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Notations du cours

Scalaire et vecteur

Dans le cours, nous distinguerons les quantités scalaires (p. ex. la masse, la charge élec-
trique) et les quantités vectorielles (p. ex. la vitesse u, les forces F). Les vecteurs sont
notés par une lettre en gras, comme par exemple u. Les quantités vectorielles sont définies
par un vecteur qui posséde une norme et une direction. Dans 1’espace & trois dimensions,
elles sont définies par leurs trois composantes. Par exemple, dans 'espace muni d’un
repére cartésien (e, ey, e,) la vitesse u est

U = Ug€y + Uy€y + U,

u = (Uy, Uy, Usy)

[ull = u = /uz +u2 + u?

Une quantité scalaire (p. ex. la masse m) est définie par une seule quantité.

Les quantités scalaires et vectorielles peuvent étre fonction de la position r et du temps.
On les appelle alors respectivement champs scalaires ou champs vectoriels.

Opérateur V et définition du gradient, de la divergence et du rotationnel
dans les coordonnées cartésiennes

L’opérateur différentiel vectoriel V (appelé "nabla" ou "del") est un opérateur défini en
coordonnées cartésiennes par
o o0 0
v = a v o
oxr’ Oy’ 0z

0 0

0
v:exi_keyaiy_{-eza

ox

3
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Le gradient d’une fonction scalaire f(r) est un vecteur.

S RN P
Vf(r)—exaereyaquezaZ

La divergence d’un champ vectoriel u(r) est un scalaire.

_ Oug % ou,

Vou= Ox * 0y * 0z

Symboliquement, c’est le produit scalaire de V et u.

Le rotationnel d’un champ vectoriel u(r) est un champ vectoriel v défini par le produit
vectoriel :

= VAu = 2 3 2 —e auz_% Te %_auz +e %_aux
V= a T Y\ 0z Oz “\ Ox oy

Uy Uy Uy

Nous considérons que V est un vecteur et que nous pouvons "l'utiliser" comme tel. 11
faut juste faire attention que les opérations ont un "ordre".

Notez que le gradient, la divergence et le rotationnel peuvent étre définis pour d’autres
systémes de coordonnées que le systéme de coordonnées cartésiennes. Naturellement, on
a par exemple

vf)camtésien = vf)coordonnées quelconques

Vous verrez ce genre d’égalité dans vos cours de mathématiques. D’une maniére générale,
si pour des raisons de simplicité nous définissons le gradient, la divergence et le rotationnel
en coordonnées cartésiennes, ces quantités sont indépendantes du systéme de coordonnées
utilisées pour les calculer.

Calculs avec le gradient, la divergence et le rotationnel

Nous donnons ici sans démonstration quelques formules dont nous aurons besoin.

V-(fuy=u-Vf+ fV-u
V-(fuy=u-V)f+ fV-u
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Formules avec les intégrales

Théoréme de la divergence

Soit un volume V' entouré par une surface S. Soit u un champ vectoriel.

/Su.dsz/v(v-u)dv

Ce théoréme est connu sous le nom de théoréme de la divergence.

Si nous définissons

dS = nd?r

oll n est le vecteur unitaire normal & S et dirigé vers 'extérieur de la surface, le théoréme
de la divergence s’écrit

/dQT(n-u)—/dV V-u-/d3r V-u
S 1% v

Théoréme du gradient

Soit f un champ scalaire.

Nous avons

/Sde:/VdV v

ou V est le volume entouré par S.

Loi de Stokes

Soit une surface S entourée par un contour fermé C. Soit un champ vectoriel B. Nous

jiB-dl:/S(VAB)-ds

avons

Notation

Nous utilisons d’une maniére indifférente les notations suivantes :
— Intégrale de surface [dSf ou [d?rf
~ Intégrale de volume [dV f ou [d3rf






Chapitre 1

Fluide au repos

1.1 Introduction

Dans ce chapitre, nous introduisons la notion de fluide et quelques propriétés des fluides
au repos. Mais il est tout d’abord utile de préciser ce que 'on entend par fluide. Nous
avons distingué les états de la matiére suivants :

e l'état solide,
e |’état liquide,
o l'état gazeux.

L’état plasma, souvent cité comme quatriéme état de la matiére, est un gaz ionisé : les
électrons, qui gravitent autour des noyaux chargés positivement, ne sont plus liés aux
ions. Nous avons alors un gaz formé d’électrons et d’ions.

Le terme de fluide rassemble les liquides et les gaz. Un fluide peut couler. Il prend la forme
du récipient dans lequel il est mis. Ce chapitre introduit des définitions relatives aux
fluides : pression, densité, et pour les interfaces entre liquide et gaz, tension superficielle.

1.1.1 Densité d’un fluide

Soit un élément de volume AV d’un fluide. La masse de cet élément est Am. La densité
p du fluide est donc

Am

-5 (1.1)

p

L’unité de p, notée [p|, est une unité de masse par unité de volume :
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La définition (1.1)) de la densité nous donne une densité macroscopique. On définit la
densité au point r du fluide en faisant tendre le volume AV pris autour de r vers un
"petit" volume dV.

Am

P = 0 Ay -

au point r

Nous avons utilisé le terme "petit" volume dV. En pratique, dV est grand par rapport
aux dimensions atomiques, mais reste petit par rapport aux échelles de variation de la
densité dans le fluide.

D’une maniére générale, la densité locale p(r) peut aussi dépendre du temps.

p= p(r,t) (13)

p = p(r,t) définit un champ scalaire. Un champ scalaire est une fonction qui décrit une
propriété physique descriptible par un scalaire, et qui est une fonction de 'espace r et
du temps t.

Le tableau donne 'ordre de grandeur de la densité de quelques corps.

‘ Milieu Densité [kg:m~—J] ‘
Espace interstellaire 1020
Atmospheére terrestre & 20 °C et 1 atm 1.21
Coeur du soleil 1.6 -10°
Densité moyenne du soleil 1.4-10°
Etoile & neutrons 108
Trou noir avec une masse d’un soleil 101
Fer 7.9-103
Mercure 13.6 - 10°
Densité moyenne de la terre 5.5-10°

TABLE 1.1 — Quelques densités typiques

1.2 Pression hydrostatique

1.2.1 Pression dans un fluide
La pression sur une surface S exercée par une force F' est p = F'/S. L’unité de pression
est le Pascal : [p] = N-m~2 = Pascal = Pa. La pression est un scalaire.

Nous considérons des fluides qui sont au repos, et nous cherchons une expression de la
pression en fonction de la profondeur (figure [L.1).
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Fluide

FiGuRE 1.1 — Deux éléments dans un fluide : un cylindre et un cube. F} est dirigée selon
g et Fh selon —g.

Par convention, pg désigne la pression atmosphérique. Nous considérons un cylindre dont
les faces planes sont & des hauteurs z1 et z9. Le fluide exerce sur la face plane en zq, de
surface S, une force F} = p1.S De méme, nous avons une force Fy = p2S qui s’exerce sur
la surface plane en z9. Notez que, par convention dans cette démonstration, Fi, Fs et g
sont des quantités arithmétiques. L’équilibre des forces donne

Fy = Fy +mg

ol m est la masse du fluide dans le cylindre. Avec h la hauteur du cylindre, nous avons

p2S =p1S + pg(z1 — 22)S

p2 = p1 + pgh (1.4)

En prenant z; = 0, p; est la pression atmosphérique a la surface du fluide.

p(h) = po + pgh (1.5)

La pression a une profondeur h en-dessous de la surface du fluide est égale a la pression
atmosphérique pg additionnée & pgh. Elle ne dépend pas de la forme du récipient.
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Exemple

Soit un tube en U rempli de mercure et d’eau.

p0 Eau

TV

h, /] Mercure | Py

(Hg) % -Ihz

Nous avons pg + hi1peaug = po + h2prgg. En posant hy — ho = d, calculons d :
peau(hZ + d) = PthQ

d = (pHg - peau)hQ

Peau

Forme différentielle de I’équation ([1.4])

Considérons un petit volume cubique dans le fluide de la figure[I.I] Sur la face S, s’exerce
une force F, :

F, = pz(ASZ)

De méme, une force I,/ s’exerce sur la face S, :

Fz’ = pz’(ASz’)

L’équilibre des forces s’écrit :  F,» = F, + p(AS,)gAl

avec Al = z — 2/ Nous supposons (z — z) petit. A la limite, (z — 2') = dz — 0.

F,— F, dF
_— = — = — A P
C_o) & gp(AS:)
soit

d(F/AS;)

dz = —pPg
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Et donc

dp _ _

Si dz > 0 (voir figure), dp <0 (g > 0).

Plusieurs remarques doivent étre faites ici :

e C’est le vecteur g qui définit la direction de 'axe Oz. Pour des grandes surfaces (par
exemple dans les océans), la direction de g peut varier, donc celle de 'axe Oz également.

e La pression hydrostatique varie le long d’une ligne de champ de g(r). Rappelons qu’une
ligne de champ d’un champ de vecteur g est tangente en tout point au vecteur g. La
norme de g (soit g) change le long de la ligne de champ.

Nous venons de voir que la pression varie dans la direction paralléle a g. Un raisonnement
analogue nous montre que la pression reste constante dans une direction perpendiculaire

ag.

Force associée a la pression

Considérons un petit élément de fluide.
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La force f, exercée sur la face AS, perpendiculaire & y est

Fy ==+ dy) —p(¥)l, .—cte ASy

_ply +dy) — p(y)

F, = dydxdz
Y dy x,z=cte
Ip
F, = —Fydydwdz
F, = fydydxdz
fy= _% a la dimension d'une densité de force : [f,] = % = %

De méme, nous avons

La dimension de Vp est % D’une maniére générale, nous avons :

f=-Vp

f est le gradient du champ scalaire de pression p.

La densité de force f associée au champ scalaire de pression p(r) est
f(r,t) = —Vp(r,t)

1.2.2 Principe de Pascal

Nous savons qu’un solide transmet les forces : si nous appuyons sur un baton avec une
force F' a I'une des extrémités, une force est transmise a 'autre extrémité. Quelle est la
propriété analogue pour les fluides 7 Considérons 'arrangement expérimental de la figure

L2

Initialement, les deux pistons P; et P sont & la pression atmosphérique. La hauteur de
la colonne A est la méme des deux c6tés. Nous appliquons une force Fj sur le piston P1.
Pour pouvoir maintenir le piston P & la méme hauteur h, il faut appliquer une force Fy,
qui donne lieu & une pression ps = F»/Ss. La hauteur h restant la méme, ’application

de I’équation (1.5) donne

B b

EZPIZPQZE
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F
=1 EZ
pll' S, p,
S, A
h
A 4

FIGURE 1.2 — Principe de Pascal

C’est 'expression mathématique du principe de Pascal. Dans un fluide incompressible,
un changement de pression est transmis sans changement & chaque partie du fluide et &
chaque portion des parois du récipient qui le contient.

1.2.3 Interface entre deux fluides immiscibles

Nous considérons deux fluides immiscibles (c.a.d. qui ne peuvent pas se mélanger), et
nous allons nous intéresser & la forme de l'interface entre ces deux fluides. Supposons que
Uinterface soit celle de la figure [1.3

Fluide 2, p,

FIGURE 1.3 — Interface entre deux fluides immiscibles
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Le point C est dans le fluide 2, a la méme profondeur que le point B. Nous avons donc
pc = pp. Or pc = pa + p2gh.

pc = pa + pagh = pa + p1gh

p2h = pih

La seule solution pour p; # p2 est alors h = 0. L’interface entre deux fluides de densités
différentes est un plan horizontal.

Notions d’équilibre et de stabilité

Nous venons de définir la condition pour l'interface entre deux fluides immiscibles de
densités différentes. Cette condition donne seulement la condition & 1’équilibre. Elle ne
nous permet pas de savoir si ’équilibre est stable ou instable. L’expérience de chaque
jour nous permet de dire que de I'huile sur du vinaigre forme une situation stable. Par
contre, mettre de ’eau sur de I'huile aboutit & une situation instable : aprés un certain
temps, la situation se "renverse" et I'huile se met au-dessus de I'eau, malgré le fait que
Pinterface originale est bien un plan horizontal (ce qui satisfait la condition d’équilibre).

