffraction par une fente de largeur finie

N +b/2 ]

Figure 17: Diffraction par une fente de largeur finie.

On considere une onde plane incidente sur un obstacle (absorbant pour 'onde) percé
d’une fente de largeur b. On observe 'onde en un point P situé a distance ry >> b de la
fente. Voir Figure 17.
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9 INTERFERENCES ET DIFFRACTION. DIFFUSION DE BRAGG

Chaque point de la fente émet une onde sphérique (principe de Huygens), et donc la
résultante recue en P s’écrit:

+b/2 A '
w(fp,t) _ / A esz(kr(x)—wt) dr
—b/2 r(z)

On utilise 'approximation dipolaire

r(x) /& 1o+ xsin

~

+b/2
¢(fP, t) ~ é expi(kro—wt)/ eXpi(k;BsinO) dr = é expi(k'ro—wt) 1

ik(b/2)sin® —ik(b/2)sin@
ro e o 1k sin 6 (6 ¢ )

A , 2
(Tp,t) ~ " expi(kro=«) e sin (kg sin 9) (86)

Donc l'intensité en P est

. 2
b
<I>(Zp) x (su;oz) , |a= k§ sinf|. (87)

0.8

0.7

0 Il
-10 -5 0 5 10
k(b/2)sin®

Figure 18: Figure de diffraction d’une fente de largeur finie.

L’intensité mesurée en fonction de I’angle 6 est représentée a la figure 18. La largeur de
la tache de diffraction est inversément proportionnelle a la taille de la fente.
On appelle cette propriété principe d’incertitude (voir CH.IV Mécanique quantique).
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9.3 Interférence de N sources ponctuelles

Cette relation est utile pour déterminer le pouvoir séparateur d’un instrument optique:
plus on veut une diffraction petite, plus il faut une ouverture large de I'instrument:

A‘gmifn ~

| >

(Applications: télescopes, apareils photos, etc).

Généralisation a une fente rectangulaire. Pour une fente de cotés b, x b,, on

superpose les ondes issues des points (x,y) de la fente, et on utilise

r(x,y) = ro+xsinf, + ysinb,

et on obtient (evt: exercice!) finalement une figure de diffraction qui est le produit de

deux figures 1D en z et en y:
. 2 /. 2
sin o sin 3
<I>(Zp)~
(%) ()

by . by .
a:kismﬁx, 6:k§ysm9y.

avec

10 ]
5r B
qD>~.
=
[72]
& o () O
_Q>~.
=~
-5+ B
>
—-10} a
_15 I I
-10 -8 -6 6 8

-2 0 . 2
k(bX/2)S|n6X

Figure 19: Diffraction par une fente de largeur et hauteur finies.

Voir expériences du cours. Voir Figure 19.
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9 INTERFERENCES ET DIFFRACTION. DIFFUSION DE BRAGG

Figure 20: N sources ponctuelles.

9.3 Interférence de N sources ponctuelles

Soient N sources ponctuelles, alignées, équidistantes de a, en phase, que I'on observe en
P situé a grande distance ry >> a. Voir Figure 20. La distance de la source numéro
m + 1 au point P est

Tm /2 To+ masinf .
Ainsi, 'onde regue en P s’écrit:

A N-1
w(fP,t) ~ T_el(krofwt) E :elmkasme — wmtefzwt .
0
m=0

Il y a donc un déphasage entre 2 ondes recues en P, émises par 2 sources voisines, de
0 = kasin@. Il faut évaluer 'amplitude du signal recu en P,

2 N-1

o A . ) .
ikr imka sin 6

Yoy = T—B 0 E €

0 m=0

La somme ci-dessus est rerésentée dans le plan complexe a la figure 21. C’est une ligne
brisée a N cotés de longueur 1. Elle peut donc étre inscrite dans un cercle. Soit C' le
centre et p le rayon de ce cercle. On a

|OP| =2|QP| =2psin(Nd/2)

1 =|OR| =2|0S| = 2psin(§/2)
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9.3 Interférence de N sources ponctuelles

ol C L;Ian comp‘lexe |
-0.2f E
-0.4f g
-0.6 ]
-0.8f E

-1F ‘ | | | | | -
-0.2 0 0.2 0.4 0.6 0.8 1

Figure 21: Calcul de l'amplitude complexe résultante pour l'interférence de N sources
ponctuelles. Cas de figure: N = 6.

