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2 Onde de pression dans un fluide parfait gaz parfait 4

3 Equation d’Alembert. Ondes indéformables 6
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9.3 Interférence de N sources ponctuelles . . . . . . . . . . . . . . . . . . . . 38

9.4 Diffaction des rayons X par les cristaux (Bragg) . . . . . . . . . . . . . . 42

10 Polarisation 44

11 Effet Doppler 47

2 III. Ondes L. Villard - CRPP - EPFL



1 Introduction et résumé

Une onde est une perturbation qui se propage dans l’espace et le temps. Dans ce

cours, nous étudierons les phénomènes ondulatoires dits linéaires, c’est-à-dire où l’onde

se propage dans un milieu en le perturbant suffisamment peu, pour que cela ne mod-

ifie pas les propriétés de propagation de l’onde. Signalons cependant que de nom-

breux phénomènes peuvent apparâıtre lorsque l’amplitude de la perturbation devient

importante (ondes dites non-linéaires): ondes de choc, auto-focalisation, désintégration

paramétrique, etc.

Expérience du cours: ondoscope. Dans cette expérience, où des tiges rigides sont

reliées entre elles par une corde élastique, la perturbation est perpendiculaire à la direction

de propagation: on parle d’onde transverse. Un autre exemple d’onde transverse est

l’onde EM dans le vide (voir chapitre précédent), où la perturbation (champs !E et !B)

est perpendiculaire à la direction de propagation !k. L’expérience de l’ondoscope permet

de mettre en évidence les phénomènes de réflexion et d’amortissement.

Expérience du cours: châıne linéaire. Dans cette expérience, où des corps sont

reliés entre eux par des ressorts, la perturbation est parallèle à la direction de propaga-

tion: on parle alors d’onde longitudinale. Un autre exemple d’onde longitudinale est

l’onde sonore, que nous allons étudier plus en détail dans la Section suivante. Voir aussi

l’expérience de propagation de l’onde sonore dans l’hélium.

Expérience du cours: superposition d’ondes. Lorsque plusieurs ondes sont émises

par plusieurs sources, ou que plusieurs ondes sont le résultat de réflexions, il y a super-

position des perturbations associées. Pour de petites amplitudes, cette superposition

est linéaire: la perturbation résultante est, en tout point de l’espace- temps, la somme

des perturbations de chacune des ondes.

Ce qui se transmet lorsqu’une onde se propage n’est pas de la matière (ce n’est pas une

convection), mais c’est une perturbation. Cette perturbation est dans certains cas (ex.

onde sonore) associée à un mouvement de matière, mais ce n’est pas la matière qui se

déplace à la vitesse de propagation de l’onde. Voir p.ex. des vagues sur la mer.

Une onde transmet aussi de l’énergie et de l’information.

On trouvera à l’adresse http://www.falstad.com/mathphysics.html plusieurs applets il-

lustrant les différents phénomènes ondulatoires dont nous allons parler dans ce cours.
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2 ONDE DE PRESSION DANS UN FLUIDE PARFAIT GAZ PARFAIT

2 Onde de pression dans un fluide parfait gaz parfait

Soit un fluide parfait, gaz parfait, d’indice d’adiabaticité γ, initialement statique, uni-

forme, à l’équilibre:

P0, ρ0, !v0 = 0,
∂P0

∂t
= 0,

∂P0

∂xi
= 0,

∂ρ0

∂t
= 0,

∂ρ0

∂xi
= 0 . (1)

Soit une perturbation de cet équilibre. Ainsi

P (!x, t) = P0 + P ′(!x, t), ρ(!x, t) = ρ0 + ρ′(!x, t), !v(!x, t) = !v′(!x, t) . (2)

Pour des ondes linéaires, on fait l’hypothèse de petites perturbations:

P ′ << P0, ρ′ << ρ0 , (3)

de telle sorte que l’on négligera les termes quadratiques ou d’ordre supérieur:

(P ′)2, (ρ′)2, (v′)2, P ′v′, P ′ρ′, etc. (4)

Cette opération s’appelle la linéarisation des équations. (D’où le terme d’onde

linéaire). Le but de ce qui suit est de

1. montrer qu’à partir de ces hypothèses, on peut trouver des équations pour la per-

turbation qui sont de la forme:

∂2

∂t2
P ′ =

γP0

ρ0
∇2P ′ , (5)

(et de même pour ρ′ et !v′);

2. établir des relations entre les composantes de la perturbation, c.a.d. entre P ′, ρ′, !v′;

3. montrer que ces équations ont des solutions ondulatoires, de vitesse de propagation

vph =

√
γP0

ρ0
. (6)

On fera la démonstration détaillée dans le cas unidimensionnel, c’est- à-dire où les quan-

tités perturbées ne dépendent que de (x, t). Les équations de base du modèle sont

celles du fluide parfait, gaz parfait, donc l’équation d’Euler, l’équation de continuité et

l’équation d’état (voir Ch.I). Puisque l’on a supposé P0 et ρ0 uniformes, cela revient à

dire que l’on a négligé la pesanteur ρ!g. Il vient:

Euler : (ρ0 + ρ′)

(
∂!v′

∂t
+ (!v′ · ∇)!v′

)
= −∇(P0 + P ′) (7)
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Continuité :
∂(ρ + ρ′)

∂t
+∇ · ((ρ0 + ρ′)!v′) = 0 (8)

Etat :

(
∂

∂t
+ (!v′ · ∇)

) (
(P0 + P ′)(ρ0 + ρ′)−γ

)
= 0 (9)

Eliminant les termes non linéaires, ces équations deviennent:

Euler : ρ0
∂v′x
∂t

= −∂P ′

∂x
,

∂vy

∂t
= 0,

∂vz

∂t
= 0 (10)

Continuité :
∂ρ′

∂t
+ ρ0

∂v′x
∂x

= 0 (11)

Etat :
∂P ′

∂t
− γP0

ρ0

∂ρ′

∂t
= 0 (12)

On tire de (10) que vy = const et vz = const, et comme initialement les vitesses sont

nulles, vy = 0 et vz = 0. Il nous reste donc un système de 3 équations (10,11,12), aux

dérivées partielles, couplées, linéaires, à coefficients constants, pour 3 fonctions inconnues

de (x, t): P ′, ρ, v′x. La méthode de résolution de ce système est d’éliminer v′x et ρ′ et

d’obtenir une équation pour P ′.

∂

∂x
(10) : ρ0

∂2v′x
∂x∂t

= −∂2P ′

∂x2
(13)

∂

∂t
(11) : ρ0

∂2v′x
∂x∂t

= −∂2ρ′

∂t2
(14)

∂

∂t
(12) :

∂2ρ′

∂t2
=

ρ0

γP0

∂2P ′

∂t2
. (15)

Substituant les 2 dernières Eqs dans la première:

∂2P ′

∂t2
=

γP0

ρ0

∂2P ′

∂x2
(16)

N.B. A partir des Eqs (10,11,12), on peut obtenir des équations de forme similaire pour

ρ′ et v′x:
∂2v′x
∂t2

=
γP0

ρ0

∂2v′x
∂x2

(17)

∂2ρ′

∂t2
=

γP0

ρ0

∂2ρ′

∂x2
(18)

La généralisation de l’Eq.(16) au cas de perturbations dépendant de (x, y, z, t) est:

∂2P ′

∂t2
=

γP0

ρ0
∇2P ′ (19)

L’Eq.(19) est du type appelé équation d’Alembert. On étudiera ses solutions à la

Section suivante.
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3 EQUATION D’ALEMBERT. ONDES INDÉFORMABLES

Les Eqs.(10,11,12) donnent les relations entre les différentes composantes de la perturba-

tion P ′, ρ′, v′x.

La perturbation de vitesse !v′ est parallèle à la direction de propagation: c’est donc une

onde longitudinale.

3 Equation d’Alembert. Ondes indéformables

3.1 L’équation d’Alembert et sa solution générale

Les équations que nous avons établies pour de petites perturbations dans un fluide parfait

gaz parfait sont de la forme (cas 1D):

∂2ψ

∂t2
= u2∂2ψ

∂x2
, (20)

où ψ = ψ(x, t) représente la perturbation soit de pression, soit de densité, soit de vitesse,

et u =
√

γP0/ρ0. Dans le cas des ondes EM dans le vide, on peut montrer, à partir des

Eqs. de Maxwell, que les composantes des champs !E et !B satisfont aussi une équation

d’Alembert, avec u = c. Les autres exemples sont nombreux (cordes vibrantes, ondes

élastiques, etc). L’Eq. d’Alembert semble donc représenter une structure mathématique

commune à de nombreux phénomènes ondulatoires. Le but de cette Section est d’obtenir

la solution générale de cette équation.

La solution générale de l’Eq. d’Alembert est:

ψ(x, t) = f(x− ut) + g(x + ut) , (21)

où f et g sont deux fonctions arbitraires, deux fois différentiables, d’une variable réelle.

Preuve. Soit α(x, t) = x− ut et β(x, t) = x + ut. On a ψ(x, t) = f(α(x, t)) + g(β(x, t)).

De la règle de dérivation des fonctions composées, on obtient de (21):

∂ψ

∂t
=

df

dα

∂α

∂t
+

dg

dβ

∂β

∂t
= f ′(−u) + g′u

Redérivant par rapport à t,

∂2ψ

∂t2
= f ′′(−u)(−u) + g′′uu = u2(f ′′ + g′′)

De même,
∂ψ

∂x
= f ′ + g′ ⇒ ∂2ψ

∂x2
= f ′′ + g′′

La comparaison des deux dernières équations montre que l’Eq. d’Alembert est bien

satisfaite.
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3.2 Analyse de la solution générale
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Figure 1: Solution de l’Eq. d’Alembert: Perturbation dans l’espace à t = 0 (haut) et à
t = t1 (bas), pour une onde progressive (gauche) et pour une onde rétrograde (droite).

3.2 Analyse de la solution générale

Signification de f(x− ut) et g(x + ut). Perturbation dans l’espace à un instant

donné. Voir Figure 1. Dans le cas où ψ(x, t) = f(x − ut) = f(α), f(α) représente la

forme (dans l’espace) de perturbation au temps t = 0: ψ(x, t = 0) = f(α).

On obtient la forme de la perturbation (dans l’espace) à un instant t1 > 0 par ψ(x, t =

t1) = f(α = x − ut1). Par exemple, au point A, en x = 0, la perturbation est ψA =

ψ(0, t1) = f(−ut1). Au point B, en x = ut1, la perturbation est ψB = ψ(ut1, t1) =

f(ut1 − ut1) = f(0). Au point C, en x = 2ut1, la perturbation est ψC = ψ(2ut1, t1) =

f(2ut1−ut1) = f(ut1). Et ainsi de suite. En d’autres termes, la forme de la perturbation

(dans l’espace) au temps t = t1 est identique à la forme de la perturbation (dans l’espace)
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3 EQUATION D’ALEMBERT. ONDES INDÉFORMABLES
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Figure 2: Solution de l’Eq. d’Alembert: Perturbations dans le temps à une position x = x1

fixée (gauche) et à une position x = x2 > x1 fixée (droite).

au temps t = 0, décalée de la quantité ut1, donc vers les x positifs.