En effet, une fois I’équilibre établi (de ’eau sur de T’huile avec une interface plane), de
petites perturbations de cet équilibre se feront spontanément. L’interface sera légérement
déformeée (voir figure [L.4]).

eau, R,y

huile, phuile < peau

FIGURE 1.4 — Fluides immiscibles : perturbations de I’équilibre

Dans la configuration définie par la figure la perturbation va croitre : I'amplitude
de la "bosse" d’eau dans I’huile va augmenter. C’est 'instabilité de Rayleigh-Taylor
d’un fluide lourd sur un fluide léger.
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L’expérience de I'huile sur ’eau ou de ’eau sur ’huile nous améne donc & distinguer deux
problémes :

e Le premier est de trouver les conditions que doit satisfaire un état d’équilibre.

e Le deuxieéme est de savoir si cet équilibre est stable (c’est-a-dire si les perturbations de
cet équilibre vont diminuer) ou instable (si les perturbations vont croitre et détruire
I’équilibre initial).

1.3 Tension superficielle

Jusqu’a maintenant nous n’avons pas considéré les problémes liés a une interface. Par
exemple, une bulle de savon est un film de liquide avec deux interfaces air-film liquide,
une a l'intérieur de la bulle, et I'autre & 'extérieur.

1.3.1 Définition de la tension superficielle

Soit un film de liquide tendu dans un cadre ABCD (figure [L.5)).

Af B/ B

=

D IC I’

FI1GURE 1.5 — Film de liquide dans un cadre

Si nous voulons déplacer BC en B’C’, nous devons exercer une force F'.

En posant BB’ = CC’ = dI, le travail de la force F est

SW = Fdl = 2yBCdl = 2vdS (1.6)

ol 7 est appelé tension superficielle. Le facteur 2 a été introduit car, dans cette
expérience, nous avons 2 interfaces liquide-air (une "au-dessus" et une "au-dessous" du
film liquide). L'unité de v est : [y] = N-m™!.
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On note que nous avons défini v d’une maniére phénoménologique - on dit que F' est
proportionnel & BC, le coefficient de proportionnalité étant v s’il y a 1 interface liquide-
air ou 2 ~y s'il y a 2 interfaces. La définition [1.6] relie le travail 6W a .

Le tableau [1.2] donne quelques valeurs de 7.

Liquide | v [Nm™'] |
Eau 7-1072
Verre fondu 107!

Métaux liquides | 1072 — 1.5

TABLE 1.2 — Quelques valeurs de tension superficielle

La tension superficielle est liée & I'interface. Dans un liquide, les forces exercées sur une
molécule par les autres sont équilibrées. Par contre, la présence d’une interface ne permet
plus I’équilibre de ces forces, d’ou Iorigine de la tension superficielle.

Revenons a ’équation . Elle montre qu’a cause de la tension superficielle, une aug-
mentation de la surface ABCD nécessite un travail §W. Nous pouvons intuitivement en
déduire que la forme, par exemple, des bulles de savon minimise ’énergie correspondant
a la tension superficielle, en tenant compte des contraintes extérieures.

Une bulle d’eau savonneuse est sphérique, car la sphére a une surface minimale (minimi-
sation du travail de la tension superficielle) pour un volume donné (contrainte).

Une autre expérience met en évidence la tension superficielle. Prenons un pinceau. Sec,
les poils sont bien séparés. Mouillé, les poils sont rassemblés. Le film liquide entre les
poils minimise sa surface et rassemble, par ce processus, les poils.

pinceau pinceau
sec mouillé
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1.3.2 Equation de Laplace

Le but est de calculer la différence de pression entre I'intérieur et ’extérieur d’une sphére
séparant un fluide 1 (p.ex. une bulle d’air) immergé¢ dans un fluide 2 (p.ex. de 'eaun)
(figure . Soit Ry le rayon de la bulle, Ap = p; — ps. Le but du calcul est de trouver
une expression pour Ap.

Fluide 2

Fluide 1
Py

FIGURE 1.6 — Sphére séparant deux fluides

Notons que dans ce probléme nous avons seulement une interface entre les fluides 1 et 2.

Raisonnement mathématique

Sous les conditions données (rayon Ry de la bulle et différence de pression Ap = p; — po
données), la bulle est dans une situation d’équilibre. Du point de vue énergétique, la bulle
est dans un état d’énergie minimale (c¢f Cours de mécanique). Mathématiquement, nous
exprimons ceci en disant que la dérivée de ’énergie du systéme est nulle pour la valeur
Ry, rayon de la bulle. Calculons d’abord dW, variation de I’énergie du systéme lorsque
nous essayons de changer le rayon de la bulle de Ry & Ry + dR :

dW = dWg + dWp

ou
e dWg = variation du I’énergie due a la tension superficielle,
e dWp = variation de I’énergie due a la pression.

Nous avons donc
dw

- =0
AR |p_p,
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Et donc
dW =0 pour R = Ry

dWs = d[4ryR?]

(pas de facteur 2 car nous avons seulement 1 interface)

dWgs = 8myRdAR

4
dWp = —ApdV = —(p1 — p2)d [JRB] = —(p1 — p2)4nR*dR

Si le volume augmente (dR > 0) la pression fait du travail, d’ou le signe moins.
Pour R = Ry, nous avons dW = 0.

87T’7R0 = (pl — p2)47TR3

2y

Ap =p| —py = =L 1.7
P=p-p= g (1.7)

La formule (1.7)) est connue sous le nom de loi de Laplace.

Il existe dans le fluide 1 une surpression p; :

2

1912202+§7

Le terme 27/R a bien la dimension d’une pression : N-m~2.

Pour 1 bulle de savon p. ex., il y a 2 interfaces p1 = ps + %. Si la surface a 2 rayons de
courbure R; et Ry, la loi de Laplace est

1 1
Ap — o

Ceci est montré lors d’une expérience du cours.



Chapitre 2

Dynamique des fluides

2.1 Introduction

Apreés avoir défini les quantités fluides, nous décrirons les équations qui régissent les
fuides en mouvement ainsi que leurs propriétés physiques. Notre étude portera surtout
sur des fluides non visqueux. Nous décrirons, comme conséquence des équations fluides,
I’équation de Bernoulli, qui est valable pour un fluide parfait incompressible. Finalement,
nous montrerons que les fluides réels sont des fluides visqueux.

2.2 Les quantités fluides

Considérons dans le fluide un élément infinitésimal dV repéré par le vecteur position r.
La densité du fluide dans dV est p(r). Si le fluide est en mouvement, 1’élément de fluide
dans dV a une vitesse fluide u.

dav

=

FiGURE 2.1 — Elément de fluide dV repéré par le vecteur r

Faisons immédiatement une remarque sur la vitesse fluide u : u est la vitesse de ’élément

19
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de fluide dV'. Nous savons d’autre part que le fluide est composé d’atomes ou de molécules
qui sont agités de mouvements aléatoires (cf. Cours de Thermodynamique de Physique
Générale IT). La vitesse v des atomes ou des molécules n’est pas la vitesse fluide u!
Finalement, dans I’élément de fluide, il y a une pression p(r).

2.2.1 Description lagrangienne du fluide

Dans cette description, nous suivons le mouvement de 1’élément de fluide dV, décrit par
son vecteur position r¢(t).

04

FIGURE 2.2 — Mouvement de 1’élément de fluide dV

Les notions de vitesse et d’accélération sont alors déduites d’une maniére simple. Nous
pouvons aussi utiliser la notion de trajectoire.

Nous pouvons représenter la description lagrangienne comme celle vue par un bouchon
emporté par I’eau d'une riviére en mouvement : le bouchon "visualise" 1’élément de fluide.

Calculons la variation d’une quantité, par exemple p, dans la description lagrangienne.
Au temps t = t1, I'élément fluide est en ry et p vaut p1. En t = 9, p vaut ps et doit étre
mesuré en ro.

B _Op ap ap op
0p=p2—p1 = at5t+ 8x5$+ ay5y+ 8252

Le terme %& décrit la variation de p due & sa dépendance explicite dans le temps.
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Les termes ( Lo + 5y + 8’)5,2) sont liés au fait que l'élément fluide a bougé de ry
a ro.
Pour de petits dt et or = ro — rq, nous avons donc
ot = dt
dx =dx, dy=dy, dz=dz

et donc

9P gt 1 9 gy 4 9P gy 1 %Py

do =374+ 5, By 92

C’est la différentielle totate de p en t.

De plus
do_dy_ o de_
a7 dt Y dt F
d’ou
dp _ 0Op dp op p
at ot T "ar T "™ay T,
dp Op
% = % + (u - V) est appelée dérivée convective. Elle nous permet de calculer la

variation d’une quantité (par exemple p) en suivant I’élément de fluide.

L’accélération a d’'un élément de fluide est alors

du ou
T dt ot +(u-Vju

2.2.2 Description eulérienne

Imaginons maintenant que, dans un fluide en mouvement, nous avons un réseau de sondes
de mesure, comme des appareils de mesure de p, de vitesse fluide u, avec une résolution
temporelle ¢t. Nous pouvons donc en principe avoir une mesure de p(r,t) et u(r,t) résolue
dans ’espace r et dans le temps .

Contrairement & ce qui se passe dans la description lagrangienne, la densité p, la vitesse
fluide u, et les autres quantités physiques observées au méme endroit r mais 4 deux temps
t différents correspondent & des éléments fluides différents.
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2.3 Equations fluides

Nous nous proposons de trouver les équations qui gouvernent les quantités physiques qui
décrivent un fluide en mouvement. Ces quantités sont, a priori :

e la densité p(r,t)
e la vitesse fluide u(r,t)
e la pression fluide p(r,t)

Ce fluide peut étre soumis a des forces extérieures F(r, t). Il s’agit de trouver un systéme
d’équations différentielles liant ces quantités.

2.3.1 Equation de continuité

Soit un volume V fixe dans le fluide, c’est donc une description eulérienne. Nous sup-
posons qu’il n’y a pas de réaction nucléaire qui change la masse du fluide (cf. Dynamique
relativiste, Cours Physique Générale II). La variation de la masse due a la variation de
la densité est donc égale au flux de masse pu a travers la surface S entourant le volume
V.

FIGURE 2.3 — Volume V fixe. Le vecteur unitaire n est normal a la surface dS et dirigé
vers l'extérieur.

La variation de la masse M incluse dans V est

M(t):/VdSrp(r,t)

M d 3 _ 3, Op(r,t)
pr _dt/vd rp(r,t)—/vdr 5 (2.1)
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L’introduction de la dérivée % dans l'intégrale est possible, car V est fixe.

Le changement de masse %4 est égal au flux de masse pu a travers la surface :
dM
:—/dQTpu'n:—/dS'(pu) (2.2)

Lanormale n & la surface S est dirigée vers ’extérieur. Le signe moins se congoit aisément :
pour que dM /dt soit positif, il faut qu’il y ait un flux de masse qui rentre dans V' : si
n est dirigé vers 'extérieur de V, le flux de masse pu - n est alors négatif, d’ou le signe
moins. Nous rappelons le théoréme de la divergence :

/ dS - (pu) = / d3rV - (pu) (2.3)
S \%4
En combinant les équations (2.1]) a (2.3)), nous obtenons
d
/ d3r [p + V- (pu)] =0 (2.4)
v ot

Cette équation est satisfaite quel que soit le volume V' considéré. Il faut donc que 'inté-
grant soit nul :

dp

LV (o) (25)
L’équation (2.5)) est appelée équation de continuité. En coordonnées cartésiennes, elle
s’écrit simplement

dp

% 4 9 o)+ L pu) + Lo = 0

0
ot Oz oy 0z
Si le probléme est unidimensionnel (fluide uniforme dans les directions x et y, et vitesse
fluide selon z), I’équation de continuité se simplifie :

op 0 B
B + &(puz) =0

Validité de I’équation de continuité

Nous sommes partis de la conservation de la masse totale dans le volume V. Cette
hypothése est valide s’il n’y a pas de réaction nucléaire qui annihile ou crée la masse.
Par contre, si dans le volume V nous avons des réactions chimiques et que nous nous
intéressons 4 une composante du milieu, la conservation de la masse d’une composante
n’est pas vraie, et il faut considérer des termes de source.
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Non linéarité de I’équation de continuité

Reprenons I’équation de continuité

dp

— +V-(pu) =0

Fy (pu)

Rappelons que les quantités p et u sont les quantités physiques qui décrivent le fluide et
que nous désirons calculer. Nous remarquons immédiatement qu’il y a un terme "produit
de p par u". L’équation de continuité est donc non linéaire.

Nous cherchons tout d’abord & exprimer ’équation de continuité avec la dérivée convec-

tive, dont I'expression est

d 0

L’opérateur (u- V) en coordonnées cartésiennes est
d d 0
(u-V) = <umam + uya—y + u28z>

(u- V) agissant sur un champ scalaire p(r) donne

op ap ap
(u-V)p= Ua—+ uya—y + s
(u- V) agissant sur un champ vectoriel A donne un autre champ vectoriel B dont les

composantes B; sont données par
B=(u-V)A

Bi = (u . V)Al
A; étant les composantes de A.