Ainsi
|A] sin(N6/2)

= —_— P pr—
[t 70 0P| ro sin(d/2)

et 'intensité en P est

<I>(#p) =<1, > (%) A (f;%z j;;%?) (38)

(89)

T (F) =< > (sm(NwasmG/)\))

sin(mrasin@/\)

ou < [; > serait l'intensité recue en P s’il n’y avait qu'une seule source.

On a représenté les figures d’interférences correspondantes pour N = 2, 3,4, 10 a la Figure
22. Plus le nombre de sources est grand, plus les pics principaux sont fins et de grande
amplitude.

Application: antennes radio.

On dispose les sources de telle sorte que I'intensité soit maximale dans certaines directions.
Par exemple, avec 2 sources séparées de a = A, on obtient le diagramme polaire d’intensité
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9 INTERFERENCES ET DIFFRACTION. DIFFUSION DE BRAGG

0
—10 O 10
o

Figure 22: Figures d’interférences de N sources ponctuelles, pour N = 2, 3,4, 10.
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9.3 Interférence de N sources ponctuelles

Figure 23: Diagramme polaire d’intensité des ondes émises par 2 sources séparées d’une
longueur d’onde (a = \).

de la Figure 23: les maximas sont en sinf# = n, donc

n=0=60=0,7
n=1=60=mn/2
n=—-1=60=—-7/2

Les maxima d’intensité sont dans 4 directions orthogonales de I'espace.
Autre exemple, avec 2 sources séparées de a = \/2, on obtient le diagramme polaire
d’intensité de la Figure 24: les maximas sont en sinf = 2n, donc
n=0=60=0,~x
Les maxima d’intensité sont dans 2 directions opposées de 'espace, perpendiculaires a
I’alignement des 2 sources.
Autre exemple, avec 4 sources séparées de a = \/2, on obtient le diagramme polaire
d’intensité de la Figure 25: les maxima principaux sont en sinf = 2n, donc
n=0=60=0,7

Les maxima d’intensité sont dans 2 directions opposées de l'espace, perpendiculaires a
I’alignement des 2 sources. Mais il y a aussi les maxima secondaires. L’intensité est nulle
pour

sin(Nmasinf/\) = 0 = 4rwasinf/\ = nm = sinf = g
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9 INTERFERENCES ET DIFFRACTION. DIFFUSION DE BRAGG

Figure 24: Diagramme polaire d’intensité des ondes émises par 2 sources séparées d’une
demi-longueur d’onde (a = \/2).

donc pour
T om
=1=0=—,—
" 6 6
—7 —bm
=—1=0=— —
" 6 6
T
=2=0=—
" 2
" 2

9.4 Diffaction des rayons X par les cristaux (Bragg)

Un cristal est un arrangement régulier d’atomes dans l'espace. On éclaire le cristal
avec une onde EM. Chaque atome du cristal va osciller en réponse a cette onde. Cette
oscillation entraine 1’émission de rayonnement d’une onde EM (voir CH.IL.5: une charge
accélérée rayonne). La résultante de ces ondes réémises par I'ensemble des atomes du
cristal constitue un rayonnement dit de diffusion de Bragg.