On parle ainsi d’onde progressive indéformable.

Dans le cas où ψ(x, t) = g(x + ut) = g(β), g(β) représente la forme (dans l’espace) de

perturbation au temps t = 0: ψ(x, t = 0) = g(β). Un raisonnement similaire conduit

au résultat que dans ce cas la forme de la perturbation (dans l’espace) au temps t = t1
est identique à la forme de la perturbation (dans l’espace) au temps t = 0, décalée de la

quantité −ut1, donc vers les x négatifs .

On parle ainsi d’onde rétrograde indéformable.

Signification de f(x−ut) et g(x+ut). Perturbation dans le temps à une position

donnée. Voir Figure 2. Il s’agit donc des signaux temporels à un endroit donné x1 fixe.

soit h(t) ce signal: h(t) = ψ(x1, t) = f(x1−ut) = f(α = x1−ut). Le graphe de la fonction

h(t) est donc semblable à celui de la perturbation instantanée dans l’espace (renversé à

cause du signe “-” devant ut).

Le signal à un endroit x2 fixé est de forme identique (dans le temps) à celui en x1 fixé,

mais décalé dans le temps de la quantité ∆t = (x2− x1)/u, qui n’est autre que le temps

de propagation du signal entre x1 et x2.

Dans le cas d’une onde rétrograde, le signal à un endroit x2 fixé est de forme identique

(dans le temps) à celui en x1 fixé, mais décalé dans le temps de la quantité ∆t = −(x2−
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3.3 Exemple de l’onde de pression dans un fluide parfait gaz parfait

x1)/u, qui n’est autre que le temps de propagation du signal entre x1 et x2.

La solution générale de l’Eq.d’Alembert est donc la superposition d’une onde

progressive indéformable et d’une onde rétrograde indéformable. La vitesse

de propagation est ±u.

3.3 Exemple de l’onde de pression dans un fluide parfait gaz
parfait

On a ψ = P ′ (ou ψ = ρ′ ou ψ = v′x). La vitesse de propagation de l’onde sonore est

u =

√
γP0

ρ0
. (22)

On peut récrire cette expression en utilisant la loi des gaz parfaits, P0 = (N/V )0kBT0, où

kB = 1.38× 10−23J/K est la constante de Boltzmann, T0 est la température d’équilibre,

et (N/V )0 est la densité numérique du gaz à l’équilibre; comme ρ0 est la densité de masse

à l’équilibre, on a P0 = (ρ0/m)kBT0, où m est la masse d’une molécule de gaz. On a ainsi

u =

√
γkBT0

m
. (23)

On constate que la vitesse du son est proportionnelle à la vitesse thermique. Pour l’air aux

conditions atmosphériques standard, P0 = 1.01 × 105Pa, ρ0 = 1.29 kg/m3, T0 = 293 K,

γ ≈ 1.4, m ≈ 29 ∗ 1.67× 10−27kg 1 , on trouve u ≈ 340 ms−1 ≈ 1220 km/h .

Pour de l’hélium (masse atomique 4) à la pression et température de l’atmoshphère

standard, on trouve u ≈ 1000 ms−1 ≈ 3600 km/h. La vitesse du son dans l’hélium est 3

fois plus élevée que dans l’air. Dans l’expérience du cours, la voix est modifiée vers les

hautes fréquences: en effet les “cordes vocales” et l’ensemble de la cage thoracique sont des

“cavités résonantes” (voir Section 5.3), dont les fréquences propres sont proportionnelles

à la vitesse de propagation u.

ATTENTION, la vitesse u n’a RIEN A VOIR AVEC la VITESSE v′: alors

que u est la vitesse du son, v′ est la vitesse fluide du gaz dans la perturbation.

Voir l’expérience de la châıne linéaire d’oscillateurs.

Perturbations de pression, de densité et de vitesse.

1L’air est composé à peu près de 3/4 d’azote (N2, masse atomique 2*14), et 1/4 d’oxygène (O2, masse
atomique 2*16), donc une masse atomique moyenne d’environ 29

III. Ondes L. Villard - CRPP - EPFL 9



3 EQUATION D’ALEMBERT. ONDES INDÉFORMABLES

Soit l’expérience suivante. On donne, en x = 0, un signal h(t) sous la forme d’une

perturbation de pression

h(t) = P ′(x = 0, t)

et on suppose que le signal se transmet par une onde progressive. La question est de

calculer les perturbations de pression P ′(x, t), de densité ρ(x, t) et de vitesse v′x(x, t) en

tout point de l’esapce-temps.

0 1 2 3 4 5 6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

P,
v,ρ

P’ vx’ 

ρ’ 

Figure 3: Perturbations de pression P ′, de vitesse v′x et de densité ρ′ dans une onde
sonore.

Comme on sait que P ′ est solution progressive de l’Eq. d’Alembert, on a P ′(x, t) = f(α) =

f(x−ut). En particulier, en x = 0, donc f(−ut) = h(t), autrement dit f(α) = h(−α/u).

Ainsi,

P ′(x, t) = h
(
−x

u
+ t

)
.

La perturbation de vitesse v′x(x, t) s’obtient de l’Eq.(10):

∂v′x
∂t

= − 1

ρ0

∂P ′

∂x

Or,
∂P ′

∂x
=

dh

dt′

∣∣∣
t′=t−x/u

(
−1

u

)

Donc

v′x(x, t) =
1

ρ0u

∫ t

0

dh

dt′

∣∣∣
t′=t−x/u

dt′ =
1

ρ0u
h
∣∣∣
t=t−x/u

=
1

ρ0u
P ′(x, t)

La perturbation de densité s’obtient de l’Eq.(12):

∂ρ′

∂t
=

ρ0

γP0

∂P ′

∂t
=

1

u2

∂P ′

∂t

10 III. Ondes L. Villard - CRPP - EPFL



et en intégrant sur le temps, on obtient

ρ′(x, t) =
1

u2
P ′(x, t) .

Les perturbations de pression, densité et vitesse sont esquissées à la Figure 3.Elles ont la

même forme, et sont en phase. On notera que le temps t′ = t−x/u est un temps retardé

de la durée de la propagation du signal entre son “émission” en x = 0 et sa “réception”

en x '= 0.

4 Principe de superposition linéaire

Soit une source no.1 (p.ex. un haut-parleur) produisant un signal h1(t). L’onde émise

est notée ψ1(!x, t).

Soit une source no.2 (p.ex. un haut-parleur) produisant un signal h2(t). L’onde émise

est notée ψ2(!x, t).

L’onde résultant du signal h1(t) amplifié d’un facteur a1 est a1ψ1(!x, t).

L’onde résultant du signal h2(t) amplifié d’un facteur a2 est a2ψ2(!x, t).

Lorsque les 2 sources sont en fonction, l’onde résultant du signal h1(t) amplifié d’un

facteur a1 et du signal h2(t) amplifié d’un facteur a2 est:

ψ(!x, t) = a1ψ1(!x, t) + a2ψ2(!x, t) . (24)

Ce principe dit de superposition linéaire est vrai pour toute solution d’équations

linéaires. Physiquement, cela correspond à des amplitudes suffisamment petites.

Pratiquement toute la suite de ce chapitre est consacré à des applications de ce principe

de superposition linéaire. On mentionnera les applications et expériences suivantes:

• Croisement d’ondes indéformables

• Réflexion d’ondes

• Onde progressive + onde rétrograde ⇒ onde stationnaire

• 2 ondes sinusöıdales de fréquences différentes ωA et ωB ⇒ battement de fréquence

|ωA − ωB|

• 2 sources de même fréquence, à deux endroits différents ⇒ interférences

III. Ondes L. Villard - CRPP - EPFL 11



5 ONDES SINUSOÏDALES. NOTATION COMPLEXE. RELATION DE
DISPERSION

• N sources de même fréquence, à N endroits différents ⇒ diffraction

• N signaux sinusöıdaux de fréquences nω0, avec n entier, ⇔ n’importe quel signal

de période T = 2π/ω0 (Fourier, spectre en fréquence, spectre en longueur d’onde)

• Modulation de fréquence, modulation d’amplitude

• Cavités résonantes: ondes stationnaires dans les 3 directions de l’espace

• Guides d’ondes: ondes stationnaires dans 2 directions de l’espace, propageantes

dans une direction

• “Paquets d’ondes”: voir aussi représentation quantique d’une particule, Ch.IV

• 2 ondes de même fréquence, même direction de propagation, perturbations dans

des directions différentes, déphasées ⇒ polaisations linéaire, circulaire, elliptique

5 Ondes sinusöıdales. Notation complexe. Relation
de dispersion

Dans cette section, nous nous restreindrons au cas unidimensionnel dans l’espace. La

généralisation au cas 3D sera faite à la Section suivante.

5.1 Définitions. Cas de l’Eq. d’Alembert

Une onde sinusöıdale pour une perturbation ψ s’écrit, dans le cas unidimensionnel (1D):

ψ(x, t) = ψ̂ cos(kx− ωt + ϕ) (25)

On a les définitions suivantes: ψ̂ est l’amplitude, k est le nombre d’onde [m−1], ω est la

fréquence angulaire [s−1], ϕ est le déphasage, kx−ωt+ϕ est la phase, une surface définie

par phase=const est appelée surface de phase. ψ̂, k, ω et ϕ sont des constantes.

Les graphes de la perturbation en fonction de x à t fixé, et en fonction de t à x fixé sont

représentés à la Figure 4. La longueur d’onde λ est définie comme la périodicité spatiale

de la perturbation à t fixé. On a

λ =
2π

k
. (26)

La période T dans le temps à x fixé est

T =
2π

ω
. (27)

12 III. Ondes L. Villard - CRPP - EPFL



5.1 Définitions. Cas de l’Eq. d’Alembert
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Figure 4: Onde sinusöıdale à t fixé (gauche) et à x fixé (droite).

La fréquence ν (unité : Hertz, [Hz]), est le nombre d’ oscillations par unité de temps à x

fixé:

ν =
1

T
=

ω

2π
(28)

Si le système est tel que la perturbation doive satisfaire une équation de type d’Alembert,

alors on sait que toute solution doit pouvoir s’écrire comme une fonction de x ± ut. On

peut récrire l’onde sinusöıdale (25) comme

ψ(x, t) = ψ̂ cos
[
k

(
x− ω

k
t
)

+ ϕ
]

D’Alembert est satisfait si
ω

k
= u ⇔ ω = ku . (29)

C’est la relation de dispersion pour l’Eq. d’Alembert. Elle lie le nombre d’onde et la

fréquence angulaire, autrement dit la longueur d’onde et la fréquence:

u = λν . (30)

La vitesse de propagation u s’appelle dans ce cas vitesse de phase vph = ω/k . C’est

en effet la vitesse à laquelle les surfaces de phase se déplacent.