Nous avons vu ’expression de la dérivée convective de p lors de la description lagrangi-
enne :

dp  Op
E_atJr(u Ve

Développons I’équation de continuité :

dp

_9p
5 TV (o) =2+ (u-V)p+p(V-u)

D’ou I'expression équivalente dans la description lagrangienne

dp B
STV w =0 (2.6)
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Fluide incompressible

Considérons I’équation (2.6]). Un fluide est incompressible si p ne change pas au cours du
temps, plus précisément si la dérivée convective dp/dt est nulle.

d

o _,
dt

A partir de I’équation (2.6)), nous déduisons immédiatement que ’équation pour un fluide

incompressible est

V-u=0 (2.7)

L’équation (2.7) est connue sous le nom d’équation d’étatE] d’un fluide incompressible.
Elle décrit en terme mathématique une propriété caractéristique de "l’état" du fluide (ici
I'incompressibilité).

Tube de courant et conservation du flux

Rappelons la définition d’une ligne de courant : c’est une ligne qui est tangente en tout
point a la vitesse u(r). Les lignes de courant ne se coupent pas (justifiez ce point vous-
méme). Un tube de courant est obtenu en prenant un faisceau de lignes de courant entoure
par une ligne C. Plus loin dans le fluide, le tube de courant est défini par C’ (voir figure

2).

C'

F1GURE 2.4 — Tube de courant

1. Nous introduirons plus tard la notion d’équation d’état d’une maniére générale.
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Considérons un écoulement stationnaire, c’est-a-dire qui ne dépend pas explicitement du
temps (0/0t = 0). Par I’équation de continuité, tout le flux qui entre & travers la surface S
entourée par C doit sortir & travers la surface S’ entourée par C’ (essayez de démontrer ce
point en utilisant le théoréme de la divergence sur le volume d'un tube de courant).

2.3.2 Equation de bilan pour la densité de quantité de mouvement

Nous définissons la densité de quantité de mouvement par p(r, t)u(r, t), produit du champ
scalaire de la densité p et du champ vectoriel de la vitesse fluide u. pu est un champ
vectoriel décrivant la densité de quantité de mouvement. Pour simplifier les calculs, nous
nous limiterons au cas d’'une fluide parfait. Un fluide est dit parfait si les effets dus a la
viscositéE] sont négligeables.

Considérons un volume V' qui suit le fluide (description lagrangienne). Attention : cette
hypothése est différente de celle faite pour la dérivation de ’équation de continuité o V
est considéré comme fixe. La quantité de mouvement dans V est P :

P= / d*rpu
Vv
L’application de I’équation de Newton donne
dP )
¥ = Forces sur le fluide enfermé dans le volume V

Les forces qui s’exercent sur le fluide sont obtenues par intégration des densités de forces.
Ce sont :

e la force de gravité (cas des fluides sur Terre)

/ d’rpg
1%

e d’autres forces extérieures F.,;, avec une densité g,

Feact _/ dgrfe;rt
\%

e les forces de surface liée & la pression p, supposée isotrope

Fsurface = _/ d2rnp
S

ol n est le vecteur unitaire normal a la surface S, et dirigé vers I’extérieur. S est la
surface entourant V.

2. La définition de la viscosité sera faite dans la section 2.4. Pour le moment, nous faisons appel a
votre expérience quotidienne pour sa définition : le miel est plus visqueux que ’eau.
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L’équation de Newton est alors :

d / d3rpu—/ d3rpg+/ d3rfext—/d2rnp
dt v v S

Calculons d’abord le membre de gauche. Pour simplifier les calculs, commencgons par
calculer la composante ¢ de la quantité de mouvement

d

T d‘;rpuZ

La dérivée % comprend deux termes :
e le premier di a la variation temporelle de (pu;), soit

d )
3 3 ) )
/d (pus) _/Vdr<u16tp+p0tu’>

e le second est lié au fait que V s’est déplacé entre ¢t et ¢t + dt et "englobe" des autres
valeurs de pu; (figure [2.5).

e
________
______

V en t+dt

Fi1GURE 2.5 — Volume V en mouvement

La variation due au déplacement du volume V est donnée par

/ d*r(n - u)pu;
S

C’est en fait le flux de (pu;) & travers S. Utilisons le théoréme de la divergence (cf.
Notations du cours) pour transformer I'intégrale de surface en intégrale de volume.

/ d*r(n - u)pu; = / d*rV - (pu;u)
S \%

Développouns la divergence :

V- (puin) = wiV - (pu) + p(u - V)u;
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Récrivons maintenant

d [ s _ 8y, 0 0 .
dt/vd rou; = /Vd ruzatp—l—patm%—ulv (pu) + p(u - V)u,

0 0
— 3 . ) ) 3L .
= /Vd rp [atul + (u V)ul] +/Vd rU; [8tp+ V (pu)]

La deuxiéme intégrale est nulle, car 'intégrant n’est autre que ’équation de continuité
multipliée par u;.

0 0
5P TV () =0=u [athrV-(pU)] =0

Donc g 5
pr ., d3rpu; = /Vd?’rp [atuz + (u- V)ul]

valable pour chaque composante ¢ de u. On peut maintenant récrire cette égalité scalaire
comme égalité vectorielle :

pr Vd rpu_/vd rp{atu—k(u‘V)u]

C’est le membre de gauche de I’équation de Newton.

Le membre de droite comprend trois sommes dont deux sont des intégrales de volume, et
la troisiéme une intégrale de surface que nous transformons par le théoréme du gradient
(cf. Notations du cours) :

—/dQTpn:—/pdS:—/ d*rVp
S S 14

En combinant tous les résultats, nous obtenons

/ d3r {p [811 + (u- V)u} } = / dBrfo — / dngp
v ot v v

Notons que le terme pg peut étre compris dans f.;. Cette équation étant valable quel
que soit V', nous avons donc

|5+ w ¥u| =tes - (2.5)

L’équation ([2.8]) est appelée équation d’Euler. C’est une équation vectorielle. Elle cor-
respond donc & 3 équations scalaires pour les 3 composantes. En utilisant les coordonnées
cartésiennes, nous avons dong :
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8um+u 8ux+u um—l—u Ouy, | _ _@
Pllar " " ar T Moy T 0 | T et T g
duy Ouy Ouy Oouy| Op
p[@t Tl ox iy y + U 0z | = Jeaty oy
Ou:  Ous Q. Oul_ .~ Op
Pllor T " ar "oy T oy | T T g,

Quelques remarques sur 1’équation d’Euler
Validité

Strictement parlant, I’équation d’Euler n’est valable que si la viscosité est nulle (cf.
paragraphe 2.4 pour la définition de la viscosité). C’est le cas de deux liquides : ’hélium
4He liquide & une température inférieure & 2.172 K, et I'hélium *He a une température
inférieure & 1073 K. Un tel liquide peut couler & travers des pores sous une différence de
pression nulle. On les appelle "superfluides".

En pratique, nous pouvons utiliser I’équation d’Euler lorsque les effets de viscosité sont
négligeables. En fait, I’équation d’Euler est une forme particuliére de ’équation de Navier-
Stokes pour un fluide incompressible avec viscosité. Par rapport a I’équation d’Euler, le
membre de droite de I’équation de Navier-Stokes comprend un terme supplémentaire qui
tient compte de la viscosité. Sans démonstration, nous écrivons 1’équation de Navier-
Stokes :
ou 9

p [(% + (u- V)u] =t — Vp+nV-u (2.9)
ol n est la viscosité dynamique et I'opérateur V? (appelé laplacien aussi noté A) est
donné en coordonnées cartésiennes par

0? 0? 0?
Vi= - +—=+-5

ox2  0y? 022
Notons que 1’équation de Navier-Stokes se raméne a ’équation d’EKuler pour n = 0,
c’est-a-dire pour un fluide non visqueux.

Non linéarité

Tout comme ’équation de continuité, I’équation d’Euler (ainsi que 1’équation de Navier-
Stokes) est non linéaire. Le membre de gauche fait intervenir les produits p%—ltl et p(u-V)u.
C’est cette non linéarité qui rend extrémement compliquée la résolution des équations
décrivant le fluide.
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C’est en fait la non linéarité des équations et (ou (2.9)) qui rend leur résolution
difficile. Euler ’a déja mentionné en écrivant : "S’il ne nous est pas permis de pénétrer a
une connaissance compléte sur le mouvement des fluides, ce n’est pas & la mécanique et
a l'insuffisance des principes connus du mouvement qu’il faut attribuer la cause, mais &
Panalyse méme qui nous abandonne ici." (cité dans R. Dugas, Histoire de la Mécanique,
éd. J. Gabay). Notez aussi que Euler a également dérivé ’équation de continuité !

2.3.3 Les 2 équations de continuité et d’Euler sont-elles suffisantes
pour décrire le fluide ?

Nous voulons décrire un phénomeéne physique qui implique m quantités scalaires et n
quantités vectorielles. Un modéle théorique doit alors dériver m équations scalaires et n
équations vectorielles, soit au total (m+3n) équations. Appliquons cette régle au cas des
équations fluides.

Rappelons tout d’abord quelles sont les quantités dont nous avons besoin pour décrire le
ﬂuiderﬂ. Ce sont le champ scalaire p(r,t) et le champ vectoriel u(r,t). Nous avons dérivé
deux équations :

e l'équation de continuité (2.5 qui est une équation scalaire

Ip

—+V-(pu) =0

ot (pu)

e l'équation d’Euler (2.8) (dans son domaine de validité, sinon l’équation de Navier-
Stokes si les effets de viscosité sont importants) qui est une équation vectorielle

ou
P [8 + (u- V)u} =few — Vp
t
Notons d’abord que f.;; est donnée. Par exemple dans un champ de gravité g, fo.r = pg
et dépend explicitement de p.

Il reste la pression p qu’il nous faut exprimer : il nous manque une équation pour la
décrire.

L’expression de la pression p en fonction des autres quantités du fluide fait appel a une
autre physique que la physique des fluides. Par exemple, si nous considérons comme fluide
un gaz parfait, ’équation d’état des gaz parfaits, avec kp la constante de Boltzmann
(kp = 1.38-1072 J/K),

pV =N k‘BT

permet d’exprimer p en fonction de p. En effet, N désignant le nombre de molécules, et
appelant m la masse d’'une molécule, nous avons

N
pm = kaBT = pkpT

3. Nous considérons des fluides "simples" qui ne contiennent pas de charges électriques.
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Cette équation d’état n’a pas été obtenue a partir de la physique des fluides, mais par la
physique statistique des gaz parfaits (cf. Thermodynamique, Cours de Physique Générale
IT).

2.3.4 Equation de bilan d’énergie cinétique

Pour simplifier les calculs, nous ne considérerons que des fluides incompressibles et par-
faits. Cette hypothése nous permet d’utiliser la relation d’incompressibilité V -u = 0
(équation 2.7), et de négliger toutes les forces de viscosité.

Considérons la densité d’énergie cinétique définie par

pu?
€cin = 9

“ 1, . . L. 2 o1
Nous considérons la description eulérienne et nous calculons % (%) en utilisant :

e ’équation de continuité

0 0 op Ouj
P TV W = g tuig t g, =0

e 'équation d’Euler

i=1,2,3

(9u2 " 8uz _ Op
ot J Ox; 8xi
Pour alléger la notation, nous substituons foy par f.

Dans I'expression des équations de continuité et d’Euler, nous avons utilisé la convention
de la sommation sur les indices répétés. Ainsi :

Notons aussi que lorsque nous utilisons la convention sur les indices répétés, le nom de
ces indices est sans importance :

_ w2
uj@a: Z ]ax] Z:: k@a:k 81‘k

Calculons

ot

> ) "2

2 0t Lot

0 (pu2> _u?dp Ou;
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Nous exprimons % par I’équation de continuité, et paaqf par 'équation d’Euler :

2

0 ([ pu? o Op ouy;
& <2> = —EV . (,011) — ’U/zaixi + flul — puzujgj

Développons certains termes (cf. Notations du cours) :

2 2
u u dp
—V- = — |uj=—+pV-
5 (pu) 5 | U oz, +pV -u
=0

Le dernier terme est nul, car le fluide est incompressible (V - u = 0).