Considerons un plan de l'arrangement régulier des atomes du cristal, figure 26. Si la
direction d’observation 6, et celle de I'onde incidente 6; sont telles que 6, = 0;, tous les
rayons diffusés par les atomes du plan du cristal arrivent en phase les uns par rapport
aux autres (car la longueur de parcours des rayons est la méme). Il y a donc maximum
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9.4 Diffaction des rayons X par les cristaux (Bragg)

10

5¢ ]

> 0 ]

-5+ ]
1035 10 5 2 5 10 15

Figure 25: Diagramme polaire d’intensité des ondes émises par 4 sources séparées d’une
demi-longueur d’onde (a = \/2).

d’intensité pour cette condition: c’est la loi de la réflexion bien connue.

Si on considére maintenant 2 plans adjacents, séparés de d, les rayons diffusés (c.-a.-d.
réfléchis par ces 2 plans) seront en phase si la différence de longueur de parcours des
rayons est un multiple de la longueur d’onde:

[2dsind = n)|. (90)

On aura a cette condition un maximum d’intensité diffusée. Autrement dit, un cristal
va diffuser des ondes EM dans certaines directions bien précises, qui dépendent
de 'arrangement des atomes dans le cristal (distance entre plans du cristal).
La relation ci-dessus s’appelle relation de diffusion de Bragg.

Pour n = 0, c’est le “shine through”: 6 = 0. Pour n = 1, la rayonnement diffusé
constitue ce qu’'on appelle le spectre de diffusion d’ordre 1. Pour n = 2, on aura le
spectre de diffusion d’ordre 2. Et ainsi de suite.

Donc, pour pouvoir observer au moins le spectre de ler ordre, comme le sinus est < 1,
on doit avoir A < 2d. En pratique on choisit

A<~ d].

Il faut donc utiliser des longueurs d’ondes inférieures a la distance interatomique pour
pouvoir observer la figure de diffusion. Comme les distances interatomiques dans les
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10 POLARISATION

Figure 26: Calcul de la diffusion par un cristal: ondes réfléchies par 2 plans d’atomes
V0181INS.

solides sont de l'ordre de quelques Angstrom (1071°[m]), cela correspond & des rayons

X.

L’expérience de diffusion des rayons X par les cristaux a démontré leur nature ondulatoire,
alors que, lorsqu’ils on été découverts (par Roentgen a la fin du XIXe siecle), leur nature
corpusculaire était mise en évidence. On verra au CH.IV, Mécanique Quantique, que
les rayons X, comme toute particule d’ailleurs, ont une nature duale, corpusculaire par
certains aspects, ondulatoire par d’autres.

e Sion utilise une source de rayons X de longueur d’onde connue, la mesure du spectre
de diffusion renseigne sur la structure de cristal.

e Si on utilise un cristal de structure connue, la mesure du spectre de diffusion ren-
seigne sur la longueur d’onde des rayons X incidents.

10 Polarisation

L’onde EM dans le vide est une onde transverse, c.a.d. que les champs E et B de la
perturbation sont perpendiculaires a la direction de propagation k. Voir Ch.II, Section
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5.3 le cas de l'onde plane, et Ch.II, Section 5.5 le cas de 'onde EM rayonnée par une
charge accélérée.

T
X recepteur

i emetteur E(z,to) |

_pas de rqception si‘recepteur‘J_ E

Figure 27: Mise en évidence expérimentale d’une onde EM polarisée plane.

Expérience : antennes dipolaires. L’antenne émettrice et 'antenne réceptrice sont
des dipoles rectilignes. Sil’antenne réceptrice est placée parallelement a l’antenne émettrice,
elle regoit un signal. Si on la fait tourner de 7/2 par rapport a 'antenne émettrice, elle
ne recoit aucun signal. Voir Figure 27.

Def.: polarisation plane: lorsque la perturbation associée a l'onde est dans un plan
donné. On dit aussi que 'onde est polarisée linéairement.

La lumiere naturelle, bien que constituée d’ondes transverses, n’est habituellement pas
polarisée: le plan d’oscillation du champ E est aléatoire, car constitué d'un tres grand
nombre d’ondes individuelles dont l'orientation est aléatoire. On dit alors que 1'onde (la
lumiere, dans ce cas) n’est pas polarisée.