Exemple 1: onde sonore dans l’atmosphère standard, son “la”: ν = 440 [Hz]. On a

u = 340 [m/s], et on trouve λ = 0.772 [m], k = 8.14 [m−1], ω = 2764.6 [s−1], T =

2.273× 10−3 [s].

Exemple 2: lumière rouge dans le vide. C’est une onde EM. On a u = c = 3 × 108, la

longueur d’onde du rouge est λ = 0.6 [µm]. Donc ν = 5× 1014[Hz], ω = 3.14× 1015[s−1],

k = 1.047× 107[m−1], T = 2× 10−15[s].

III. Ondes L. Villard - CRPP - EPFL 13



5 ONDES SINUSOÏDALES. NOTATION COMPLEXE. RELATION DE
DISPERSION

Pour les ondes EM dans la matière, on définit l’indice de réfraction N comme le rapport

de la vitesse de propagation dans le vide et celle dans la matière:

N =
c

u
=

ck

ω
(31)

5.2 Notation complexe, démarche générale

On peut récrire une onde sinusöıdale comme:

ψ(x, t) = Re
[
ψ̂ei(kx−ωt)

]
, (32)

c’est-à-dire comme la partie réelle d’une champ complexe Ψ(x, t) = ψ̂ exp[i(kx−ωt)]. La

constante ψ̂ est l’amplitude complexe, qui peut s’écrire en représentation polaire:

ψ̂ = |ψ̂|eiϕ . (33)

On a |ψ̂| qui est l’amplitude réelle. Les quantités k, ω, ϕ sont des constantes réelles 2.

Mais ω et k ne sont pas complètement arbitraires: il existe une relation (la relation de

dispersion) qu’ils doivent satisfaire, pour que (32) soit une solution possible des équations

du système.

La démarche est schématiquement la suivante.

• Equations de base du système considéré (en général: système d’EDP nonlinéaires

pour les champs(x, t))

• Ecrire les champs comme des champs d’équilibre + perturbation(x, t)

• Hypothèse des petites perturbations: linéariser les équations

• Système d’EDP linéaires

• Recherche de solutions sinusöıdales complexes de la forme (32)

• Substitution dans le système d’EDP linéaires

• Substituer formellement
∂

∂t
→ −iω (34)

∂

∂x
→ ik (35)

2Pour des ondes amorties, k et ω peuvent être complexes
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5.3 Réflexion d’ondes sinusöıdales, ondes stationnaires et cavités résonantes 1D

• Système d’équations algébriques linéaires pour les amplitudes complexes. Soit x̂ le

vecteur des amplitudes complexes. Le système peut s’écrire avec une matrice M :

Mx̂ = 0 (36)

• Ce système n’a de solution non triviale que si son déterminant est nul:

det M = 0 ⇔ ω = ω(k) . (37)

C’est la relation de dispersion cherchée

• La solution générale du système d’EDP linéarisées s’obtient en superposant des

solutions sinusöıdales de type (32) qui satisfont chacune d’elles la relation de dis-

persion; on prend finalement la partie réelle du résultat.

Nous avons déjà appliqué cette méthode pour trouver des solutions ondulatoires des

équations de Maxwell (Chapitre II, Electromagnétisme). Nous appliquerons cette méthode

dans le cas des ondes sonores, en exercice.

La solution s’écrit donc formellement

ψ(x, t) = Re

[
∑

l

ψ̂l e
i(klx−ω(kl)t)

]
(38)

si on cherche des solutions périodiques en x, et

ψ(x, t) = Re

[∫ +∞

−∞
ψ̂(k)ei(kx−ω(k)t) dk

]
(39)

dans le cas non-périodique; on voit, de ces deux dernières expressions, que les ψ̂l sont les

coefficients de la série de Fourier de ψ, et ψ̂(k) est la transformée de Fourier de ψ.

5.3 Réflexion d’ondes sinusöıdales, ondes stationnaires et cavités
résonantes 1D

Expérience du cours: ondes sonores, ondes dans une corde vibrante, ondes

EM

Par exemple, considérons une onde sinusöıdale incidente dans une corde vibrante attachée

à une de ses extrémités (point fixe). Voir Figure 5. La perturbation incidente se réfléchit.

La perturbation résultante est donc

ψ(x, t) = ψ̂Ie
i(−kx−ωt) + ψ̂Rei(+kx−ωt)

III. Ondes L. Villard - CRPP - EPFL 15



5 ONDES SINUSOÏDALES. NOTATION COMPLEXE. RELATION DE
DISPERSION
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Figure 5: Onde incidente, onde réfléchie, onde stationnaire résultante.

La condition au bord est:

ψ(x = 0, t) = 0, ∀t,

et donc

ψ̂Ie
−iωt + ψ̂Re−iωt = 0, ∀t ⇒ ψ̂R = −ψ̂I .

On voit que l’amplitude de l’onde réfléchie est l’opposé de celle de l’onde incidente. La

perturbation résultante s’écrit donc:

ψ(x, t) = ψ̂I

(
ei(−kx−ωt) − ei(+kx−ωt)

)
= −ψ̂Ie

−iωt
(
eikx − e−ikx

)
= −2iψ̂Ie

−iωtsin(kx)

La solution physique est la partie réelle de ψ. Ecrivant l’amplitude complexe ψI = â+ ib̂,

on a

Re(ψ(x, t)) = 2b̂ sin(kx) cos(ωt)

Cette solution est appelée onde stationnaire: elle représente une oscillation dans le

temps (∼ cos(ωt)), avec une amplitude fonction de x (∼ sin(kx)). On notera l’existence

de points d’amplitude nulle, appelés noeuds, entre des points d’amplitude maximale,

appelés ventres de l’onde stationnaire.

Si, en plus de fixer la corde en x = 0, on la fixe aussi en x = L, alors on doit avoir

ψ(x = L, t) = 0, ∀t

donc

sin(kL) = 0⇔ kL = nπ ⇔ k =
nπ

L
⇔ λ = 2

L

n
⇔ L =

nλ

2
.

Autrement dit, seules certaines longueurs d’onde sont permises: on doit avoir un

nombre entier de demi-longueurs d’onde le long de la corde. Voir Figure 6. Comme les
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Figure 6: Modes propres dans une cavité résonante 1D.

fréquences et les longueurs d’onde sont liées par la relation de dispersion (ω = ω(k)), cela

implique que seules certaines fréquences sont permises. Dans le cas d’une relation

de dispersion du type ω = ku, ces fréquences sont

ω =
nπ

L
u ⇔ ν =

nu

2L
.

On les appelle les fréquences propres ou fréquences de résonance du système, qui

constitue ce qu’on appelle une cavité résonante. La fréquence pour n = 1 est appelée

fondamentale, les fréquences pour n ≥ 2 sont appelées harmoniques. A chacune de

ces fréquences propres correspond un mouvement ondulatoire particulier, appelé aussi

mode propre. Chaque mode propre est donc caractérisé par sa fréquence propre et une

structure spatiale particulière de noeuds et ventres.

Expériences du cours: modes propres dans une corde, dans une plaque, dans du verre,

etc.

6 Ondes planes et ondes sphériques

Ce sont des généralisations à l’espace 3D.

• Une onde plane est une onde sinusöıdale de direction de propagation quelconque. On

l’écrit, en représentation complexe,

ψ(!x, t) = Re
[
ψ̂ei($k·$x−ωt)

]
= |ψ̂| cos(!k · !x− ωt + ϕ) (40)
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6 ONDES PLANES ET ONDES SPHÉRIQUES

avec ψ̂ = |ψ̂|eiϕ amplitude complexe, !k vecteur de nombres réels est appelé vecteur

d’onde, ω fréquence angulaire réelle, ϕ déphasage réel. La phase de l’onde est δ =
!k · !x− ωt + ϕ.

Une surface de phase est définie comme le lieu géométrique des points de l’espace où,

à un instant t donné, la phase de l’onde est une constante donnée. Dans le cas de l’onde

plane, une surface de phase est donc donnée par

!k · !x = const.

C’est l’équation d’un plan perpendiculaire à !k. D’où le nom “onde plane”. Les plans

de phase se déplacent à la vitesse de phase !u, parallèle au vecteur d’onde !k: par

|!u| =
ω

|!k|
, !u = |!u|

!k

|!k|
(41)

Pour trouver les relations entre les amplitudes, et la relation de dispersion, la méthode

est la même que présentée à la section 5.2. La seule différence est la substitution formelle

pour l’opérateur ∇:

∂

∂t
→ −iω (42)

∇ → i!k (43)

Ainsi, par exemple:

∇P → !kP̂ ∇ · !v → i!k · !̂v ∇× !E → i!k × !̂E (44)

• Une onde sphérique sinusöıdale s’écrit:

ψ(!x, t) = Re
[
ψ̂(r)ei(kr−ωt)

]
= |ψ̂(r)| cos(kr − ωt + ϕ) (45)

Elle correspond à une perturbation dont les surfaces de phase sont des sphères, se

déplaçant à la vitesse u = ω/k dans la direction radiale. L’amplitude de la pertur-

bation est fonction de la distance r. Si k et ω ont le même signe, la propagation est vers

les r croissants: c’est une onde divergente (image: vagues créées par un caillou jeté

dans l’eau). Le point r = 0 joue ainsi le rôle de source ponctuelle émettant dans toutes

les directions 3. Si k et ω sont de signes opposés, les surfaces de phase se propagent vers

les r décroissants: c’est une onde convergente (image: vagues créées dans une tasse de

café émises depuis la circonférence). Voir Figure 7.

3On peut généraliser les ondes sphériques aux cas où l’amplitude dépend non seulement de r, amis
aussi de θ: voir par exemple le champ EM rayonné par une particule accélérée, Chapitre II Electro-
magnétisme, Section 5.5.1.

18 III. Ondes L. Villard - CRPP - EPFL



−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y
Figure 7: Surfaces de phase d’une onde sphérique divergente (gauche) et d’une onde
sphérique convergente (droite).

Pour obtenir la relation entre les amplitudes des différentes composantes des champs

d’onde, ainsi que la relation de dispersion, la méthode est similaire à celle présentée à

la section 5.2. La seule différence est la substitution formelle pour l’opérateur ∇, qui

doit être exprimé en coordonnées sphériques. La dérivée partielle ∂/∂r qu’il contient

opère à la fois sur l’exponentielle et sur l’amplitude. Le système d’EDP des équations

de base linéarisées devient ainsi un système d’équations différentielles ordinaire pour les

amplitudes ψ̂(r).