2 3 .2 2
u ou; us;  dp Ou; 0 (pu

Nous aboutissons donc a
o [ pu? o [ pu? pu?
— =) =—uj— |— u;=—u-V|— -f
8t<2> ujaxj[2 +p| + fiu; u 5 +p|+u
Rappelons la relation vectorielle (cf. Notations du cours)

V- (ug) =g(V-u)+u-(Vg)

ol u est un champ vectoriel et g un champ scalaire. Si u est la vitesse fluide d’un fluide
incompressible, alors V-u =0 et

V- (ug) =u-(Vy)

L (o R

Donc

L’équation (2.10) donne le bilan de I’énergie cinétique pour un fluide parfait incompress-
ible.

Relation avec la mécanique

Nous avons dérivé ’équation (2.10) d’'une maniére mathématique. Pour avoir une inter-
prétation physique, intégrons les deux membres par rapport & un volume V' entouré par
une surface S. V est fixe dans ’espace.
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2 2
8/ d3rpu:—/ dBrv - |u [ 2 —/ dgrv-(up)+/ dBru-f

Le membre de gauche donne la variation de I’énergie cinétique dans V. Les divers termes
de droite expriment :
e 1°" terme : en utilisant le théoréme de la divergence :

—/Vd3rV- [u (’gﬂ ——/Sdzr(n~u)p;2

C’est le flux d’énergie cinétique transportée & travers la surface S.

—/Vdgrv - (up) = —/Sdzr(u ‘n)p

C’est la puissance liée & la pression exercée sur la surface S. Cette pression est exercée
normalement & la surface S.

e 2° terme :

e 3¢ terme : c’est la puissance des forces externes F¢,; dont la densité est f.

Les 2¢ et 3° termes sont donc bien connus, grace a la mécanique classique qui nous
apprend que la variation temporelle de ’énergie cinétique est égale a la puissance créée
(ou absorbée) par les forces. Le 1" terme tient compte simplement des flux convectifs de
Iénergie cinétique en dehors du volume V & travers la surface S.

Nous pouvons aussi récrire ’équation (2.10[). Développons :

2 2 2
pus\ _ put . pu
\Y <u2 )—2 V-u+u V<2 )

Le premier terme du membre de droite est nul pour un fluide incompressible (V -u = 0).

v. (Jf) ~(u-V) (Pf)

L’équation (2.10) devient alors

;(pf)ﬂu.w (‘f) = -V-(up)+f-u

Nous retrouvons dans le membre de gauche la dérivée convective de ’énergie cinétique.

d [ pu®
—f.u—-V. —f.u—u- _ .
t<2> u—V - (up) u—u-Vp pVOu

(f)“2>:f.u_u-Vp:u-(f—Vp) (2.11)

4
dt \ 2
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La dérivée convective de la densité d’énergie cinétique est égale a la densité du travail
accompli par f (terme f - u) et & celle du travail accompli par la densité de force —Vp
liée a la pression .

Remarquons que pour obtenir I’équation de continuité, nous avons fait appel au principe
de conservation de la masse, et pour ’équation d’Euler & celui de la variation de I'impul-
sion. Par contre, pour obtenir ’équation de bilan de I’énergie cinétique, nous n’avons dia
faire appel & aucune loi de physique : la dérivation fut simplement un exercice de math-
ématiques! En effet, le résultat n’est rien de plus que la conservation de 1’énergie
mécanique, qui elle-méme dérive de 1’équation de Newton!

2.3.5 Relation de Bernoulli

La relation de Bernoulli est valable pour un fluide incompressible parfait en écoulement
stationnaire. Cette derniére propriété signifie simplement que % est nul.

Nous supposons de plus que la densité de force f dérive d'une densité de potentiel .
f=-Vp

En mécanique, la force qui correspond & f est dite conservative.

Reprenons I’équation 1) L’écoulement étant stationnaire, le membre de gauche (%p—gz)
est nul :
pu’
V. [u <2+p>} =—-u-Vp

Or, pour un fluide incompressible (V - u = 0),

V. (up) =¢(V-u)+u-(Vy) =u-Vyp

Donc

2 2
v [u(m;erﬂoﬂ :u-V<pg+p+g0) —0

car V-u=0.
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Dans un écoulement stationnaire, cette expression est la dérivée convective de

d qu B 0 pu2 pu2 _
dt{2+p+<p]—at[2+p+90 +(11'V) 7+p+g0 =0

=0 (écoulement stat.)

d [pu?

dt[2+p+go] =0 (2.12)

La dérivée convective est la dérivée lorsque I’on suit un petit élément de fluide qui bouge.
C’est donc la dérivée le long d’une ligne de courant. L’équation (2.12)) indique que la

quantité {% +p+ cp} est conservée le long d’une ligne qui suit un élément de fluide

(ligne de courant). La conservation de

2
% + p+ ¢ = cte le long d’une ligne de courant (2.13)

est connue sous le nom de relation de Bernoulli (Daniel Bernoulli).

Si la force f est la force de gravitation, alors ¢ = pgy ol y est la hauteur. La relation de
Bernoulli devient

1
§pu2 +p+ pgy = cte (2.14)

le long d’une ligne de courant.

Exemples d’application

Soit la situation décrite par la figure [2.6] :

S
) 2
P
AU,y
S
1
| \
B h,
hy
L 2

FIGURE 2.6 — Ecoulement d’un fluide
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Calculons les quantités us et po. Les deux équations a utiliser sont

e la conservation du flux

S1
Slul = SQUQ <~ U9 = — U]
S

e la relation de Bernoulli

2 2
u u
p1+%+P9h1=p2+%+PQh2
2 2
U S
p2=p1+g[tﬁ—u%} +pg(h1—h2)=p1+% [1—52] + pg (1 — hy)
2

Soit un réservoir avec un trou S & une profondeur h par rapport & la surface libre
(figure [2.7). Calculons la vitesse de sortie us de 'eau en Ss. Notons d’abord que la
pression & la surface du réservoir est patm, de méme que celle en Ss.

S, P = Patm

b

FIGURE 2.7 — Réservoir qui se vide

De nouveau, nous avons :
e la conservation du flux

Sa
Slul = SQ’U,Q = U = §U2
1

e ]a relation de Bernoulli

L I
Patm + 5P + pgh = patm + 5P

Nous voyons donc qu’une horloge a eau (mesure de la quantité d’eau recueillie en fonction
du temps) n’est pas précise, car le niveau d’eau baisse, donc le débit ug varie au fur et a
mesure que le réservoir se vide.
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2.3.6 Récapitulation

Nous avons dérivé
e 'équation de continuité qui exprime la conservation de la masse :

op B
E—i—v-(pu)—()

e I'équation d’Euler pour un fluide parfait :

ou
Pl o + (u V)u} Vp +

Un fluide est dit incompressible lorsque V - u = 0.
Dans la réalité, nous avons souvent a traiter le cas d’écoulement d’un fluide dans des

tuyaux solides. Il y a donc une interface liquide-solide. Quelle est la condition aux limites
d’une telle interface ?

Nous supposerons que le liquide ne pénétre pas dans le solide. Soit n le vecteur normal
a Dinterface liquide-solide. La condition de non-pénétration est alors :

Ugolide * I = Wjiquide - 1 = 0 & l'interface

ou en d’autres termes : la composante normale de uggige €t 1la composante normale de
Ujiquide Sont nulles & l'interface.

Pour un fluide parfait (viscosité nulle), la composante paralléle & la surface peut étre
différente de 0. L’introduction de la viscosité change cette contrainte sur la composante
parallele.

2.4 Viscosité, écoulement d’un fluide visqueux

Jusqu’a maintenant, nous avons considéré des fluides parfaits. Dans la réalité, il existe
des forces dues a la viscosité.

2.4.1 Evidence de la viscosité

L’expérience quotidienne nous montre plusieurs évidences de la viscosité :

e L’eau coule "plus facilement" que le miel.

e A l’entrée d’un long tuyau, il faut une certaine pression pour obtenir un débit. Si I'on
mesure la pression a ’entrée et a la sortie du tuyau, on trouve un différence de pression
appelée perte de charge.

e [expérience de la figure montre que la relation de Bernoulli n’est pas vérifiée.

Bien que le tuyau horizontal soit de section constante, les hauteurs de liquide dans les
tubes 1, 2 et 3 (qui mesurent les pressions en ces endroits) sont différentes et vont en
décroissant ; la pression chute.
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A @ ®

FIGURE 2.8 — Relation de Bernoulli non vérifiée

2.4.2 Définition de la viscosité

Nous considérons l'expérience suivante (appelée “écoulement de Couette”) :

Fluide

FI1GURE 2.9 — Fluide entre deux plaques

Nous tirons la plaque supérieure avec une force F, ;. Cette plaque, qui bouge avec une
vitesse ug impose une vitesse ug a la couche de fluide qui touche la plaque. Expéri-
mentalement, le fluide a alors un écoulement stationnaire caractérisé par un gradient de
vitesse.

Au UuQ

Az h
La vitesse fluide vaut ug & z = h et 0 & z = 0 (plaque inférieure).

Ce gradient de vitesse est lié & la force Fe,s par

Au _ 1 Fea
Az 17 S

F,;t/S est la force tangentielle par unité de surface. n est le coefficient de viscosité
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dynamique (ou simplement viscosité)f]

_ Feat)[h] Nm-s N.s N
TS Tl T e e

Dans le systéme SI, I'unité de n est Pa-s (Pascal - s) ou anciennement Poiseuille.

Pour un liquide, 7 est de l'ordre de 1073 Nsm™2 & 1072 Nsm ™2, alors que pour un gaz,
il vaut 107 Nsm™2. Pour un glacier, 1 atteint 10'3 Nsm™2.

Nous supposons que le coefficient de viscosité n est indépendant de la vitesse u. Les
fluides pour lesquels cette propriété est valable sont appelés fluides newtoniens.

2.4.3 Ecoulement d’un fluide visqueux dans un tuyau (écoulement de
Poiseuille)

Considérons un tuyau cylindrique de rayon R, s’écoulant dans la direction z > 0 :

Z+Az
p-Ap (Ap>0)

TN=

FiGUuRrE 2.10 — Tuyau

Considérons un cylindre de fluide de rayon r entre z et z+ Az. Sur ce cylindre s’exercent
les forces

o [p—(p— Ap)lmr? = Aprr?

o Flice = —QWTAZH%

L’écoulement étant stationnaire, ces deux forces s’équilibrent.

Aprr? = —QWTAznd—u
dr

du 1Ap1r
dr  2Azn

4. La quantité n/p est appelée viscosité cinématique.
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En intégrant avec la condition u(R) = 0, nous trouvons le profil parabolique des vitesses :

L Ap

u(r) = 3 3o (R =1%)

Le débit volumétrique D du tuyau est alors

R 27 A R
D = / u(r)2nrdr = 7Tp/ r(R? — r?)dr
0 0

4n Az
_ m M [er 1)t
T omAz| 2 4,
T Ap 4 3
D = 2P D] =
TR (D)= m)s)

Cette formule est appelée loi de Poiseuille. La "perte de charge" Ap par unité de
longueur Az est alors

Ap 8n 1

/2 _ 20 - p

Az m R*

Remarque

Nous notons que, dans le cas des deux écoulements de Couette et de Poiseuille, la vitesse
fluide pour I’élément de fluide qui est en contact avec la paroi a la méme vitesse que la
paroi. Dans I’écoulement de Couette, le fluide en contact avec la surface supérieure a la
vitesse u = ug = vitesse de la plaque. La vitesse fluide est nulle & r = R, paroi du tuyau.

2.4.4 Tenseur de contrainte dans un fluide visqueux

Considérons un élément de surface dS dans un fluide. La contrainte est la force par unité
de surface causée par la fraction de fluide d’un coté de la surface sur celle de I’autre coté.
A Déquilibre, la contrainte est due a la pression et est perpendiculaire a dS.

Lorsque le fluide est visqueux et en mouvement, il existe des contraintes tangentielles &
ds.

Prenons par exemple dS normal & n // Oy. La contrainte oy, est la contrainte appliquée
parallelement & Oy sur la surface dS normale & Oy.

La contrainte o,y (0,y) est la contrainte appliquée parallélement a Ox (Oz) sur la surface
dS normale & Oy.

Plus généralement, o;; est la contrainte appliquée parallélement & 1’axe Oi sur la surface
dS normale & Oj.



2.4. VISCOSITE, ECOULEMENT D’UN FLUIDE VISQUEUX

Gzy

Q

1=y
Bt =

/I Oy

v

FIGURE 2.11 — Contraintes sur une surface

Les o;; forment donc un tableau 3x3 appelé tenseurE] des contraintes du fluide con-
sidére.

Oxx Oxy Ozz

Oij = Oyz Oyy Oyz

Ozx Ozy Ozz

Les termes 04, oyy et 0., représentent le terme de pression. Pour un fluide isotrope, ils
valent —p. De plus, on peut montrerE] que le tenseur o;; est symétrique.