Expérience: polarisation d’une onde radio. En placant une grille de tiges métalliques
paralleles sur le chemin d’une onde radio, on filtre la composante parallele au fil (le con-
ducteur “écrante” le champ électrique). Reste donc, aprs la passage a travers la grille, une
onde polarisée linéairement. On met enévidence cete polarisation avec une 2e grille de
fils paralléles, que 1’on oriente relativement a la premiere. Lorsque 'orientation relative
entre les 2 grilles est de 7/2, plus aucun signal ne passe.

Polarisations circulaire et elliptique. On superpose 2 ondes planes de méme fréquence,

II1. Ondes L. Villard - CRPP - EPFL 45



10 POLARISATION

méme longueur d’onde et méme direction de propagation, mais polarisées linéairement
dans 2 directions perpendiculaires et déphasées de /2. Soit z la direction de
propagation. Le champ électrique résultant est donc:

E(f, 1) = Re <|Em|ei(kz—wt+go)é’x i |Ey|6i(kz—wt+g0+7r/2)é*y>
= Re (<|E$|6_;C + Z|Ey|€y> 6i(kz—wt+<.0)>
= |E,| cos(kz — wt + )&, — |E,| sin(kz — wt + ©)€, . (91)
Si on considére le champ E en fonction du temps a & = Ty = 2o€, fixé, 'Eq.(92) est
Péquation paramétrique d'une ellipse de demi-axes |E,| et | E,|. Autrement dit, le vecteur
champ électrique parcourt une ellipse dans le plan perpendiculaire a la direction de prop-
agation de l'onde, avec un sens de parcours dans la direction positive. Voir Figure 28,

droite. On dit que I'onde a une polarisation elliptique droite. Si les amplitudes |Ex|
et |E,| sont égales, alors on a une polarisation circulaire droite

200}

200¢ 1
150F 150t 1
100f 100f 1

50t 50t 1
0f<— 0f<— 1
-501 —50} i

-100} -100¢ 1

-150 -150} 1

—200¢ -200¢ ]

-100 -50 0

-100 -50 0 50 100

Figure 28: Polarisations elliptiques gauche et droite: champ E & un endroit donné, a des
temps successifs, dans le plan (x,y). La fleche indique le sens de déroulement du temps.
La direction de propagation (z) est vers [’'observateur.

Si le déphasage entre les composantes en x et y est de —7/2 au lieu de 7/2, on a

—

E(f, t) — Re (lEx‘ei(szngo)é’m + |Ey‘ei(szwt+gof7r/2)e—’y>
~ Re ((|E$|e; - ¢|Ey|gy> eﬂkz—wtw)
— |E,| cos(kz — wt + )&, + |E, | sin(kz — wt + ©)E, . (92)
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Cette fois, le vecteur champ électrique parcourt également une ellipse dans le plan per-
pendiculaire a la direction de propagation de 1’onde, mais avec un sens de parcours dans
la direction négative. Voir Figure 28, gauche. On dit que 'onde a une polarisation el-
liptique gauche. Si les amplitudes |E,| et |E,| sont égales, alors on a une polarisation
circulaire gauche.

On peut décomposer toute superposition de 2 ondes polarisées linéairement, dans 2 di-
rections perpendiculaires et déphasées d’une quantité arbitraire, en une superposition de
2 ondes polarisées circulairement:

E(7.1) = Re ((But + By, ) =0)
L/n - Ve |
— Re QE <Ez - Z'Ey> (& +i8) + 3 (Ex + z'Ey> @ — z’gy)} e“kz—wt)) . (93)

Ainsi, E, —iEy est 'amplitude complexe de la polarisation circulaire droite, et E'x—HEyest
I’amplitude complexe de la polarisation circulaire gauche.