Dans le cas de l’onde sonore, à partir des équations de base, Eqs.(7-9), après linéarisation

puis utilisation de l’Ansatz d’onde sphérique sinusöıdale, Eq.(45), on trouve finalement

une solution de la forme:

P ′(r, t) =
A

r
cos(kr − ωt + ϕ) (46)

!v′(r, t) =

[
A

ρ0u

1

r
cos(kr − ωt + ϕ) +

C

r2
sin(kr − ωt + ϕ)

]
!er (47)

avec la relation de dispersion

ω = ku = k

√
γP0

ρ0
. (48)

On remarque que l’amplitude de la perturbation de pression varie avec la distance à la

source en ∼ 1/r; l’amplitude de la perturbation de vitesse a un 1er terme en ∼ 1/r, qui

va dominer, pour de grandes distances, sur le 2e terme en ∼ 1/r2. [Dans le cas du champ

EM émis par une charge accélérée, on trouve aussi une combinaison de termes en ∼ 1/r

et en ∼ 1/r2, voir Chapitre II Electromagnétisme, Section 5.5.1].

Une application des ondes sphériques est le principe de Huygens, voir Section 9.
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7 VITESSE DE PHASE ET VITESSE DE GROUPE
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Figure 8: Relations de dispersions. Cas (a) et (b).

7 Vitesse de phase et vitesse de groupe

Il y a des cas où la vitesse de phase ne dépend pas de la longueur d’onde (ni donc de la

fréquence), autrement dit u = ω/|!k| est indépendant de !k et de ω. On dit alors que le

milieu considéré est non dispersif pour les ondes. Les ondes sont indéformables. C’est

le cas de tout système obéissant à des équations de type d’Alembert, par exemple l’onde

sonore u =
√

γP0/ρ0.

Mais il y a aussi des cas où la vitesse de phase dépend de la longueur d’onde (ou de la

fréquence). Voir Figure 8. On dit alors que le milieu considéré est dispersif pour les

ondes. Les ondes sont déformables. On peut avoir des cas où les courtes longueurs d’onde

(A) ont une vitesse de phase supérieure aux grandes longueurs d’onde (B) (Fig.8a). On

peut avoir des cas où les grandes longueurs d’onde (D) ont une vitesse de phase supérieure

aux courtes longueurs d’onde (C) (Fig.8b).

Le but de ce qui suit est d’introduire la notion de vitesse de groupe !vg. La démarche

est la suivante.

• Faire un “paquet d’onde” en superposant des ondes sinusöıdales de fréquences

voisines.

• Regarder comment l’amplitude (“l’enveloppe”) de la perturbation se propage.
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Figure 9: Superposition de deux ondes de fréquences voisines.

• Montrer que l’enveloppe se propage à la vitesse

!vg =
∂ω

∂!k
(49)

où ω = ω(!k) = ω(kx, ky, kz) est la relation de dispersion.

Cas 1D. Battements

Superposons 2 ondes planes de même amplitude, de fréquences angulaires voisines, ω1

et ω2. Soit ω = ω(k) la relation de dispersion. Voir Figure 9. Les nombres d’onde

correspondants, k1 et k2 seront également voisins.

k1 = k0 −
∆k

2

k2 = k0 +
∆k

2
(50)

Par la relation de dispersion, on a donc

ω1 = ω

(
k0 −

∆k

2

)
≈ ω(k0)−

dω

dk

∣∣∣
k0

∆k

2

ω2 = ω

(
k0 +

∆k

2

)
≈ ω(k0) +

dω

dk

∣∣∣
k0

∆k

2
. (51)

Soit

ω0 = ω(k0) vg =
dω

dk

∣∣∣
k0

.
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7 VITESSE DE PHASE ET VITESSE DE GROUPE

L’onde résultante s’écrit alors

ψ(x, t) = ψ̂
(
ei(k1x−ω1t) + ei(k2x−ω2t)

)

≈ ψ̂
(
ei[(k0−∆k/2)x−(ω0−vg∆k/2)t] + ei[(k0+∆k/2)x−(ω0+vg∆k/2)t]

)

= ψ̂ei(k0x−ω0t)
(
e−i(∆kx/2−vg∆kt/2) + ei(∆kx/2−vg∆kt/2)

)

= ψ̂ei(k0x−ω0t) 2 cos

(
∆k

2
(x− vgt)

)
(52)

Ceci représente une onde plane de fréquence angulaire ω0 égale à la moyenne arithmétique
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Figure 10: Battement résultant de la superposition de 2 ondes de fréquences voisines.

des 2 fréquences, dont l’amplitude est modulée par le terme en∼ cos. Cette modulation

d’amplitude, donc “l’enveloppe” de la perturbation, est du type f(x−vgt), donc

se propage à la vitesse vg. Voir Figure 10.
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Cas 3D. Paquet d’ondes

On généralise au cas 3D et en superposant linéairement plusieurs ondes planes de vecteurs

d’onde !k différents. C’est la généralisation de l’Eq.(39). Omettant Re dans ce qui suit,

ψ(!x, t) =
1

(2π)3/2

∫∫∫
ψ̂(!k)ei($k·$x−ω($k)t) d3k (53)

avec l’amplitude complexe

ψ̂(!k) = |ψ̂(!k)|eiϕ($k) (54)

qui est la transformée de Fourier 3D de ψ(!x, 0). On suppose l’amplitude |ψ̂(!k)| maximale
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Figure 11: Paquet d’onde dans l’espace réel à un instant donné (a) et dans l’espace de
Fourier k (b).

en !k0, localisée autour de !k0, (Figure 11), et on fait des développements limités au premier

ordre:

ϕ(!k) ≈ ϕ(!k0) + (!k − !k0)
∂ϕ

∂!k

∣∣∣
$k=$k0

ω(!k) ≈ ω(!k0) + (!k − !k0) ·
∂ω

∂!k

∣∣∣
$k=$k0

Notons

!x0 = −∂ϕ

∂!k

∣∣∣
$k=$k0

, !vg =
∂ω

∂!k

∣∣∣
$k=$k0

, ϕ0 = ϕ(!k0), ω0 = ω(!k0)
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8 ENERGIE ET INTENSITÉ D’UNE ONDE

Ainsi

ψ(!x, t) =
1

(2π)3/2

∫∫∫
|ψ̂(!k)|ei[ϕ0−($k−$k0)·$x0+$k·$x−ω0t−($k−$k0)·$vgt]d3k

=
1

(2π)3/2
ei($k0·$x−ω0t+ϕ0)

∫∫∫
|ψ̂(!k)|ei($k−$k0)($x−$x0−$vgt)d3k (55)

L’intégrale ci-dessus donne un résultat de module maximal lorsque !x−!x0−!vgt = 0, donc

|ψ(!x, t)| maximal⇔ !x = !x0 + !vgt (56)

ce qui veut dire que le pic de “l’enveloppe” de l’onde se déplace à la vitesse

!vg =
∂ω

∂!k
(57)

La vitesse de groupe !vg est ainsi la vitesse à laquelle des impulsions (donc

l’information) se propage. C’est la vitesse à laquelle la modulation d’amplitude

se propage.

8 Energie et intensité d’une onde

Nous venons de voir qu’une onde transporte de l’information. Nous allons voir qu’elle

transporte aussi de l’énergie.

8.1 Généralités

L’ intensité d’une onde est définie comme le flux d’énergie, quantité d’énergie traversant

une surface, par unité de temps et par unité de surface. Unités: [W/m2].

Pour les ondes sinusöıdales (∼ eiωt), on définit l’intensité moyennée sur une période:

< I >=
1

T

∫ t0+T

t0

I dt . (58)

L’intensité est une quantité quadratique de la perturbation

I ∝ ψ2 ; < I > ∝ |ψ̂|2 ; (59)

ou, plus généralement,

I ∝ ψaψb ; < I > ∝ < ψaψb >=
1

2
|ψ̂a||ψ̂b| cos δ =

1

2
Re

[
ψ̂∗

aψ̂b

]
=

1

2
Re

[
ψ̂aψ̂

∗
b

]
,

(60)
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8.1 Généralités

où δ est le dépahsage entre ψ̂a et ψ̂b, qui sont les amplitudes complexes de 2 composantes

de la perturbation, et ∗ indique le complexe conjugué. Preuve:

< ψaψb > =
1

T

∫ t0+T

t0

|ψ̂a||ψ̂b| cos(kx− ωt + ϕa) cos(kx− ωt + ϕb) dt

=
1

T

∫ t0+T

t0

|ψ̂a||ψ̂b|
1

2
(cos(ϕa − ϕb) + cos(2kx− 2ωt + ϕa + ϕb)) dt

=
1

2
|ψ̂a||ψ̂b| cos(ϕa − ϕb) =

1

2
|ψ̂a||ψ̂b| cos δ .

Avec ψ̂∗
a = |ψ̂a|e−iϕa et ψ̂b = |ψ̂b|eiϕb , on a

1

2
Re

[
ψ̂∗

aψ̂b

]
=

1

2
Re

[
|ψ̂a||ψ̂b|ei(ϕa−ϕb)

]
=

1

2
|ψ̂a||ψ̂b| cos δ .

[ N.B. On définit parfois une amplitude dite effective ψ̂eff = ψ̂/
√

2 . ]

Le principe de superposition étant valable pour les quantités linéaires, les perturbations

s’additionnent, mais en général PAS les intensités. On note que

Re(ψ1)Re(ψ2) '= Re (ψ1ψ2) (61)

Par exemple, le membre de gauche est, pour 2 composantes d’ondes de même longueur

d’onde (donc même k et même ω), mais de déphasages ϕ1 '= ϕ2,

|ψ̂1||ψ̂2| cos(kx− ωt + ϕ1) cos(kx− ωt + ϕ2) ,

alors que le membre de droite est

|ψ̂1||ψ̂2| cos(2kx− 2ωt + ϕ1 + ϕ2) .

On distingue 2 cas limites:

1. Dans la réalité, bien des sources d’ondes sont constituées d’un nombre immense

d’atomes qui émettent du rayonnement; par exemple, dans le cas d’une lampe à incan-

descence, ce sont les atomes chauffés qui émettent du rayonnement électromagnétique,

et les émissions d’atomes différents ne sont pas corrélées: on parle alors de sources in-

cohérentes: les phases entre les différentes émissions sont aléatoires, donc la phase de

l’onde résultante aussi.

2. Dans certains cas, comme le LASER par exemple, les émissions de lumière sont

cohérentes et la phase de l’onde résultante est bien déterminée.