/
Tij = 0ij = Pij
Y .. A |
oll ;; est le symbole de Kronecker et 03 = 0ji-
Pour un fluide visqueux incompressible, nous avons
6ui
, ji
Ox;

1
Oy =1

C’est la relation entre la contrainte Jgj et la déformation g;‘? induite dans le fluide.
J

5. Pour une introduction aux tenseurs, voir L. Brillouin “Les tenseurs en mécanique et en élasticité”

6. Le couple exercé par oj; et o; doit étre nul pour éviter une accélération angulaire infinie sur un
élément infinitésimal de fluide.

41
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Nous terminons par la donnée sans démonstration de I’équation de Navier-Stokes pour
un fluide visqueux incompressible :

ou
pa%—p(u‘V)u:f—Vp—H]Au
ou le Laplacien A a comme expression en coordonnées cartésiennes

#? 2
+ o+

2_A_ 9 g
V_A_8x2 oy? 022

Nous remarquons que si 7 = 0 (pas de viscosité), nous retrouvons 1’équation d’FEuler.
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2.5 Appendice - Invariance galiléenne

L’équation d’Euler s’écrit

o,
ot

(u-Vju=-Vp

Que se passe-t-il lors d’une transformation galiléenne ?

d’oll

D’autre part

carr=r' — vt et % est pris a r’ fixe.

Donc

o’ 0

or’ ot

ow 9
ot ot"

=t

= r+vt
oo, 9o
otox’  Ox 0x'
9

ox

V =V

0 ot Or
ator Tov Y
0

a(—v-V)
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De plus
(W -V)iud' = ((u+v) - V)(u+v)
= (u-V)ju+(v-V)u
Donc
ou’ Ny O
@+(u Viu —au—k(u Viu
et

L’opérateur différentiel

0

est invariant sous une transformation de Galilée.



Chapitre 3

Phénoménes ondulatoires

Introduction

Ce chapitre est consacré aux ondes. Nous commencons par définir les ondes en général
(3.1), les ondes planes (3.2)) puis enfin les phénomenes d’interférences (3.3)).

3.1 Définition

Nous rencontrons la notion de phénoméne ondulatoire ou d’onde dans notre expérience
de chaque jour. Citons par exemple :

e onde & la surface d’un lac : ce sont par exemple les vagues, le sillage derriére un navire ;
e onde sonore : ce sont les sons de notre voix, des instruments de musique;
e ondes électromagnétiques : elles feront l’'objet d’un chapitre ultérieur de ce cours.

Comment pouvons-nous caractériser ces ondes 7 Elles correspondent toutes a la pertur-
bation d’un certain nombre de quantités physiques, et cette perturbation varie et se
propageE] dans l’espace et dans le temps.

Pour décrire un phénoméne ondulatoire, nous devons donc définir les quantités qui sont
perturbées et trouver la description mathématique de leur variation spatio-temporelle.
Pour cette derniére partie, nous verrons quelles sont les méthodes mathématiques qui
existent.

3.1.1 Onde longitudinale et onde transverse

Expérimentalement, nous constatons que 'onde a une "direction" de propagation. Par
exemple, si nous avons une corde tendue et que nous la secouons, la perturbation se
propage depuis 'endroit ot nous la secouons vers lautre extrémité (figure [3.1)).

1. Les ondes dites stationnaires sont la superposition d’ondes propageantes.

45
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Dans cet exemple, la perturbation de la corde est perpendiculaire a la direction de prop-
agation : nous avons donc ici ce qu’on appelle une onde transverse.

corde

t>0

Direction de propagation

>

FiGURE 3.1 — Perturbation d’une corde

Prenons un autre exemple, celui d’un long ressort. Nous le comprimons sur une certaine

longueur (figure :

t>0

Direction de propagation

>

F1GURE 3.2 — Compression d'un ressort

Dans ce cas, la compression du ressort (qui est la perturbation) est paralléle & la direction
de propagation. C’est ce qu’on appelle une onde longitudinale.
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3.1.2 Onde propageante, onde stationnaire

Dans les deux cas précédents, la perturbation se propage spatialement au fur et & mesure
que le temps s’écoule. Ce sont des ondes propageantes (figure [3.3)).

Espace

>

FI1GURE 3.3 — Ondes propageantes

Remarque : Notez qu'un maximum au temps ¢t = g se trouvant a la position z = zg
dans ’espace se retrouve a un instant ¢ = to + At a la position zg + Az. Il en est de
méme pour tout autre point de 'onde. La courbe au temps ¢t > ty peut étre déduite de
celle en t = ty par une translation Ax = At - u ol u a la dimension d’une vitesse. On
voit que l'amplitude de 'onde est alors une fonction f(z — ut).

Considérons maintenant une corde fixe a ses deux extrémités. Nous pouvons créer une
perturbation du type dessiné sur la figure [3.4] avec des nceuds et des ventres. Ce sont
des ondes stationnaires.

Espace

>

FIGURE 3.4 — Onde stationnaire (photographie & un instant donné). Les noeuds et les
ventres ne changent pas de position au cours du temps.
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3.2 Ondes planes

3.2.1 Définition

Du point de vue mathématique, pour décrire la variation spatio-temporelle liée & une
onde, il nous faut utiliser une fonction f(r,t). Toutes les quantités physiques lices a
I'onde peuvent donc étre mises sous la forme

Af(r,t)

ou A est 'amplitude correspondant & la quantité physique considérée. A peut étre un
scalaire ol un vecteur, selon la quantité physique que nous considérons.

Une fonction f(r,t) souvent utilisée est

f(r,t) = cos(wt —k - r) (3.1)

w est la pulsation, ou fréquence. L’importance de ce genre de fonctions est liée & la notion
de la décomposition en série de Fourier (cf. votre cours de Mathématiques). L'unité de w
est [rad-s™!]. Nous utilisons souvent v = £ avec [v] = Hertz = Hz = 1/s. k est le vecteur
d’onde. Il est dirigé selon la direction de propagation de ’onde. La période T vaut %” et
la longueur d’onde A est égale & 2?” Une quantité physique associée & 1’onde est donc

A(r,t) = Acos(wt —k -1+ ¢) (3.2)

oil A est Pamplitude et  un déphasage.

Une onde stationnaire peut étre considérée comme la superposition de deux ondes propageantes
sinusoidales. En effet, considérons deux ondes se propageant selon z, mais dans deux di-
rections opposées.

Ay = Acos(wt — kz)
Ay = Acos(wt + kz)

La superposition de ces deux ondes a la forme

A=A+ Ay = Alcos(wt — kz) + cos(wt + kz)]

A(z,t) = 2A cos kz cos wt

Pour tout temps t, kz = nm (n = 0 ou un entier positif ou négatif) est un maximum de
|A| (ou ventre) et kz = (n+ 3)m est un noeud car A = 0. kz = nmkz = (n+1/2)7
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3.2.2 Notation complexe

Au lieu d’utiliser les fonctions sinus ou cosinus, il est avantageux d’utiliser les fonctions
complexes :

f(r,t) = exp{i(wt —k-r)}

L’expression (3.2) pour A(r,t) devient

A(r,t) = Aexp{ip} exp{i(wt —k -r)} (3.3)

En utilisant la convention que nous prenons la partie réelle de la fonction complexe pour
décrire la quantité physique :

A(I‘, t) physique = Re flexp{igp} exp{i(Wt -k- I')}

Selon la remarque faite sous 3.1.2, la fonction f(t,r) se réduit donc & une fonction du
type f(ut £r).

Pour simplifier la notation, au lieu de prendre un nombre réel pour A, nous utiliserons
le nombre complexe Aexp{ip}.

A(r,t) = Re [[l exp{i(wt — k - r)}}

Pourquoi est-il important de considérer le déphasage ¢ (ou d’une maniére équivalente
une amplitude A complexe) ? Nous avons mentionné que, dans une onde, plusieurs quan-
tités physiques peuvent étre concernées. Entre ces diverses quantités, il peut exister un
déphasage. Par exemple, entre la vitesse et 1’accélération, il y a un déphasage de 7.

Surface équiphase

A un temps t = ¢y donné, la surface équiphase d’une onde définie par exp{i(wt —k-r)}
correspond &
k-r= wto

est un plan. Pour le voir, choisissons un systéme de coordonnées ot k est paralléle a e,.
L’équation de la surface équiphase est

kz = wto

C’est donc un plan. Pour cette raison, une onde dont la dépendance spatio-temporelle
est exp{i(wt — k - r)} est appelée onde plane.
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Relation de dispersion

La question qui se pose est la suivante : dans un milieu donné, pour une onde donnée
(c’est-a-dire correspondant & un phénomeéne physique donné), a une fréquence w donnée,
toutes les valeurs de k sont-elles permises? Ou bien, existe-t-il une relation entre w et
k?

Lorsque nous étudierons spécifiquement la physique des ondes, nous montrerons que
Pexistence d’une onde donnée (correspondant & un phénomeéne physique donné) nécessite
une relation entre w et k :

w = w(k) (3.4)
Une telle relation (3.4)) est appelée relation de dispersion. Pour un vecteur d’onde
k donné, il correspond une fréquence donnée lorsque nous considérons un phénomeéne
physique donné.

Exemple

Vous avez vu (et nous le reverrons) que pour les ondes électromagnétiques qui se propa-
gent dans le vide,

w=ke (3.5)

ol ¢ est la vitesse de la lumiére dans le vide. Vous exprimez souvent cette relation sous
la forme
AV =c

o A= 2% est la longueur d’onde et v = 5 la fréquence.
Vitesse de phase

Revenons a la définition d’un plan équiphase (k est orienté selon e,).
wt —kz = cte
w(k)t — kz = cte

Un tel plan équiphase se déplace & une vitesse

v, est appelée vitesse de phase.
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La vitesse de phase est la vitesse de propagation des surfaces équiphases. C’est une
quantité purement mathématique. Elle peut étre plus grande que la vitesse de la lumiére
sans que cela ne viole un des principes de la relativité, celui qui dit que la vitesse d’aucun
phénomeéne ne dépasse la vitesse de la lumiére.

Vitesse de groupe

Une onde plane dont la dépendance spatio-temporelle est cos(wt — k - r) existe depuis
t — —oo et remplit tout l'espace infini. En fait, elle n’apporte aucune "information"
supplémentaire. 11 suffit de substituer ’espace "vide" par un espace dans lequel cette
onde existe. Vous pouvez vous en convaincre en imaginant que vous vivez dans un monde
ou il y a toujours eu une vibration sonore de méme amplitude et de méme fréquence : au
lieu d’étre habitués au silence, vous seriez habitués & avoir ce son comme bruit de fond,
et si ceci provoque une géne, I’évolution se chargera de favoriser ceux qui soit ne sont
pas génés soit développent une ouie qui filtre ce bruit. Et ce bruit de fond (cette onde)
ne vous apporterait aucune information.

Pour que le son vous apporte une information, il faut qu’il soit modulé. Pour cela, con-
sidérons la superposition de deux ondes planes de fréquences w et wo.

w1 =w+ Aw
wyr =w — Aw
Nous supposons aussi que la relation de dispersionE] k = k(w) est connue. A wy et wo
correspondent donc k; = k(w1) et ko = k(ws).
k1 =k(w+ Aw) = k(w) + Ak
ko = k(w — Aw) = k(w) — Ak
La superposition[!| des deux ondes donne :
S = cos(wit — k1z) + cos(wat — k22)
S = 2cos(wt — kz) cos(Awt — Akz)

S est donc une onde porteuse a la fréquence w modulée par la fréquence Aw. L’amplitude
de S est modulée par cos(Awt — Akz) et donne lieu a des paquets d’onde (ou groupelﬂ
d’onde). La vitesse du paquet d’onde est la vitesse de groupe v,.

_Aw
- Ak

2. Nous supposons que nous pouvons tirer k = k(w) a partir de la relation de dispersion w = w(k).

3. Nous avons supposé que les amplitudes des deux ondes étaient égales & 1 et que I'amplitude de
londe résultante est la somme algébrique des deux ondes (superposition linéaire).

4. On n’emploie pas le terme de groupe d’onde. Mais la vitesse des paquets est appelée vitesse de
groupe.

Vg
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Pour des petites fréquences de modulation Aw — dw, la vitesse de groupe v, est

_dw

Ug—%

c’est-a-dire la dérivée de w = w(k) par rapport a k. A trois dimensions v, = j—lﬁ.