Expérience: biréfringence. Dans certains matériaux, la vitesse de propagation des
ondes EM dépend de la direction de propagation des ondes, et aussi de la direction de la
polarisation de 'onde. Ainsi, un faisceau de lumiere non polarisée incidente sur ce type de
matériau se sépare en deux faisceaux qui sont polarisés linéairement dans des directions
perpendiculaires I'une par rapport a 'autre. L’une des polarisations est appelée “ordi-
naire” (O), car elle obéit aux lois habituelles de la réfraction (loi de Snell: sini/sinr = n),
avec un indice de réfraction qui ne dépend pas de la direction de propagation. L’autre
est appelée “extraordinaire” (X), parce qu’elle a une vitesse de propagation qui dépend
de la direction de propagation. Par exemple, pour le calcite, on a un indice de réfraction
pour 'onde O de 1.658, et pour 'onde X qui varie entre 1.658 et 1.486 selon la direction.
On met en évidence ce phénomene en observant la double image a travers un cristal de
calcite. Chacune des images est polarisée linéairement.

11 Effet Doppler

Lorsque la source émettant 'onde est en mouvement par rapport au récepteur (ou: ob-
servateur), on observe un décalage en fréquence: c’est I'effet Doppler.

On distingue 2 cas pour le traitement de 'effet Doppler:

e A. Ondes se propageant sur un support matériel (par exemple ondes dans les fluides,
cordes vibrantes, etc)

e B. Ondes électromagnétiques (EM). Il n’y a pas de support matériel. La vitesse de
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propagation est u = ¢ quel que soit le référentiel d’inertie (principe d’equivalence
dans la relativité d’Einstein).

Figure 29: Surfaces de phase émises par une source en mouvement (positions de la source
lors des émissions: A, B,C, D, ...; positions de l’observateur en mouvement lors de ces
EMASSTONS: Tay Thy Ty Ty ovv -

Cas A. Ondes se propageant sur un support matériel

On va supposer que la source et le récepteur sont en mouvement uniforme par rapport
au milieu dans lequel se propagent les ondes, de vitesses v et v, respectivement. Pour
simplifier les calculs, on supposera que ¥/ /,. Voir Figure 29.

Soit R le référentiel lié au milieu dans lequel se propage 1'onde. Soit u la vitesse de
propagation de 'onde. Soit un signal sinusoidal de fréquence d’émission v. Soit T' = 1/v
la période de ce signal. Nous allons calculer la fréquence du signal regu par I'observateur.

On a représenté graphiquement les surfaces de phase émises a des temps successifs t =
0,7,2T,3T,4T, ..., ainsi que les positions de la source et de I'observateur a ces temps
successifs.

Calculons le temps 7" entre 2 réceptions successives de surfaces de phase.

En ¢t = 0, émission depuis * = x4. L’observateur est en z = r,. La surface de phase est
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d’équation:
L front (t) =xs+ut

La position de I'observateur est d’équation:
Tops(t) = T4 + Vot

La réception de cette surface de phase est en t = 1 telle que T froni(t1) = Zops(t1), donc

Tag—T
= o4 (94)
U — v,
En t = T, donc une période plus tard, il y a émission de la surface de phase suivante
depuis xp = x4 + vsT. L’observateur est en r, = r, + v,1.

xfront,2(t) =g+ U(t - T) =Za+ (US — U)T+ ut

Tops(t) = T4 + Vot

La réception de cette 2e surface de phase est en t = 5 telle que T front2(t2) = Tops(t2),

donc T
t2:ra—:17,4+(u—vs) (95)

U — U,

La période T" entre deux réceptions successives est ainsi 7" =ty — t;

7 WU

T (96)

U — U,

et donc la fréquence du signal requ, v/ = 1/T", est

V,:u—voy_l—(vo/u)

u—v, 11— (vg/u)

v (97)

Expérience: haut-parleur tournant. Cas v, = 0.

u
U—Vg

e La source s’éloigne: v, < 0, donc v/ = ——v < v, le son regu est plus grave.
S

e La source se rapproche: vy > 0, donc v/ =

v > v, le son recu est plus aigu.