Prenons le cas de 2 ondes, de même fréquence, incohérentes, c.-à-d qui ont un déphasage

aléatoire, alors l’intensité résultante est

< I > = < I1 > + < I2 > (62)
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8 ENERGIE ET INTENSITÉ D’UNE ONDE

Si les 2 ondes, de même fréquence, sont cohérentes, c.-à-d ont un déphasage bien

déterminé, alors l’intensié résultante est

< I > = < I1 > + < I2 > + 2
√

< I1 >< I2 > cos δ '=< I1 > + < I2 > . (63)

Preuve: l’onde résultante s’écrit

ψ(x, t) = Re
[
|ψ̂1|ei(kx−ωt+ϕ1) + |ψ̂2|ei(kx−ωt+ϕ2)

]

Et l’intensité de l’onde résultante est donc

< I > ∝ < |ψ|2 >= |ψ̂1|2 + |ψ̂2|2 + 2|ψ̂1||ψ̂2| < cos δ >

où δ = ϕ2 − ϕ1 est le déphasage entre les 2 ondes. Ainsi, dans le cas (1.) d’ondes

incohérentes, le déphasage δ est une variable aléatoire de densité de probabilité uniforme

entre 0 et 2π. Sa moyenne sur un intervalle de temps T est 0. Et on a < I >=< I1 > + <

I2 >. Dans le cas (2.) d’ondes cohérentes, le déphasage δ a une valeur bien déterminée

et constante dans le temps. Sa moyenne sur un intervalle de temps T est δ. On a donc

< I > = < I1 > + < I2 > + 2
√

< I1 >< I2 > cos δ .

8.2 Intensité d’une onde plane dans un gaz parfait fluide parfait

Soit un gaz parfait fluide parfait de densité de masse ρ0, pression P0, indice d’adiabaticité

γ, initialement au repos !v0 = 0. Soit une onde de fréquence angulaire ω se propageant

dans la direction x. Soit une section de fluide de surface perpendiculaire à x, d’aire A, à

une position x fixée. Voir Figure 12. On a, à l’endroit x de la section,

P ′ = |P̂ | cos(kx− ωt + ϕ) !v′ = |v̂| cos(kx− ωt + ϕ)!ex

(en effet les perturbations de pression et de vitesse sont en phase, voir section 3.3, et la

perturbation de vitesse est parallèle à la direction de propagation, voir section 2).

Par définition, l’intensité moyennée sur une période est le travail effectué sur la section

de fluide par unité de temps, divisé par A, et moyenné sur une période:

< I >=<
force ∗ vitesse

surface
>=< (P0 + P ′)(v0 + v′) >

< I >=
1

T

∫ T

0

(
P0 + |P̂ | cos(kx− ωt + ϕ)

)
|v̂| cos(kx− ωt + ϕ) dt

Avec
1

T

∫ T

0

cos(kx− ωt + ϕ)dt = 0 , et
1

T

∫ T

0

cos2(kx− ωt + ϕ)dt =
1

2
,

on obtient

< I >=
1

2
|P̂ ||v̂| , (64)
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8.2 Intensité d’une onde plane dans un gaz parfait fluide parfait
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Figure 12: Onde plane sonore dans un fluide parfait gaz parfait. Calcul de l’intensité.

ou, de façon équivalente, en représentation complexe et en notant .∗ le complexe conjugué,

< I >=
1

2
Re

(
P̂ v̂∗

)
=

1

2
Re

(
P̂ ∗v̂

)
. (65)

Cette intensité est mesurée perpendiculairement à la direction de propagation

!ek = !k/|!k|. On définit le flux d’énergie associé à l’onde,

< !S >=< I > !ek (66)

On a donc

< !S >
1

2
|P̂ | !̂v . (67)

A partir des équations linéarisées, Eqs(10,11, 12), et de la relation de dispersion u =

ω/k =
√

γP0/ρ0, pour une onde plane en représentation complexe, on obtient des ex-

pressions équivalentes pour l’intensité:

ρ0
∂v′x
∂t

= −∂P ′

∂x
⇒ ρ0(−iω)v̂ = −ikP̂ ⇒ v̂ =

1

ρ0u
P̂ (68)

∂P ′

∂t
− γP0

ρ0

∂ρ′

∂t
= 0 ⇒ ρ̂ =

1

u2
P̂ (69)

Si ξ est le champ de déplacement selon la direction x, on a

∂ξ

∂t
= v′x ⇒ ξ̂ =

i

ω
v̂ (70)

III. Ondes L. Villard - CRPP - EPFL 27



8 ENERGIE ET INTENSITÉ D’UNE ONDE

⇒ < I >=
1

2
|P̂ ||v̂| =

1

2ρ0u
|P̂ |2 =

1

2
ρ0u|v̂|2 =

1

2
ρ0uω2|ξ̂|2 =

u

2ρ0
|ρ̂|2 (71)

N.B. En fonction des amplitudes effectives, P̂eff = P̂ /
√

2 etc, on a

< I >= |P̂eff ||v̂eff | =
1

ρ0u
|P̂eff |2 = ρ0u|v̂eff |2 = ρ0uω2|ξ̂eff |2 =

u

ρ0
|ρ̂eff |2

N.B. On remarque que dans tous les cas l’intensité est une quantité quadratique des

amplitudes de la perturbation: < I >∝ |ψ̂a||ψ̂b|, avec ψ̂a, ψ̂b = v̂ ou P̂ ou ξ̂ ou ρ̂.

8.3 Mesure des intensités

On mesure les intensités, en particulier de l’onde sonore, sur une échelle logarithmique,

par rapport à une intensité de réf́rence < I0 >. Pour l’onde sonore, on choisit

< I0 >= 10−12[W/m2] ,

ce qui correspond, pour les conditions atmosphériques standard (u = 343[m/s]), à une

amplitude de perturbation de pression

|P̂0| ≈ 3× 10−5[Pa] , ou |P̂0|eff ≈ 2.1× 10−5[Pa]

et on définit l’intensité en décibels, [dB], par

< I > [dB] = 10 log10

< I >

< I0 >
(72)

Un son d’intensité I + 10[dB] est 10 fois plus intense qu’un son d’intensité I[dB]. Un

son d’intensité I + 20[dB] est 100 fois plus intense qu’un son d’intensité I[dB]. Doubler

l’intensité ⇒ +3[dB]. Quadrupler l’intensité ⇒ +6[dB]. Et ainsi de suite.

Le seuil d’audibilité de l’oreille humaine “standard” se situe, pour un son de fréquence

ν = 1000[Hz], aux environs de < I >= 2.5 × 10−12[W/m2], soit environ 4[dB]. En

exercice, on calculera à quelles amplitudes de perturbation de pression, de vitesse, de

déplacement et de densité cela correspond.

Le seuil de douleur pour l’oreille humaine se situe à environ < I >= 130[dB]. Cela

correspond à des amplitudes:

|P̂ | = 94[Pa] |v̂| = 0.21[m/s] |ξ̂| = 0.034[mm]

L’oreille humaine n’est pas sensible de la même façon à toutes les fréquences. La sensibilité

maximale est entre 1000 et 4000[Hz], et décrôıt rapidement en dehors de ces valeurs.

Fletcher et Munson, en 1933, ont mesuré les courbes d’intensité réelle, pour une intensité

perçues subjectivement équivalente, en fonction de la fréquence.

Pour en savoir plus sur la perception physiologique des ondes sonores:
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8.4 Intensité d’une onde sphérique sinusöıdale

http://www.phys.unsw.edu.au/~jw/dB.html

http://www.phys.unt.edu/~matteson/1251-001/mwf14.ppt

http://www.inrp.fr/Acces/JIPSP/phymus/m_lexiq/lexbc1.htm

Expériences: bruits

Additionner 2 sources de bruit, de même puissance, non corrélées (phase relative aléatoire):

+3[dB]. (Car I = I1 + I2 = 2I1, et 10 log10 2 = 3.0103)

Additionner 2 sources de bruit, de même puissance, en opposition de phase: ∼ −15[dB].

(Les signaux en provenance directe des 2 hauts-parleurs s’annulent: ψ = ψ1 + ψ2, et

ψ2 = −ψ1. On aurait donc −∞[dB]. Il ne reste que le son réfléchi par les parois de la

salle. D’où, pour les conditions de l’expérience, les -15[dB].)

Additionner 2 sources de bruit, de même puissance, en phase: +6[dB]. (On a ψ = ψ1 +

ψ2 = 2ψ1, donc I = ψ2 = 4ψ2
1 = 4I1.)

8.4 Intensité d’une onde sphérique sinusöıdale

On a vu deux exemples d’ondes émises par des sources ponctuelles: l’onde sonore et

l’onde EM. Dans les deux cas, l’intensité de la perturbation varie avec la distance r à la

source 4 comme ∼ 1/r.

ψ =
Â

r
ei(kr−ωt)

L’intensité d’une telle onde, proportionnelle au carré de l’amplitude de la perturbation,

est donc

< I >∝ |Â|2

r2
. (73)

L’intensité est inversément proportionelle au carré de la distance.

On peut en déduire la puisance de la source. En effet, si on considère une sphère Σ de

rayon r centrée sur la source, la puissance totale de l’onde traversant Σ sera:

P = O

∫∫
< I > dσ ∝ 4πr2 |Â|2

r2

qui est indépendant de r. Ceci nous indique que l’énergie transportée par l’onde est

conservée (toute la puissance de la source se retrouve sur la surface Σ, quelle que soit la

distance r).

4Sauf tout près de la source, où on a un terme en ∼ 1/r2, voir Eq.(47); mais ce terme a une phase
telle qu’il ne contribue PAS à l’intensité moyennée sur une période.
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8 ENERGIE ET INTENSITÉ D’UNE ONDE

8.5 Conservation de l’énergie

Il existe une équation de continuité pour l’énergie d’une onde. Soit !S le flux d’énergie

[W/m2]. Soit E la densité d’énergie [J/m3]. On a

∂E
∂t

+∇ · !S = 0 (74)

Avec le théorème de Gauss (“de la divergence”), considérant un volume V dont le bord

est la surface fermée notée ∂V ,

∂

∂t

∫∫∫

V

Ed3x = −O

∫∫

∂V

!S · !dσ (75)

Le terme de gauche est la variation par unité de temps de l’énergie de l’onde contenue

dans V . Le terme de droite est le flux entrant à travers la surface ∂V . On a une analogie

avec l’équation de continuité de la masse dans le cas des fluides, voir CH.I. On a vu

également une équation de forme similaire pour l’énergie EM, voir CH.II.

Preuve, cas de l’onde sonore.

Le flux d’énergie de l’onde sonore est

!S = P ′!v′ , (76)

voir Eq.(67) dans le cas sinusöıdal. Donc

∇ · !S = ∇P ′ · !v′ + P ′∇ · !v′

De l’équation d’Euler linéarisée, Eq.(10), ∇P ′ = −ρ0(∂!v′/∂t); de l’équation de continuité

linéarisée, Eq.(11), ∇ · !v′ = (−1/ρ0)(∂ρ′/∂t); avec l’équation d’état linéarisée, Eq.(12),

on tire ∇ · !v′ = (−1/ρ0u2)(∂P ′/∂t). Donc

∇ · !S = −ρ0!v
′ · ∂!v′

∂t
− 1

ρ0u2
P ′∂P ′

∂t
= − ∂

∂t

(
1

2
ρ0v

′2 +
1

2ρ0u2
P ′2

)
.

C’est bien une équation de la forme recherchée. Ainsi,

E =
1

2
ρ0v

′2 +
1

2ρ0u2
P ′2 (77)

est la densité d’énergie associée à l’onde sonore.