3.2.3 Résumé

Une onde est une perturbation de quantités physiques qui varient et se propagent dans
le temps et dans I'espace. Pour la définir :

e nous devons définir les quantités physiques qui varient dans I’onde,

e nous devons, si nous considérons que la variation spatio-temporelle de 'onde est du
type cos(wt — k - r), avec w la pulsation (ou fréquence) et k le vecteur d’onde, obtenir
la relation de dispersion w = w(k).

Une onde dont la dépendance spatio-temporelle est cos(wt —k-r) est appelée onde plane.
Les surfaces équiphases sont des plans.

La vitesse de phase est définie par

La vitesse de phase est la vitesse de propagation des plans équiphases. C’est une quantité
mathématique, dont la valeur peut étre supérieure a la vitesse de la lumiére.

La vitesse de groupe est la vitesse de propagation des paquets d’onde.

dw dw

Ug:—ouvg:@

dk
La vitesse de groupe est inférieure ou égale a c.

Des définitions de v, et vy, nous notons qu’elles sont égales si la relation de dispersion
est linéaire :
w = kv

Par contre, si la relation de dispersion n’est pas linéaire, la vitesse de phase est différente
de la vitesse de groupe. Un milieu pour lequel la relation de dispersion n’est pas linéaire
est dit dispersif, car des ondes & différentes fréquences ont des propagations différentes.

Exemple : onde transverse d’une corde tendue

Considérons une corde tendue, et imposons-lui une perturbation.
Soit p la masse par unité de longueur de la corde, et T la tension de la corde.

] =kg-m™
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corde tendue I

FIGURE 3.5 — Perturbation sur une corde tendue

[T]=N=kg-m-s >

Nous observons expérimentalement que, pour At = (t1—tp), la perturbation s’est déplacée
de Az (figure . En toute rigueur, la vitesse ﬁ—f est la vitesse de groupe, car c’est la

vitesse d'une perturbation formée d’un paquet d’onde.

_ A
At

Vg

Avec une analyse dimensionnelle, nous pouvons "construire" une vitesse & partir de u
et T :

car

Expérimentalement, il peut étre vérifé que

T
Vg = 4| —
I 7

Nous déduisons que la relation de dispersion est

T
w=kyl—
L

Si nous excitons la corde avec une onde sinusoidale, I’amplitude de la perturbation est
donnée par
Y = Ym sin(wt — kz)
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avec y,, 'amplitude maximale.

Calculons I’énergie cinétique associée & la perturbation. Chaque élément de corde de
masse dm a la position z a une vitesse v = % = ymw cos(wt — kz) et son énergie
cinétique est

dBuin = y2,w? cos?(wt — kz)dm/2

dEin = py?,w? cos®(wt — kz)dz/2

en utilisant dm = udz.

En prenant la variation dEd;m, nous obtenons :

dEy, d 1
Tt‘ = d—?uygle cos?(wt — kz) x B
dEcin

1
2 2 2
o = VgHYmw” cos (wt — kz) x 5

La variation de I’énergie cinétique est transportée a la vitesse vy.

3.3 Phénoméne d’interférence

Les phénomenes d’interférence entre deux ondes progressives ont une grande importance
dans la physique. Soit le dispoditif expérimental suivant (figure : on considére deux
sources S7 et So générant chacune une onde plane i la fréquence w et avec un vecteur
d’onde k. Les deux sources sont séparées par une distance d. L’écran est & U'infini.

AY Ecran

=

Sy

S2 >X
H

FI1GURE 3.6 — Dispositif expérimental

Soit 6 I'angle entre le vecteur d’onde k et I’'axe Ox. Nous appelons A; et As les ondes
émises par S7 et So. ~
Ay = Acos(wt —k - ry)
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Ay = zzlcos(wt —k-ry)

En un point P(r) donné dans la direction de k, nous supposerons que 'amplitude de
I’onde résultante est la superposition des ondes A; et As. Notez que ceci n’est valable
que si le phénomeéne est linéaire. L’amplitude de A est donc :

A= A1+ Ay = Alcos(wt —k - 11) + cos(wt — k - r9)]

En nous référant a la figure nous constatons que le trajet venant de Sy présente un
parcours supplémentaire SoH .

k-ro=k-r1 +kSyH
Or SoH = 5159sinf = dsin 6.

k-ro =k-ry + kdsinf

Donc

A = Ajcos(wt —k-r1)+cos(wt —k-r| — kdsin)]
= 2Acos (;kdsin 6) cos <wt —k-r — %kd sin 9) (3.6)

Le terme cos(wt — k - 11 — 2kdsin ) décrit une onde. L’amplitude de cette onde est

24 cos <;kdsin 9> = 2A cos {W)\d sin 9]

A est la longueur d’onde (kK = 27/A). Pour une valeur donnée de d/\, la fonction
cos(@) présente des maxima (cosinus = £1) et des minima (cosinus = 0) en fonction
de sin 6.
e Maxima
Ta .
~ sinf = nw
e Minima
wd . 1
Tsmﬁ = (n—i— 2) s

Naturellement, nous devons limiter la valeur de n telle que |sin6| < 1.

Lorsque 'on se déplace sur I’écran selon la direction y, la direction de k varie, c¢’est-a-dire
que 'angle 6 change. On passe successivement par un maximum, puis un minimum, et
ainsi de suite. Si on réalise cette expérience avec de la lumiére, on obtient un succession
de raies brillantes et de raies sombres. C’est ce qu’on appelle des figures d’interférence.
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Remarque

Pour obtenir des figures d’interférence, les ingrédients nécessaires sont :

e deux sources émettant un phénomeéne ondulatoire & la méme fréquence w,

e la phase entre les deux ondes émises est constante dans le temps. Ceci veut dire qu’on
peut avoir

Ay = Acos(wt — k- ry)
Ay = Acos(wt —k - 19+ ¢)
avec ¢ = constante

e un milieu qui permet aux deux ondes de se propager linéairement : en tout point,
I’onde résultante est 'addition des deux ondes émises par les deux sources.

Nous reprendrons cette discussion au chapitre 9.5.7.

3.4 Effet Doppler

Considérons une onde sonore (voir chapitre 4) dont la relation de dispersion est ¢ = cs.

En employant la fréquence f (Hz) et la longueur d’onde A (m), cette relation est

fA=cs
Essayons de décrire le phénomeéne en considérant la source de 'onde (soit S) et un observa-

teur P. En prenant une source ponctuelle, les fronts d’onde (p.ex. les surfaces d’amplitude
maximale & un moment donné) sont des cercles dans le cas bi-dimensionnel.

A

v hedoy |

N\
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L’observateur P voit p.ex. les maxima défiler & la vitesse cg. La fréquence correspondante
est

Supposons que l'observateur P se déplace vers S avec une vitesse up. Il voit alors les
maxima des fronts d’onde défiler vers lui a la vitesse v = cg + up. La fréquence qu’il
observe est

Lorsque 'observateur P s’approche de la source S avec une vitesse up(up > 0), il observe
une fréquence f/ > f

Fo= ¢s+up [(cs+up <Ci>
N A N cs A
cs +up

jo= Erry (37)

cs

avec up > 0 lorsque P s’approche de S

Pour un observateur P qui s’éloigne de S avec une vitesse |up|, par un raisonnement
analogue on obtient

= L‘UP‘]P (3.8)
cs

On peut écrire [3.7] et [3.§ sous la forme

+
f/ — CSCSqu

3.9
avec up > 0 si 'observateur s’approche de S (3.9)

avec up < 0 si 'observateur s’éloigne de S

Que se passe-t-il si on a le cas de la source S qui s’approche ou s’éloigne de P immobile 7
Traitons d’abord le cas de S qui s’approche de P avec une vitesse ug(ug > 0).
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| fsz S; ﬁ}.\q
\xx X }(;T” &-F

e —

La source est en S au temps ¢;. Une période T' de 'onde aprés (t2 = t; + T'), la source
est en Sy. De méme pour t3 = to + T, la source est en S3. Les fronts d’onde successifs
émis par S en t1,t,t3 sont séparés par X le long de 'axe S1.5553.

/\’:)\—usT:)\—UTS car T =1/f

L’observateur P mesure p.ex. des maxima qui arrivent vers lui a la vitesse cg mais ces
maxima sont séparés de \. La fréquence f’ qu’il mesure est alors

ro_ Gs ¢s

r= N A—ug/f

= —5 g (3.10)
cs —ug

avec ug > 0
f! est donc supérieur a f.
Le cas ou la source S s’éloigne de P est indiqué sur la figure suivante.
On voit que

N=X+ug/f avec ug > 0

et (3.10) devient

I Ccs
= 7cs+usf (3.11)

avec ug > 0
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5 6 8

Iy

X X X £

Les deux relations (3.10) et (3.11) peuvent étre écrites comme suit :

fl= st

Cs—us

3.12
avec ug > 0 lorsque la source S s’approche de l'observateur P ( )

avec ug < 0 lorsque la source S s’éloigne de I'observateur P

Que se passe-t-il lorsque ug dépasse cg ? Clairement, f’ ne peut devenir négatif. Refaisons
le dessin des fronts d’onde émis par S en divers temps t1,t1 +71,t1 +27T,t1 +37T,t1 +47T.

Tous les cercles admettent une tangente commune qui forme un angle 6 avec 'axe S1.5,.
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L’angle 0 est appelé angle de Mach et vaut

sinf = 2 (3.13)

Le rapport ug/cg est le nombre de Mach. A trois dimensions, lorsque ug > cg, les fronts
d’onde forment un céne de demi-angle 6, qu’on appelle onde de choc produit par une
source se propageant a un nombre de Mach M > 1. C’est le fameux boum sonore des
avions supersoniques.

FIGURE 3.7 — L’onde de choc derriere un FA18 Hornet supersonique. (Source :
http :/ /wallpapers.windowsace.com /pics/-/1/-18-hornet-jet-planes-sonic-boom-
supersonic-desktop-2100x1500-wallpaper-d-a-ibackgroundz.co)

Finalement, lorsque et la source S et 'observateur P sont en mouvement, la combinaison

de (3.9) et (3.12) donne

__cs+up
Cs —us

I (3.14)

avec la convention de signe pour up et ug
- positif si la source ou 'observateur se meut vers lautre
- négatif si la source ou 'observateur s’éloigne de I’autre

La formule (3.14) donne le déplacement Doppler de la fréquence di au mouvement de la
source et de 'observateur.
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Nous avons démontré la formule (3.14) en prenant 'exemple des ondes sonores. Mais le
raisonnement que nous avons fait ne fait pas intervenir la physique de I’onde sonore, mais
seulement la notion générale de front d’onde. Nous en concluons que les formules (3.9),
(3.12) et (3.14) sont générales pour toutes les ondes.

En particulier, la lumiére est une onde (cf. chapitre 9). Si on observe la lumiére émise des
galaxies lointaines, il y a ce que ’on appelle le décalage vers le rouge des spectres, c’est
a dire une fréquence f’ observée sur la terre plus faible. Selon I’équation (3.12), ug < 0
et donc les galaxies s’éloignent de nous.

Observed
Supernova
Spectrum

Laboratory
Standard

FIGURE 3.8 — Décalage vers le rouge du spectre d’une supernova. (Source
http ://www.passmyexams.co.uk/GCSE/physics/the-expanding-universe-red-shift.html)
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Chapitre 4

Résolution des équations fluides :
modes normaux

Introduction

Dans le chapitre 3, nous avons développé les notions de base sur les ondes. Le chapitre 4
est consacré 4 1I’étude des ondes dans des milieux spécifiques, les milieux fluides, dont
nous avons développé les équations dans le chapitre 2. A cause de la complexité des
équations fluides, leur résolution dans un cadre général est impossible & notre niveau.
Nous commencerons par étudier les ondes planes dans un milieu fluide infini, puis nous
développerons la théorie des ondes dans un milieu de taille finie.

4.1 Dérivation de la relation de dispersion

Rappelons les équations de base d’un fluide parfait infini :

e Equation de continuité

ap B
a—i—V-(pu)—O

e Equation d’Euler
ou
1Y [8t+ (uV)u} =—-Vp+f

Supposons que f = 0. A ce systéme d’équations nous devons rajouter une équation d’état
que nous spécifierons plus tard. Cette équation donne une autre équation reliant p, u et

p-
Les quantités physiques que nous devons déterminer sont p, u et p. Nous avons remarqué

que les équations fluides sont non linéaires, ce qui rend leur résolution difficile.

63
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Une méthode utile pour obtenir des résultats physiques est la linéarisation. Nous sup-
posons tout d’abord que nous partons d'un état d’équilibre avec pg, ug et pg. Cet équili-
bre peut étre uniforme (pg, ug et po sont constants sur tout l’espace) ou non uniforme
(po = po(r), up = ug(r), po = po(r)). L’équilibre ne dépend pas du temps.