En mesurant la différence entre v et v/, on peut ainsi mesurer la vitesse de la source.
C’est le principe du radar a effet Doppler.

Dans le cas ou v,, v, << u, on a

Vo — Vg
"'~ (1-— ) 98
v ( ” >V (98)

Que se passe-t-il si v; > u (source supersonique). Les calculs ci-dessus indiqueraient un
temps 7”7 < 0. En fait, les fronts de phase successifs vont se croiser. Il y aura interférence
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Figure 30: Surfaces de phase émises par une source en mouvement supersonique (vs > u).

constructive entre ces fronts d’onde sur une ligne tangente aux surfaces de phase: cela
forme une onde de choc. Lorsque v, s’approche de wu, les perturbations s’accumulent
devant la source et deviennent de tres grande amplitude: c’est le “mur du son”, qui créé
le “bang” supersonique. Voir Figure 30.

Cas B. Onde EM dans le vide.

Les ondes EM n’ont pas de support matériel (il n’y a pas d’ 7éther”), et c’est la relativité
d’Einstein qui s’applique. La vitesse de propagation est u = ¢ pour tout référentiel
d’inertie.

Soit R le référentiel de la source.
Soit R’ le référentiel de 'observateur.
Soit ¥ = vé), la vitesse de R’ par rapport a R. Voir Figure 31.

On synchronise les horloges de R et R : t =t = 0 lorsque O = O'.

Soit 1’événement A: émission d’une onde plane en O, en t = 0. Soit w sa fréquence
angulaire et k = k€, + ky€, son vecteur d’onde, tous deux mesurés dans R. Soit 0
I’angle entre v et k.
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Figure 31: A: émission du rayon lumineuz en O = O', t =t' = 0. B: réception de l’onde,
vue de R et vue de R'.

Soit I’événement B: le rayon est en x = g,y = yg, 2 = 2p,t = tp.

L’onde en B est
Yp =Y(Zp,t) = Y cos(k,xp + kyyp — wtp)

Avec k = k(cos 0¢, + sin fe,), on a
Yp = zﬁ cos(k cosOxp + ksinfyp — witp)

Pour obtenir la perturbation en B vue du référentiel de I'obsrevateur R/, il faut utiliser
la transformation de Lorentz inverse:

g =2y +oty), ys =19y, zp=2y, tp="(ty+vr/c?), (99)

avec

y=—]. (100)

On a donc, en substituant,

W = 1 cos [k cos 0y (a'y + vt’y) + ksin Oy — wy(ty + valy/c?)]
— 1) cos [v (kcos 8 — wv/c®) 2y + ksin by} — v (w — k cos Ov) t'y]
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Or, I'onde EM doit satisfaire la relation de dispersion
w=ck
Substituant w par ck dans le ler terme et k par w/c dans de 2e terme, on obtient
~ v / . / v /
Yp = 1 cos [fyk; (cos@ — —> g+ ksinfyp — yw (1 - - cosG) tB}
c c

On écrit ainsi:

Up = v cos (K,aly + Kyl — w'ty)
ce qui montre que l'onde dans R’ est aussi une onde plane, mais de vecteur d’onde et
fréquence angulaire différents de ceux dans R, la relation étant donnée par:

v
/ P —_
ki =~k (0056’ c> (101)
k, = ksin 6 (102)
- _v
W = yw (1 - cos 9) (103)

A partir de ces relations, on peut calculer la norme du vecteur d’onde dans R’:

K =~ (1 — 2 cos 9) k (104)

c

On vérifie aussi que 'on a la relation de dispersion dans R':

=c|, (105)

ce qui veut dire que la vitesse de propagation de I'onde EM dans le vide est ¢ dans tout
référentiel d’inertie. C’est d’ailleurs ce principe relativiste d’invariance de la vitesse
de la lumiere qui est a la base des transformations de Lorentz!