Pour une onde sinusöıdale, en moyennant sur une période, on a

< E >=
1

4
ρ0|v̂|2 +

1

4ρ0u2
|P̂ |2 =

1

2ρ0u2
|P̂ |2 (78)
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Pour la 2e égalité, on a utilisé la relation v̂ = (1/ρ0u)P̂ , Eq.(68).

Rappel: on avait trouvé une intensité < I >= 1
2ρ0u |P̂ |2, Eq.(71). Ainsi,

< I >=< E > u . (79)

Tout se passe comme si on avait une densité d’énergie E se propageant à la vitesse u.

9 Interférences et Diffraction. Diffusion de Bragg

Nous allons considérer différentes superpositions d’ondes. Voir fin de la Section 4.

Considérons des superpositions d’ondes planes ou sphériques, de même fréquence, mais

de directions de propagation !k/k différentes.
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rayon: ⊥ surf phase 
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ondes secondaires sph 

Figure 13: Illustration du principe de Huygens.

Principe de Huygens: chaque point atteint par une onde devient source d’une onde

secondaire sphérique.
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9 INTERFÉRENCES ET DIFFRACTION. DIFFUSION DE BRAGG

Voir Figure 13.

Chaque point sur une surface de phase “émet” une onde sphérique. La résultante de

toutes ces ondes créé une nouvelle surface de phase. On définit un rayon comme une

ligne perpendiculaire en tout point aux surfaces de phase. C’est le principe de base de

l’optique géomt́rique.

9.1 Interférence d’ondes émises par 2 sources pontuelles

Considérons 2 sources ponctuelles A et B de même fréquence, en phase, de même puis-

sance. Soit P un point d’observation. Soit ra = | !AP | et rb = | !BP | (Figure 14). La

perturbation en P est
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Figure 14: Interférence de 2 ondes émises par 2 sources ponctuelles en phase.

ψ(!xP , t) =
Â

ra
ei(kra−ωt) +

Â

rb
ei(krb−ωt)

Soit

ψ̂a =
Â

ra
eikra , ψ̂b =

Â

rb
eikrb .

alors

ψ(!xP , t) =
(
ψ̂a + ψ̂b

)
e−iωt ,

et l’intensité en P est

< I > (!xP ) ∝ |ψ̂a + ψ̂b|2
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9.1 Interférence d’ondes émises par 2 sources pontuelles

Soit le déphasage

δ = k(rb − ra) =
2π

λ
(rb − ra)

On a alors

< I > (!xP ) ∝ |ψ̂a|2 + |ψ̂b|2 + 2|ψ̂a||ψ̂b| cos δ . (80)

L’intensité en P est maximale lorsque cos δ = +1 ⇔ δ = 2nπ , avec n entier. On dit

qu’il y a interférence constructive.

L’intensité en P est minimale lorsque cos δ = −1⇔ δ = (2n + 1)π , avec n entier. On

dit qu’il y a interférence destructive.

Avec δ = 2π/(rb − ra), on a le résultat que l’intensité en P est maximale lorsque

la différence de longueur de parcours des rayons issus de A et B égale un

multiple de la longueur d’onde:

rb − ra = nλ . (81)

Pour chaque valeur de n (entier), c’est l’équation d’un hyperbole de révolution dont A

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Figure 15: Figure d’interférence: surfaces d’amplitude maximale(-) et minimale(...),
résultant des 2 ondes de la Fig.14.

et B sont les foyers (figure 15). La superposition des 2 ondes créé ce qu’on appelle une
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9 INTERFÉRENCES ET DIFFRACTION. DIFFUSION DE BRAGG

figure d’interférence. Dans notre cas, c’est en fait une onde stationnaire avec des noeuds

hyperbolöıdes.

A des grandes distances des 2 sources, r >> a, on peut faire l’approximation dipolaire,

qui consiste à faire un développement limité au premier ordre en a/r (comme on l’a fait

pour le dipôle électrique, CH.II). En notant O le point milieu de AB, r0 = | !OP |, d = a/2,

θ l’angle entre la perpendiculaire à AB et !OP , on a

ra ≈ r0 + d sin θ , (82)

rb ≈ r0 − d sin θ . (83)

Ainsi la perturbation en P s’écrit:

ψ(!xP , t) ≈ Â

r0
ei(kr0−ωt)

(
eikd sin θ + e−ikd sin θ

)
=

2Â

r0
ei(kr0−ωt) cos(kd sin θ)

et l’intensité en P est:

< I > (!xP ) ∝ 4|Â|2

r2
0

cos2(kd sin θ) (84)

−1 −0.5 0 0.5 1
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Figure 16: Franges d’interférence: intensité en fonction de l’angle d’observation, à des
distances r0 grandes par rapport à l’écartement des sources a.

Il y a des maxima en kd sin θ = nπ, donc pour

sin θ =
nπ

kd
=

nλ

2d
=

nλ

a
, (85)
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9.2 Diffraction par une fente de largeur finie

et des minima en kd sin θ = (n + 1/2)π, donc pour

sin θ =
(n + 1/2)π

kd
=

(n + 1/2)λ

2d
=

(n + 1/2)λ

a
,

On obtient la figure de franges d’interférences (Figure 16). La séparation entre franges

est ∆ sin θ = λ/a. Plus la distance entre les sources est petite, plus la séparation

entre les franges est grande. On ne voit donc des franges d’interférence que si λ < a .

La figure d’interférence découle du déphasage dû à la différence de parcours entre les 2

rayons:

δ = k(ra − rb) ≈ 2kd sin θ

Les franges d’interférence obtenues en (85) sont les directions des asymptotes des hyper-

boles trouvées en (81).

Diverses expériences du cours mettent en évidence ces propriétés.

9.2 Diffraction par une fente de largeur finie
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Figure 17: Diffraction par une fente de largeur finie.

On considère une onde plane incidente sur un obstacle (absorbant pour l’onde) percé

d’une fente de largeur b. On observe l’onde en un point P situé à distance r0 >> b de la

fente. Voir Figure 17.
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Chaque point de la fente émet une onde sphérique (principe de Huygens), et donc la

résultante reçue en P s’écrit:

ψ(!xP , t) =

∫ +b/2

−b/2

Â

r(x)
expi(kr(x)−ωt) dx

On utilise l’approximation dipolaire

r(x) ≈ r0 + x sin θ

et on a

ψ(!xP , t) ≈ Â

r0
expi(kr0−ωt)

∫ +b/2

−b/2

expi(kx sin θ) dx =
Â

r0
expi(kr0−ωt) 1

ik sin θ

(
eik(b/2) sin θ − e−ik(b/2) sin θ

)

ψ(!xP , t) ≈ Â

r0
expi(kr0−ωt) 2

k sin θ
sin

(
k

b

2
sin θ

)
(86)

Donc l’intensité en P est

< I > (!xP ) ∝
(

sin α

α

)2

, α = k
b

2
sin θ . (87)
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Figure 18: Figure de diffraction d’une fente de largeur finie.

L’intensité mesurée en fonction de l’angle θ est représentée à la figure 18. La largeur de

la tache de diffraction est inversément proportionnelle à la taille de la fente.

On appelle cette propriété principe d’incertitude (voir CH.IV Mécanique quantique).
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9.3 Interférence de N sources ponctuelles

Cette relation est utile pour déterminer le pouvoir séparateur d’un instrument optique:

plus on veut une diffraction petite, plus il faut une ouverture large de l’instrument:

∆θmin ≈
λ

b
.

(Applications: télescopes, apareils photos, etc).

Généralisation à une fente rectangulaire. Pour une fente de côtés bx × by, on

superpose les ondes issues des points (x, y) de la fente, et on utilise

r(x, y) ≈ r0 + x sin θx + y sin θy

et on obtient (evt: exercice!) finalement une figure de diffraction qui est le produit de

deux figures 1D en x et en y:

< I > (!xP ) ≈∝
(

sin α

α

)2 (
sin β

β

)2

avec

α = k
bx

2
sin θx , β = k

by

2
sin θy .
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Figure 19: Diffraction par une fente de largeur et hauteur finies.

Voir expériences du cours. Voir Figure 19.
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Figure 20: N sources ponctuelles.

9.3 Interférence de N sources ponctuelles

Soient N sources ponctuelles, alignées, équidistantes de a, en phase, que l’on observe en

P situé à grande distance r0 >> a. Voir Figure 20. La distance de la source numéro

m + 1 au point P est

rm ≈ r0 + ma sin θ .

Ainsi, l’onde reçue en P s’écrit:

ψ(!xP , t) ≈ Â

r0
ei(kr0−ωt)

N−1∑

m=0

eimka sin θ = ψ̂tote
−iωt .

Il y a donc un déphasage entre 2 ondes reçues en P , émises par 2 sources voisines, de

δ = ka sin θ. Il faut évaluer l’amplitude du signal reçu en P ,

ψ̂tot =
Â

r0
eikr0

N−1∑

m=0

eimka sin θ

La somme ci-dessus est rerésentée dans le plan complexe à la figure 21. C’est une ligne

brisée à N côtés de longueur 1. Elle peut donc être inscrite dans un cercle. Soit C le

centre et ρ le rayon de ce cercle. On a

|OP | = 2|QP | = 2ρ sin(Nδ/2)

1 = |OR| = 2|OS| = 2ρ sin(δ/2)
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9.3 Interférence de N sources ponctuelles
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Figure 21: Calcul de l’amplitude complexe résultante pour l’interférence de N sources
ponctuelles. Cas de figure: N = 6.

Ainsi

|ψ̂tot| =
|Â|
r0

|OP | =
|Â|
r0

sin(Nδ/2)

sin(δ/2)

et l’intensité en P est

< I > (!xP ) =< I1 >

(
sin(Nδ/2)

sin(δ/2)

)2

=< I1 >

(
sin(Nka sin θ/2)

sin(ka sin θ/2)

)2

(88)

< I > (!xP ) =< I1 >

(
sin(Nπa sin θ/λ)

sin(πa sin θ/λ)

)
(89)

où < I1 > serait l’intensité reçue en P s’il n’y avait qu’une seule source.

On a représenté les figures d’interférences correspondantes pour N = 2, 3, 4, 10 à la Figure

22. Plus le nombre de sources est grand, plus les pics principaux sont fins et de grande

amplitude.

Application: antennes radio.

On dispose les sources de telle sorte que l’intensité soit maximale dans certaines directions.

Par exemple, avec 2 sources séparées de a = λ, on obtient le diagramme polaire d’intensité

III. Ondes L. Villard - CRPP - EPFL 39
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Figure 22: Figures d’interférences de N sources ponctuelles, pour N = 2, 3, 4, 10.

40 III. Ondes L. Villard - CRPP - EPFL
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Figure 23: Diagramme polaire d’intensité des ondes émises par 2 sources séparées d’une
longueur d’onde (a = λ).

de la Figure 23: les maximas sont en sin θ = n, donc

n = 0⇒ θ = 0, π

n = 1⇒ θ = π/2

n = −1⇒ θ = −π/2

Les maxima d’intensité sont dans 4 directions orthogonales de l’espace.