Nous perturbons alors ’équilibre :
p(r,t) = po+ p1
u(r,t) = up + uy
p(r,t) = po +p1

en supposant que p; < pp, U] <K ug et p; K po. Cette hypothése nous permet de négliger
les termes du type pi1ui, uiuy, p1p1, car ils sont du deuxiéme ordre.

Développons le calcul pour le cas simple : un fluide uniforme au repos a I’équilibre.

e Fluide uniforme :
po = constant sur tout ’espace

ug = constant sur tout ’espace
po = constant sur tout I'espace
e Fluide au repos a ’équilibre : ug = 0.

A D'équilibre, les équations fluides sont automatiquement satisfaites. Pour les quantités
perturbées (nous ne gardons que les termes du premier ordre), nous avons donc :

dp1
ZPL vV - =0
T + po(V - u1)
8u1
POW —-Vp1

Nous constatons deux faits :

e nous avons linéarisé les équations fluides;

e il nous manque une équation pour exprimer la pression. Cette équation ne provient pas
de la théorie des fluides mais fait appel & d’autres phénoménes de physique. Prenons
I’équation des gaz parfaits

pom = pokpT et pym = p1kgT

Nous nous retrouvons avec un systéme d’équations aux dérivées partielles pour p1, u; et
p1-
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Pour résoudre ce systéme, nous faisons une décomposition en onde plane. Nous prenons
des ondes planes exp{i(wt —k-r)} car nous savons qu’une perturbation quelconque peut
étre décomposée en série de Fourier.

pi(r,1) = pr expliwt — k 1)}
uy(r,t) = uy exp{i(wt —k-r)}

pi(r,t) = prexpli(wt —k-r)}

oll w est la pulsation et k le vecteur d’onde. Notons que les amplitudes p1, @17 et py
peuvent étre complexes dans la notation utilisée.

L’insertion de cet ansatz donne immeédiatement
iwﬁl —ik - fllp() =0
iwpouy = tkpy

. kpT .
P1=—"p1
m

Prenons le cas simple unidimensionnel avec 01 || k (ondes longitudinales) et la direction
de k selon e,.

iwﬁl —ipok‘ﬂl =0
z'w,ooﬂl —ikﬁl =0 (41)
kT _ ~
2= -p1 =0
m

C’est un systéme de trois équations a trois inconnues (p1, 41, p1) homogéne sans second
membre. Pour éviter la solution triviale p; = 41 = p; = 0, le déterminant des coefficients
doit étre nul.
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w  —ikpg 0
0 iwpy  —tk | _

kpT

— 0 -1
m
kgT
—i%wW?pg + 2'2162,00i =0
m
kgT
wQ — k-QL

m

w = k\/kB—T:kcs (4.2)
m
[kpT
s = —_—
m

La relation (4.2)) est appelée relation de dispersion des ondes acoustiques dans le
fluide. ¢, est la vitesse du son dans le fluide.

4.1.1 Interprétation physique

Récapitulons notre démarche.

1) Point de départ : nous avons considéré les équations fluides ainsi qu'une équation
d’état.

2) Linéarisation : nous avons constaté que les équations fluides sont non linéaires, ¢’est-

a-dire qu’il existe des termes du type pu ou (u- V)u qui rendent la résolution des
équations trés difficile.
Nous avons donc linéarisé les équations en supposant tout d’abord qu’il y a un équili-
bre (quantités notées avec indice 0), et qu’ensuite les perturbations de cet équilibre
(quantités notées avec l'indice 1) sont faibles. Les produits des quantités perturbées
sont négligeables (nous gardons seulement les termes du premier ordre).

3) Nous considérons des perturbations dont la dépendance spatio-temporelle est

exp{i(wt —k-r)}

4) Cet ansatz nous permet de trouver une relation entre la pulsation w et le vecteur
d’onde k.

Dans ce cas, nous pouvons exprimer les quantités perturbées en fonction de I'une d’entre
elles. Par exemple, dans le cas de 'onde sonore, nous pouvons exprimer la pression p; et
la vitesse fluide u; en fonction de la densité p; :
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a-1(2)
k \ro

Notons que @ est proportionnel & (p1/pg) tout comme (p1/po). Vous vous étes posés la
question : comme ug = 0 comment juger de la petitesse de @1 7 La formule qui donne @
vous montre que %7 a le méme facteur de petitesse (5—;) que la fluctuation de densité.

Donc i1 < ¢ = c¢s.

Nous notons que les facteurs qui apparaissent dans les expressions de p1 et %1 sont des
nombres réels. Il n’y a donc pas de déphasage entre les perturbations de densité, de
vitesse fluide et de pression.

Du point de vue physique, I'onde sonore est une perturbation de densité et de pression
qui se propage a la vitesse du son. C’était notre hypothése k//u; : 'onde sonore est une
onde longitudinale.

4.1.2 Que se passe-t-il si le fluide s’écoule ?

Supposons maintenant qu’a I’équilibre ug ne soit pas nul, mais constant :

Ug = Up€z

De nouveau, il est simple de vérifier que pg = cte, pgp = cte et ug = cte satisfont les
équations de continuité et d’Euler.

La linéarisation des équations fluides donne :

%)
i T eo(V )+ (- V)pr =0
ou
e Lt (up - V)u) | =~V
t
kpT
b1 =—p1
m

En utilisant la méme technique que précédemment, nous trouvons

iwﬁl - ikuoﬁl - ikpoﬂl =0
twpotiy — tkugpots = ikp1

. kT _
b1=——"p1
m
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et donc

i(w — kug)p1 —ikpoty =0
ipo(w — kug)ay —ikpy =0 (4.3)
kT . -
L= -p1 =0
m

Le systéme d’équations (4.3)) est de nouveau un systéme d’équations linéaires homogenes
sans second membre. Pour éviter la solution triviale p; = @ = p; = 0, il faut que le
déterminant des coefficients soit nul.

(w — kugp) —kpo 0
0 po(w — kug) —k | _
kot 0 -
m
kT
(w — kug)? = K228
m

Le terme supplémentaire kug est le terme Doppler.

4.1.3 Importance de ’équation d’état

Dans 'exemple précédant, nous avons choisi comme équation d’état

prm = p1kgT

Que se passe-t-il si nous choisissons ’équation d’état des fluides incompressibles V.-u =07
V-u=V- u; = 0
Mathématiquement
V-uu=0&ku; =0

soit
w1 =0



4.1. DERIVATION DE LA RELATION DE DISPERSION 69

Nous avons donc

_ kT _
p1=—p1=0
m

Toutes les quantités physiques perturbées sont nulles. Il n’y a pas d’onde acoustique dans
un fluide incompressible !

Ce résultat peut vous laisser perplexe. En effet, vous savez que I'eau est une fluide incom-
pressible et que les vagues sur le lac existent. Il n’y a cependant pas de contradiction car
les ondes acoustiques sont des ondes longitudinales et les vagues sont des ondes trans-
verses (Voir 3.1.1). Vous cherchez alors sur le web et vous voyez qu’il existe des ondes
sonores dans I'eau et vous vous dites que quelque chose ne tourne pas rond! En fait on
suppose une certaine compressibilitéde 1’eau.

4.1.4 Effet Doppler pour les ondes acoustiques

Selon la relation de dispersion (4.2) les ondes acoustiques ont une vitesse de phase et de

groupe
w _dw_ JksT
k- dk m

Considérons maintenant la situation expérimentale suivante. Considérons une voiture de
pompier avec une siréne. Vous étes un observateur immobile au bord de la route. La
siréne de la voiture a une fréquence f = w/2Il. Nous constatons que la fréquence du
son percu par 'observateur est différente lorsque la voiture de pompier s’approche de
vous : la fréquence percue est supérieure a f. Par contre, lorsque la voiture s’éloigne de
lobservateur, la fréquence f” pergue est inférieure & f. C’est 1’effet Doppler.

Dans le raisonnement que nous avons fait, la physique liée a 'onde n’entre pas en jeu.
Nous verrons que la lumiére est une onde. Donc Veffet Doppler doit aussi se passer lorsque
la source s’éloigne de 'observateur. Plus précisément, si la source lumineuse s’éloigne de
nous, la lumiére qu’elle émet est décalée vers les basses fréquences. Du point de vue
spectrale, les basses fréquences par rapport au spectre visible sont vers le rouge. Les
spectres émis par la source qui s’éloigne de nous sont décalés par le rouge.
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4.2 Onde dans un fluide de taille finie

4.2.1 Relation de dispersion

Jusqu’a maintenant, nous avons vu des ondes longitudinales (u || k) dans un fluide. Les
vagues que nous voyons sur l’eau sont des ondes transverses. Nous allons dériver une
relation de dispersion pour ces ondes dans une situation simplifiée.

Le modéle est :

e Fluide incompressible : V-u =0

e Densité p = constante

e Faible perturbation de vitesse uj, ce qui permet de négliger le terme p(u - V)u dans
I’équation d’Euler.

Cette derniére devient simplement

h (hauteur du
fluide Yo(2ot) fluide non
perturbé)

f z

}//////////////// .

X
1177777777/ /é///é////g///////
on

FIGURE 4.1 — Onde transverse dans un fluide

Pour simplifier la notation, nous omettons I'indice 1 pour les quantités perturbées. Nous
supposons qu’il n’y a aucune dépendance selon x pour toutes les quantités.

La dépendance en z et en t est de la forme exp{i(wt —kz)} et celle en y est a déterminer.
Le but de l'exercice est de trouver la dépendance selon y et la relation de dispersion.
Nous allons séparer le calcul en plusieurs étapes.

Des équations fluides, seules ’équation d’Euler et la condition d’incompressibilité sont
nécessaires, car nous avons supposé p = cte. De plus, nous avons deux conditions aux
limites : une & l'interface entre le fluide et ’atmosphére, et I’autre au fond de 1’eau.
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A) Utilisation de ’équation d’Euler

Nous supposerons que u peut s’écrire sous la forme
u=Vao

C’est une classe spéciale d’écoulement appelée écoulement potentiel. Le probléme est
de trouver ® = ®(y, 2,t) en se souvenant que la dépendance temporelle et selon z est
exp{i(wt — kz)}.

L’équation d’Euler se raméne &, avec p = cte :

ou
-V
p@t p—prg

0 0P
P Ve =V ( 5 > = —Vp — V(pgy)

0P
V|— =0

[at T *gy}
Donc

0P
e + + gy = constante

C’est une équation pour la variation temporelle de ®.

B) Définition des conditions aux limites

Nous supposerons que les longueurs d’onde sont grandes, pour ne pas avoir & considérer
la formule de Laplace due a la capillarité pour calculer la pression a la surface yo(z,1t).

p=poeny=yo(z,t)

La vitesse uy(y = 0,t) = 0 car la vitesse fluide & la surface ne peut pas avoir de com-
posante selon y.

0P
uy=—-—=0eny=0
Ay

En y = o, uy est égale & la vitesse de la surface g :

0P

o® _ 9%
oy

ot

Y=Yo

Reprenons donc ’équation d’Euler. Nous la dérivons par rapport au temps, et I’évaluons

en 1.
e 0= 0%d +g dy
o2 at|,

_ e 02
~ a2 79 gy

=Yo0 Y=yo
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car en y = 1o

oy | 0P
a7 = Uyly—yy — A
ot Y=%0 = dy Y=%o
Nous avons donc o2 5
d P
— + g =0 (4.4)
2
ot Iy Y="0

C) Equation différentielle pour la variation spatiale de u

La seule équation qu’il nous reste est I’équation d’état décrivant I'incompressibilité.

Vou=0&V-(Vd) =0

Comme V& = ((), %—‘5, %—f),

RN

o "oz

V- (V)

C’est une équation de Laplace.

Nous résolvons cette équation par séparation des variables avec ’ansatz :
P(y, z,t) = f(y) exp{i(wt — kz)}

Avec cet ansaiz, I’équation de Laplace devient

Of 2
o =0

soit f = Acosh(ky) + Bsinh(ky).
En utilisant la condition a la limite y = 0 pour u,, u,(y = 0) = 0, nous obtenons
f = Acosh(ky)

®(y, z,t) = Acosh(ky) exp{i(wt — kz)}

D) Obtention de la relation de dispersion

Nous utilisons 1’équation (4.4)).

9% N od 0

—_— gi =
2

ot 0y |,y
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Soit
A [—w? cosh(kyo) exp{i(wt — kz)} + gk sinh(kyo) exp{i(wt — kz)}] =0

w? = gk tanh(ky)
Si nous supposons que 'amplitude de la vague est faible devant la profondeur h, nous

pouvons prendre yg =~ h.
w? = gk tanh(kh) (4.5)

L’équation (4.5)) est la relation de dispersion d'une onde transverse dans une couche de
fluide d’épaisseur h.