L’angle de propagation dans R’ est différent de celui dans R:

/ _ v
k.. B cos c

=L = —°¢
cos K 1—%(3089

En résumé: dans R’, on a aussi une onde plane, mais
K4k N#AXN W 4w Vv 0460

alors que

w W

u=c==\V=—=—
kK

Remarque 1: dans le cas ou la source et I'observateur s’éloignent, les relations (101-104),
pour v > 0,60 = 0, donnent

o<w, N>
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Le fréquence regue est inférieure a la fréquence émise et la longueur d’onde recue est
supérieure a la longueur d’onde émise: il y a, si on parle de domaines de la lumiere
visible, décalage vers le rouge.

Remarque 2: dans le cas ou la source et 'observateur se rapprochent, les relations (101-
104), pour v < 0,0 = 0 (ou de fagon équivalente pour v > 0,6 = ), donnent

J>w, N<

Le fréquence recue est supérieure a la fréquence émise et la longueur d’onde regue est
inférieure a la fréquence émise: il y a, si on parle de domaines de la lumiere visible,
décalage vers le violet.

Ces phénomenes de décalage spectral sont observés notemment pour les objets célestes
lointains (galaxies, quasars). Une mesure des longueurs d’onde regues par rapport a celles
(que l'on pense sont) émises nous donne une information sur la vitesse relative de ces
sources de lumiere par rapport a nous. On s’est apercu que plus la source est éloignée
dans 'univers, plus le décalage vers le rouge est important, et donc plus la vitesse relative
d’éloignement est importante. Cet ensemble d’observations a été une des principales bases
des théories de I'expansion de I'univers (p.ex. “big bang”).

Remarque 3: dans le cas ol 'onde se propage dans la direction perpendiculaire (dans le
référentiel d’émission R) au mouvement relatif des deux référentiels, k L ¥, § = 7/2, et

1 2
K=k = X:—A:,M—Z—QA
v

autrement dit X' < A, soit un décalage vers le violet. Alors que dans le cas ou 'onde

on a un décalage spectral

se propage dans la direction perpendiculaire (dans le référentiel de réception R') au
mouvement relatif des deux référentiels, k' L v, §' = /2, donc cos@ = 0 et cos = v/c,
et on a un décalage spectral

122 2
k’zyk(l—gcosﬁ)zi‘ﬁkzyﬂ—%k = X:#)\
C 1_'[}2 C 1_’!}2

c? c?

autrement dit X' > A, soit un décalage vers le rouge. Ces deux effets (effet Doppler

perpendiculaire) sont des effets purement relativistes, d’ordre v?/c?.

Remarque. Peut-on mettre en évidence la rotation d’un référentiel avec des expériences
basées sur la propagation de la lumiere? La rérponse est oui, c’est ’effet Sagnac. Il
consiste a mesurer la différence de temps de propagation de signaux lumineux circulant
dans un sens et dans l'autre entre un ensemble de miroirs. La différence de temps de
propagation est mesurée par interférence des deux signaux. Ou, dans le cas du LASER,
a mesurer une fréquence dédoubleée (2 fréquences séparées au lieu d'une). Avec cette
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technique, dite du “gyroscope LASER” ou “ring LASER”, on peut actuellement
mettre en évidence des vitesses de rotation par rapport au référentiel d’inertie de 'univers
avec une précision de 'ordre de 107 fois la vitesse de rotation de la terre!

Pour en savoir plus sur l'effet Sagnac:

http://www.mathpages.com/rr/s2-07/2-07 .htm
http://www.wettzell.ifag.de/LKREISEL/CII/precise.htm
http://edu.supereva.it/solciclos/ashby_d.pdf (GPS)
http://www.phys.canterbury.ac.nz/research/ring_laser/ring_laser.html
http://www.schott.com/magazine/english/info95/si095_04_laser.html
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