Autre exemple, avec 2 sources séparées de a = λ/2, on obtient le diagramme polaire

d’intensité de la Figure 24: les maximas sont en sin θ = 2n, donc

n = 0⇒ θ = 0, π

Les maxima d’intensité sont dans 2 directions opposées de l’espace, perpendiculaires à

l’alignement des 2 sources.

Autre exemple, avec 4 sources séparées de a = λ/2, on obtient le diagramme polaire

d’intensité de la Figure 25: les maxima principaux sont en sin θ = 2n, donc

n = 0⇒ θ = 0, π

Les maxima d’intensité sont dans 2 directions opposées de l’espace, perpendiculaires à

l’alignement des 2 sources. Mais il y a aussi les maxima secondaires. L’intensité est nulle

pour

sin(Nπa sin θ/λ) = 0⇒ 4πa sin θ/λ = nπ ⇒ sin θ =
n

2
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Figure 24: Diagramme polaire d’intensité des ondes émises par 2 sources séparées d’une
demi-longueur d’onde (a = λ/2).

donc pour

n = 1⇒ θ =
π

6
,
5π

6

n = −1⇒ θ =
−π

6
,
−5π

6

n = 2⇒ θ =
π

2

n = −2⇒ θ =
−π

2

9.4 Diffaction des rayons X par les cristaux (Bragg)

Un cristal est un arrangement régulier d’atomes dans l’espace. On éclaire le cristal

avec une onde EM. Chaque atome du cristal va osciller en réponse à cette onde. Cette

oscillation entrâıne l’émission de rayonnement d’une onde EM (voir CH.II.5: une charge

accélérée rayonne). La résultante de ces ondes réémises par l’ensemble des atomes du

cristal constitue un rayonnement dit de diffusion de Bragg.

Considèrons un plan de l’arrangement régulier des atomes du cristal, figure 26. Si la

direction d’observation θr et celle de l’onde incidente θi sont telles que θr = θi, tous les

rayons diffusés par les atomes du plan du cristal arrivent en phase les uns par rapport

aux autres (car la longueur de parcours des rayons est la même). Il y a donc maximum
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9.4 Diffaction des rayons X par les cristaux (Bragg)
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Figure 25: Diagramme polaire d’intensité des ondes émises par 4 sources séparées d’une
demi-longueur d’onde (a = λ/2).

d’intensité pour cette condition: c’est la loi de la réflexion bien connue.

Si on considère maintenant 2 plans adjacents, séparés de d, les rayons diffusés (c.-à.-d.

réfléchis par ces 2 plans) seront en phase si la différence de longueur de parcours des

rayons est un multiple de la longueur d’onde:

2d sin θ = nλ . (90)

On aura à cette condition un maximum d’intensité diffusée. Autrement dit, un cristal

va diffuser des ondes EM dans certaines directions bien précises, qui dépendent

de l’arrangement des atomes dans le cristal (distance entre plans du cristal).

La relation ci-dessus s’appelle relation de diffusion de Bragg.

Pour n = 0, c’est le “shine through”: θ = 0. Pour n = 1, la rayonnement diffusé

constitue ce qu’on appelle le spectre de diffusion d’ordre 1. Pour n = 2, on aura le

spectre de diffusion d’ordre 2. Et ainsi de suite.

Donc, pour pouvoir observer au moins le spectre de 1er ordre, comme le sinus est < 1,

on doit avoir λ < 2d. En pratique on choisit

λ <≈ d .

Il faut donc utiliser des longueurs d’ondes inférieures à la distance interatomique pour

pouvoir observer la figure de diffusion. Comme les distances interatomiques dans les
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Figure 26: Calcul de la diffusion par un cristal: ondes réfléchies par 2 plans d’atomes
voisins.

solides sont de l’ordre de quelques Angström (10−10[m]), cela correspond à des rayons

X.

L’expérience de diffusion des rayons X par les cristaux a démontré leur nature ondulatoire,

alors que, lorsqu’ils on été découverts (par Roentgen a la fin du XIXe siècle), leur nature

corpusculaire était mise en évidence. On verra au CH.IV, Mécanique Quantique, que

les rayons X, comme toute particule d’ailleurs, ont une nature duale, corpusculaire par

certains aspects, ondulatoire par d’autres.

• Si on utilise une source de rayons X de longueur d’onde connue, la mesure du spectre

de diffusion renseigne sur la structure de cristal.

• Si on utilise un cristal de structure connue, la mesure du spectre de diffusion ren-

seigne sur la longueur d’onde des rayons X incidents.

10 Polarisation

L’onde EM dans le vide est une onde transverse, c.a.d. que les champs !E et !B de la

perturbation sont perpendiculaires à la direction de propagation !k. Voir Ch.II, Section
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5.3 le cas de l’onde plane, et Ch.II, Section 5.5 le cas de l’onde EM rayonnée par une

charge accélérée.
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Figure 27: Mise en évidence expérimentale d’une onde EM polarisée plane.

Expérience : antennes dipolaires. L’antenne émettrice et l’antenne réceptrice sont

des dipôles rectilignes. Si l’antenne réceptrice est placée parallèlement à l’antenne émettrice,

elle reçoit un signal. Si on la fait tourner de π/2 par rapport à l’antenne émettrice, elle

ne reçoit aucun signal. Voir Figure 27.

Def.: polarisation plane: lorsque la perturbation associée à l’onde est dans un plan

donné. On dit aussi que l’onde est polarisée linéairement.

La lumière naturelle, bien que constituée d’ondes transverses, n’est habituellement pas

polarisée: le plan d’oscillation du champ !E est aléatoire, car constitué d’un très grand

nombre d’ondes individuelles dont l’orientation est aléatoire. On dit alors que l’onde (la

lumière, dans ce cas) n’est pas polarisée.

Expérience: polarisation d’une onde radio. En plaçant une grille de tiges métalliques

parallèles sur le chemin d’une onde radio, on filtre la composante parallèle au fil (le con-

ducteur “écrante” le champ électrique). Reste donc, aprs̀ la passage à travers la grille, une

onde polarisée linéairement. On met enévidence cete polarisation avec une 2e grille de

fils paralléles, que l’on oriente relativement à la première. Lorsque l’orientation relative

entre les 2 grilles est de π/2, plus aucun signal ne passe.

Polarisations circulaire et elliptique. On superpose 2 ondes planes de même fréquence,

III. Ondes L. Villard - CRPP - EPFL 45



10 POLARISATION

même longueur d’onde et même direction de propagation, mais polarisées linéairement

dans 2 directions perpendiculaires et déphasées de π/2. Soit z la direction de

propagation. Le champ électrique résultant est donc:

!E(!x, t) = Re
(
|Êx|ei(kz−ωt+ϕ)!ex + |Êy|ei(kz−ωt+ϕ+π/2)!ey

)

= Re
((

|Êx|!ex + i|Êy|!ey

)
ei(kz−ωt+ϕ)

)

= |Êx| cos(kz − ωt + ϕ)!ex − |Êy| sin(kz − ωt + ϕ)!ey . (91)

Si on considére le champ !E en fonction du temps à !x = !x0 = z0!ez fixé, l’Eq.(92) est

l’équation paramétrique d’une ellipse de demi-axes |Êx| et |Êy|. Autrement dit, le vecteur

champ électrique parcourt une ellipse dans le plan perpendiculaire à la direction de prop-

agation de l’onde, avec un sens de parcours dans la direction positive. Voir Figure 28,

droite. On dit que l’onde a une polarisation elliptique droite. Si les amplitudes |Êx|
et |Êy| sont égales, alors on a une polarisation circulaire droite

−100 −50 0 50 100
−200

−150

−100

−50

0

50

100

150

200

−100 −50 0 50 100
−200

−150

−100

−50

0

50

100

150

200

Figure 28: Polarisations elliptiques gauche et droite: champ !E à un endroit donné, à des
temps successifs, dans le plan (x, y). La flèche indique le sens de déroulement du temps.
La direction de propagation (z) est vers l’observateur.

Si le déphasage entre les composantes en x et y est de −π/2 au lieu de π/2, on a

!E(!x, t) = Re
(
|Êx|ei(kz−ωt+ϕ)!ex + |Êy|ei(kz−ωt+ϕ−π/2)!ey

)

= Re
((

|Êx|!ex − i|Êy|!ey

)
ei(kz−ωt+ϕ)

)

= |Êx| cos(kz − ωt + ϕ)!ex + |Êy| sin(kz − ωt + ϕ)!ey . (92)
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Cette fois, le vecteur champ électrique parcourt également une ellipse dans le plan per-

pendiculaire à la direction de propagation de l’onde, mais avec un sens de parcours dans

la direction négative. Voir Figure 28, gauche. On dit que l’onde a une polarisation el-

liptique gauche. Si les amplitudes |Êx| et |Êy| sont égales, alors on a une polarisation

circulaire gauche.

On peut décomposer toute superposition de 2 ondes polarisées linéairement, dans 2 di-

rections perpendiculaires et déphasées d’une quantité arbitraire, en une superposition de

2 ondes polarisées circulairement:

!E(!x, t) = Re
((

Êx!ex + Êy!ey

)
ei(kz−ωt)

)

= Re

([
1

2

(
Êx − iÊy

)
(!ex + i!ey) +

1

2

(
Êx + iÊy

)
(!ex − i!ey)

]
ei(kz−ωt)

)
. (93)

Ainsi, Êx−iÊy est l’amplitude complexe de la polarisation circulaire droite, et Êx+iÊyest

l’amplitude complexe de la polarisation circulaire gauche.

Expérience: biréfringence. Dans certains matériaux, la vitesse de propagation des

ondes EM dépend de la direction de propagation des ondes, et aussi de la direction de la

polarisation de l’onde. Ainsi, un faisceau de lumière non polarisée incidente sur ce type de

matériau se sépare en deux faisceaux qui sont polarisés linéairement dans des directions

perpendiculaires l’une par rapport à l’autre. L’une des polarisations est appelée “ordi-

naire” (O), car elle obéit aux lois habituelles de la réfraction (loi de Snell: sin i/ sin r = n),

avec un indice de réfraction qui ne dépend pas de la direction de propagation. L’autre

est appelée “extraordinaire” (X), parce qu’elle a une vitesse de propagation qui dépend

de la direction de propagation. Par exemple, pour le calcite, on a un indice de réfraction

pour l’onde O de 1.658, et pour l’onde X qui varie entre 1.658 et 1.486 selon la direction.

On met en évidence ce phénomène en observant la double image à travers un cristal de

calcite. Chacune des images est polarisée linéairement.

11 Effet Doppler

Lorsque la source émettant l’onde est en mouvement par rapport au récepteur (ou: ob-

servateur), on observe un décalage en fréquence: c’est l’effet Doppler.

On distingue 2 cas pour le traitement de l’effet Doppler:

• A. Ondes se propageant sur un support matériel (par exemple ondes dans les fluides,

cordes vibrantes, etc)

• B. Ondes électromagnétiques (EM). Il n’y a pas de support matériel. La vitesse de
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11 EFFET DOPPLER

propagation est u = c quel que soit le référentiel d’inertie (principe d’equivalence

dans la relativité d’Einstein).
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Figure 29: Surfaces de phase émises par une source en mouvement (positions de la source
lors des émissions: A, B, C,D, ...; positions de l’observateur en mouvement lors de ces
émissions: ra, rb, rc, rd, ... .

Cas A. Ondes se propageant sur un support matériel

On va supposer que la source et le récepteur sont en mouvement uniforme par rapport

au milieu dans lequel se propagent les ondes, de vitesses !vs et !vo, respectivement. Pour

simplifier les calculs, on supposera que !vs//!vo. Voir Figure 29.

Soit R le référentiel lié au milieu dans lequel se propage l’onde. Soit u la vitesse de

propagation de l’onde. Soit un signal sinusöıdal de fréquence d’émission ν. Soit T = 1/ν

la période de ce signal. Nous allons calculer la fréquence du signal reçu par l’observateur.

On a représenté graphiquement les surfaces de phase émises à des temps successifs t =

0, T, 2T, 3T, 4T, ..., ainsi que les positions de la source et de l’observateur à ces temps

successifs.

Calculons le temps T ′ entre 2 réceptions successives de surfaces de phase.

En t = 0, émission depuis x = xA. L’observateur est en x = ra. La surface de phase est
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d’équation:

xfront(t) = xA + ut

La position de l’observateur est d’équation:

xobs(t) = ra + vot

La réception de cette surface de phase est en t = t1 telle que xfront(t1) = xobs(t1), donc

t1 =
ra − xA

u− vo
(94)

En t = T , donc une période plus tard, il y a émission de la surface de phase suivante

depuis xB = xA + vsT . L’observateur est en rb = ra + voT .

xfront,2(t) = xB + u(t− T ) = xA + (vs − u)T + ut

xobs(t) = ra + vot

La réception de cette 2e surface de phase est en t = t2 telle que xfront,2(t2) = xobs(t2),

donc

t2 =
ra − xA + (u− vs)T

u− vo
(95)

La période T ′ entre deux réceptions successives est ainsi T ′ = t2 − t1

T ′ =
u− vs

u− vo
T (96)

et donc la fréquence du signal reçu, ν ′ = 1/T ′, est

ν ′ =
u− vo

u− vs
ν =

1− (vo/u)

1− (vs/u)
ν (97)

Expérience: haut-parleur tournant. Cas vo = 0.

• La source se rapproche: vs > 0, donc ν ′ = u
u−vs

ν > ν, le son reçu est plus aigu.

• La source s’éloigne: vs < 0, donc ν ′ = u
u−vs

ν < ν, le son reçu est plus grave.

En mesurant la différence entre ν et ν ′, on peut ainsi mesurer la vitesse de la source.

C’est le principe du radar à effet Doppler.

Dans le cas où vo, vs << u, on a

ν ′ ≈
(

1− v0 − vs

u

)
ν . (98)

Que se passe-t-il si vs > u (source supersonique). Les calculs ci-dessus indiqueraient un

temps T ′ < 0. En fait, les fronts de phase successifs vont se croiser. Il y aura interférence
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Figure 30: Surfaces de phase émises par une source en mouvement supersonique (vs > u).

constructive entre ces fronts d’onde sur une ligne tangente aux surfaces de phase: cela

forme une onde de choc. Lorsque vs s’approche de u, les perturbations s’accumulent

devant la source et deviennent de tres grande amplitude: c’est le “mur du son”, qui créé

le “bang” supersonique. Voir Figure 30.

Cas B. Onde EM dans le vide.

Les ondes EM n’ont pas de support matériel (il n’y a pas d’ ”éther”), et c’est la relativité

d’Einstein qui s’applique. La vitesse de propagation est u = c pour tout référentiel

d’inertie.

Soit R le référentiel de la source.

Soit R′ le référentiel de l’observateur.

Soit !v = v!ex la vitesse de R′ par rapport à R. Voir Figure 31.

On synchronise les horloges de R et R′ : t = t′ = 0 lorsque O = O′.

Soit l’événement A: émission d’une onde plane en O, en t = 0. Soit ω sa fréquence

angulaire et !k = kx!ex + ky!ey son vecteur d’onde, tous deux mesurés dans R. Soit θ

l’angle entre !v et !k.
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Figure 31: A: émission du rayon lumineux en O = O′, t = t′ = 0. B: réception de l’onde,
vue de R et vue de R′.

Soit l’événement B: le rayon est en x = xB, y = yB, z = zB, t = tB.

L’onde en B est

ψB = ψ(!xB, t) = ψ̂ cos(kxxB + kyyB − ωtB)

Avec !k = k(cos θ!ex + sin θ!ey), on a

ψB = ψ̂ cos(k cos θxB + k sin θyB − ωtB)

Pour obtenir la perturbation en B vue du référentiel de l’obsrevateur R′, il faut utiliser

la transformation de Lorentz inverse:

xB = γ(x′B + vt′B), yB = y′B, zB = z′B, tB = γ(t′B + vx′B/c2), (99)

avec

γ =
1√

1− v2

c2

. (100)

On a donc, en substituant,

ψB = ψ̂ cos
[
k cos θγ(x′B + vt′B) + k sin θy′B − ωγ(t′B + vx′B/c2)

]

= ψ̂ cos
[
γ

(
k cos θ − ωv/c2

)
x′B + k sin θy′B − γ (ω − k cos θv) t′B

]
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Or, l’onde EM doit satisfaire la relation de dispersion

ω = ck

Substituant ω par ck dans le 1er terme et k par ω/c dans de 2e terme, on obtient

ψB = ψ̂ cos
[
γk

(
cos θ − v

c

)
x′B + k sin θy′B − γω

(
1− v

c
cos θ

)
t′B

]

On écrit ainsi:

ψB = ψ̂ cos
(
k′xx

′
B + k′yy

′
B − ω′t′B

)

ce qui montre que l’onde dans R′ est aussi une onde plane, mais de vecteur d’onde et

fréquence angulaire différents de ceux dans R, la relation étant donnée par:

k′x = γk
(
cos θ − v

c

)
(101)

k′y = k sin θ (102)

ω′ = γω
(
1− v

c
cos θ

)
(103)

A partir de ces relations, on peut calculer la norme du vecteur d’onde dans R′:

k′ = γ
(
1− v

c
cos θ

)
k (104)

On vérifie aussi que l’on a la relation de dispersion dans R′:

ω′

k′
=

ω

k
= c , (105)

ce qui veut dire que la vitesse de propagation de l’onde EM dans le vide est c dans tout

référentiel d’inertie. C’est d’ailleurs ce principe relativiste d’invariance de la vitesse

de la lumière qui est à la base des transformations de Lorentz!

L’angle de propagation dans R′ est différent de celui dans R:

cos θ′ =
k′x
k′

=
cos θ − v

c

1− v
c cos θ

En résumé: dans R′, on a aussi une onde plane, mais

k′ '= k λ′ '= λ ω′ '= ω ν ′ '= ν θ′ '= θ

alors que

u = c = λν = λ′ν ′ =
ω

k
=

ω′

k′

Remarque 1: dans le cas où la source et l’observateur s’éloignent, les relations (101-104),

pour v > 0, θ = 0, donnent

ω′ < ω , λ′ > λ
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Le fréquence reçue est inférieure à la fréquence émise et la longueur d’onde reçue est

supérieure à la longueur d’onde émise: il y a, si on parle de domaines de la lumière

visible, décalage vers le rouge.

Remarque 2: dans le cas où la source et l’observateur se rapprochent, les relations (101-

104), pour v < 0, θ = 0 (ou de façon équivalente pour v > 0, θ = π), donnent

ω′ > ω , λ′ < λ

Le fréquence reçue est supérieure à la fréquence émise et la longueur d’onde reçue est

inférieure à la fréquence émise: il y a, si on parle de domaines de la lumière visible,

décalage vers le violet.

Ces phénomènes de décalage spectral sont observés notemment pour les objets célestes

lointains (galaxies, quasars). Une mesure des longueurs d’onde reçues par rapport à celles

(que l’on pense sont) émises nous donne une information sur la vitesse relative de ces

sources de lumière par rapport à nous. On s’est aperçu que plus la source est éloignée

dans l’univers, plus le décalage vers le rouge est important, et donc plus la vitesse relative

d’éloignement est importante. Cet ensemble d’observations a été une des principales bases

des théories de l’expansion de l’univers (p.ex. “big bang”).

Remarque 3: dans le cas où l’onde se propage dans la direction perpendiculaire (dans le

référentiel d’émission R) au mouvement relatif des deux référentiels, !k ⊥ !v, θ = π/2, et

on a un décalage spectral

k′ = γk ⇒ λ′ =
1

γ
λ =

√
1− v2

c2
λ

autrement dit λ′ < λ, soit un décalage vers le violet. Alors que dans le cas où l’onde

se propage dans la direction perpendiculaire (dans le référentiel de réception R′) au

mouvement relatif des deux référentiels, !k′ ⊥ !v, θ′ = π/2, donc cos θ′ = 0 et cos θ = v/c,

et on a un décalage spectral

k′ = γk
(
1− v

c
cos θ

)
=

1− v2

c2√
1− v2

c2

k =

√
1− v2

c2
k ⇒ λ′ =

1√
1− v2

c2

λ

autrement dit λ′ > λ, soit un décalage vers le rouge. Ces deux effets (effet Doppler

perpendiculaire) sont des effets purement relativistes, d’ordre v2/c2.

Remarque. Peut-on mettre en évidence la rotation d’un référentiel avec des expériences

basées sur la propagation de la lumière? La rérponse est oui, c’est l’effet Sagnac. Il

consiste à mesurer la différence de temps de propagation de signaux lumineux circulant

dans un sens et dans l’autre entre un ensemble de miroirs. La différence de temps de

propagation est mesurée par interférence des deux signaux. Ou, dans le cas du LASER,

à mesurer une fréquence dédoubleée (2 fréquences séparées au lieu d’une). Avec cette
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11 EFFET DOPPLER

technique, dite du “gyroscope LASER” ou “ring LASER”, on peut actuellement

mettre en évidence des vitesses de rotation par rapport au référentiel d’inertie de l’univers

avec une précision de l’ordre de 10−6 fois la vitesse de rotation de la terre!

Pour en savoir plus sur l’effet Sagnac:

http://www.mathpages.com/rr/s2-07/2-07.htm

http://www.wettzell.ifag.de/LKREISEL/CII/precise.htm

http://edu.supereva.it/solciclos/ashby_d.pdf (GPS)

http://www.phys.canterbury.ac.nz/research/ring_laser/ring_laser.html

http://www.schott.com/magazine/english/info95/si095_04_laser.html
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