4.2.2 Discussion
A) Domaine de validité

Il faut distinguer deux domaines de validité :
e celui lié a Pamplitude des ondes,
e celui lié a la longueur d’onde.

a) Amplitude des ondes

De nouveau, nous avons supposé que I'amplitude des ondes est faible pour pouvoir nég-
liger le terme (u - V)u dans I’équation d’Euler.

b) Longueur d’onde

La relation (4.5)) a été dérivée en supposant qu’a l'interface y = yo, la pression est égale
& la pression atmosphérique.

-1
Nous savons que U'interface air-liquide a un rayon de courbure R proportionnel & (%) .
La loi de Laplace| donne alors

p:patm‘i‘%

~ est la tension superficielle. L’effet de la tension de surface devient important lorsque
la longueur d’onde devient comparable a la longueur capillaire I. = y/v/pg du fluide. La
relation de dispersion devient alors

w? = <gl<: + f) tanh(kh) (4.6)

1. La dérivée seconde d’une fonction donne l'inverse de rayon de courbure.
2. C’est la généralisation de la loi de Laplace avec une surface & deux rayons de courbure R; et Ro
avec Rz = o0
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B) Discussion sur la relation de dispersion (4.6))
a) Eau profonde

Si kh > 1, tanh(kh) ~ 1

kh > 1< Longueur d’onde < Profondeur h
Récrivons alors la relation de dispersion (4.6)) :

2 _ vk’ _ 272
w® = kg HE = kg [1+Kk*I7] (4.7)

Nous distinguons deux cas :
e Pl k<l. & N>,

Pour des longueurs d’onde beaucoup plus grandes que ., la relation de dispersion (4.7)
des ondes en eau profonde est

La vitesse de phase w/k vaut y/g/k et la vitesse de groupe vy = %;; —1/2y/g/k. Sur la
mer, c’est la relation de dispersion de la houle[ﬂ

e Dans l'autre limite (A < l¢, I, ~ 3 mm pour l'eau), la relation de dispersion (4.7]) des
ondes capillaires en eau profonde est

W = kgl2 & w=Fk"l./g
La vitesse de phase vaut w/k = l.\/gk = \/kv/p. La vitesse de groupe est vy = fl—‘,‘c’ =

3/2y/k7/p.

b) Eau peu profonde

Si kh < 1, c’est-a-dire si la profondeur h est beaucoup plus petite que la longueur d’onde
et si kl. < 1, la relation de dispersion (4.6) devient

w? = kg - kh = k*’qh = w = k+/gh

La vitesse de phase w/k est égale a y/gh. C’est la profondeur h de ’eau qui gouverne la
vitesse de phase.

C’est ce phénomeéne qui explique le déferlementﬁ des vagues. En effet, pour la créte de la
vague d’amplitude A, la profondeur vaut h + A et la vitesse de phase correspondante est

3. Houle (définition du Larousse) : mouvement ondulatoire qui agite la mer sans faire déferler les
vagues.

4. Déferler (définition du Larousse) : se dit des vagues qui se brisent en écume en roulant sur elles-
meémes.
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Vg(h + A). Pour le creux, la profondeur est h — A et la vitesse de phase est y/g(h — A).
La créte se déplace plus vite que le creux, ce qui explique le déferlement.

Si nous développons tanh(kh) & l'ordre suivant tout en considérant que kl. < 1, nous

obtenons
k2h?
w = ky/gh (1— 5 > (4.8)

La vitesse de phase diminue lorsque k augmente.

® A o=k\/gh

Déviation due
au terme -k’

g
k

. . . o k2h2
FiGURE 4.2 — Relation de dispersion w = k+/gh (1 -5 )

¢) Variation de la relation de dispersion

La relation de dispersion est donnée par
k3
W? = [gk: + 7} tanh(kh)
p

w? = kg [1 + k*2] tanh(kh)

w = kg [1 + k212] tanh(kh)

Sur les graphiques suivants, nous avons calculé w en fonction de k pour des profondeurs
h=003m, h=03meth=23m,avec g = 9.81 m-s~2 et /. = 0.003 m. La figure
représente les relations de dispersion, et les figures et les vitesses de phase w/k.
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350 - T 15 .
wim h= 0.03 m i h= 0.03 m
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0 : : : : 0¥
0 200 400 600 800 1000 0 5 10 15 20
k [1/m] k [1/m]

FIGURE 4.3 — Relations de dispersion pour h =0.03 m, h=0.3met h =3 m
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F1GURE 4.4 — Vitesses de phases pour h =0.03m, h=03met h=3m
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FIGURE 4.5 — Vitesses de phases pour h =0.03m, h =03 met h=3m

d) Ondes non linéaires : solitons, équation de Korteweg-de Vries

En eau peu profonde, la relation de dispersion est

w = k\/gh (1 — W) (4.9)

6

Pour de faibles valeurs de k, la relation de dispersion est linéaire. Pour de plus grandes
valeurs de k, elle dévie de la droite w = k+/gh selon —k>.

Notons que d’autres phénomeénes ont également une relation de dispersion du type
w = kecs(1 — k%a?). Par exemple dans un plasma non magnétisé, une onde appelée onde
acoustique ionique posséde une relation de dispersion de ce type.

Que se passe-t-il lorsque 'amplitude de ’onde est suffisamment grande pour que les effets
non linéaires ne puissent pas étre négligés 7 Un tel phénomene est décrit par Scott Russell,
et nous reproduisons ici sa description.
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I believe I shall best introduce this phenomenon by describing the circumstances of my own
first acquaintance with it. I was observing the motion of a boat which was rapidly drawn
along a narrow channel by o pair of horses, when the boat suddenly stopped - not so the
mass of water in the channel which it had put in motion ; it accumulated round the prow
of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward
with great velocity, assuming the form of a large solitary elevation, a rounded, smooth
and well-defined heap of water, which continued its course along the channel apparently
without change of form or diminution of speed. I followed it on horseback, and overtook
it still rolling on at a rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and o half in height. Its height gradually
diminished, and after a chase of one or two miles I lost it in the windings of the channel.
Such, in the month of August 1834, was my first chance interview with that singular and
beautiful phenomenon which I have called the Wave of Translation, a name which it now
very generally bears ; which I have since found to be an important element in almost every
case of fluid resistance, and ascertained to be the type of that great moving elevation of
the sea[,ﬂ which, with the regularity of a planet, ascends our rivers and rolls along our
shores.

Sans rentrer dans le détail des calculs, notons que :

o l'effet de la non linéarité est de générer des harmoniques. En effet, lorsque nous mul-
tiplions par exemple deux termes du type cos(wt — kz), nous générons un terme de
fréquence 2w et de vecteur d’onde 2k. Tant que la relation de dispersion est linéaire, le
mode caractérisé par (2w, 2k) peut étre excité : ¢’est encore un mode normal du milieu.

e la dispersion (c’est-a-dire le fait que la relation de dispersion ne soit plus linéaire) fait
que les harmoniques supérieures (nw,nk), avec n entier, ne se trouvent plus sur la
relation de dispersion, et ne peuvent plus étre excités.

w=kyvgh,

®A  @=kygh(1-K'h/6)
now

20

>

k 2k nk

. : : E2h
FIGURE 4.6 — Relation de dispersion w = kv/gh <1 - %3 )

5. J. Scott Russell, Report on Waves, 1842.
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L’effet de la non linéarité est de raidir le front de la dispersion en générant des grandes
longueurs d’onde. Cependant, ce raidissement est arrété pour les effets de dispersion.
On peut montrer qu’une perturbation non linéaire dans un tel milieu est décrit par une
équation non linéaire appelée équation de Korteweg-de Vries :

ou ou  Ou

o Yo Tam ="

Cette équation admet comme solution des perturbations appelées solitons :

1 1
u(x,t) = —§a25ech2 (2a(x — 1z — a2t)>

ou sech(z) = m est la sécante hyperbolique.

Dans le cas des solitons observés par Scott Russell, leur vitesse de propagation v (mesurée
par Scott Russell) est supérieure a la vitesse de phase w/k.

v="/g(h+4)>/gh="

ot A est 'amplitude de la perturbation.

Un propriété extrémement intéressante et surprenante des solitons est leur conservation
aprés une collision, comme le montre les résultats expérimentaux de la figure suivante,
obtenus avec des solitons dans un plasma :
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{a) {b) t=-3 uses

—u —=u

glectron  density

distance

FIGURE 4.7 — Solitons dans un plasma (Réf : Solitons in Action, Ed. K. Lonngren and
A. Scott, Academic Press, 1978, p. 162)



Chapitre 5

Electrostatique

Introduction

Nous allons entreprendre 1’étude du grand chapitre de 1’électromagnétisme. Les thémes
seront :

e |’électrostatique : étude des phénomeénes électriques stationnaires,

e le magnétisme statique : étude des champs magnétiques crées par un courant,

e I’électromagnétisme : étude des phénomeénes avec des champs électriques et magné-
tiques variables dans le temps et dans l'espace. Nous y développerons la théorie des
équations de Maxwell.

Ce chapitre introduit des notions fondamentales de ’électrostatique. Nous commencerons
par la définition de la charge électrique . La loi de Coulomb donne l'expression
de la force entre deux charges électriques. Les charges électriques créent en tout point de
I’espace un champ électrique . Le reste du chapitre est consacré a des techniques de
calcul du champ électrique , du potentiel électrique et de solutions de quelques
problémes d’électrostatique .

5.1 Charges électriques

5.1.1 Charge électrique

De nombreuses expériences montrent ’existence des charges électriques positives et néga-
tives. Les expériences les plus classiques consistent & frotter des corps avec un autre corps.
L’exemple le plus classique est de frotter avec une fourrure (p.ex. une peau de lapin) une
tige (p.ex. une tige de verre). La tige de verre devient chargée. Par convention on dit que
ce sont des charges négatives. Il en est de méme si on frotte de 'ambre avec la fourrure

81
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de lapin.m Par contre, si 'on frotte la tige de verre avec une peau de chat, la tige de verre
devient chargée avec des charges positives[ﬂ

Les objets dans la vie courante sont souvent neutres, car les charges électriques positives
et négatives s’annulent. Ce n’est que dans certains cas qu’il y a un excés de charge d'une
des espéces. Le corps contenant cet excés de charge est dit chargé. Cette différence de
charge est toutefois trés faible devant les charges existant dans le corps.

L’unité de charge électrique q est le coulomb :

[q) = Coulomb = C

Notons que dans le systéme SI, le coulomb dérive de 'ampére A. Un ampére est défini
de la maniére suivante :

e Deux conducteurs rectilignes, paralléles, infinis, de section négligeable, séparés de 1 m
et portant un courant de 1 A subissent une force de 2 - 1077 N-m~! par métre de
conducteur. (Voir le chapitre sur la magnétostatique.)

e 1 coulomb est la quantité de charge transportée par un courant de 1 A pendant 1
seconde.

1C=1A x 1s

Dans le systéme SI, toutes les unités électriques et magnétiques dérivent de 'ampére A.

Comme pour la masse, nous pouvons définir la densité de charge de la maniére suivante.
Soit un petit volume AV qui contient une charge Ag. On définit la densité de charge

comme

(1) = lim 22
Peltt) = \Vo0 AV

oul r est ’endroit ol se trouve AV. La o il n’y a pas risque de confusion entre la densité
de masse et la densité de charge, nous noterons la densité de charge p (sans l'indice el).

On définit de méme une densité de charge de surface o par

Agq

oe(r) = Jlim o

ot Ag = charge sur la surface AS et r = lieu ou se trouve AS.

5.1.2 Conducteur, isolant, semi-conducteur

Les charges électriques peuvent bouger librement dans certains corps appelés conduc-
teurs. Les conducteurs sont par exemple les métaux, le corps humain, ’eau du robinet.

1. Note historique : le terme grec "elektron" qui a donné électron, électricité..., signifie ambre. Les
propriétés électroniques de ’ambre étaient connues au temps de Platon.
2. Le type de charge dépend donc des matériaux utilisés lors de I’expérience!
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’ Corps ‘ Nature ‘ p [Q-m] ‘
Cuivre Conducteur 1.7-107°
Mercure Conducteur 96 -10~°
Germanium Semi-conducteur 0.6
Silicium Semi-conducteur 2.3-10°
Verre Isolant 10T — 10
Mica Isolant 1413 — 1017
Supraconducteur 0

TABLE 5.1 — Quelques résistivités p typiques. Ne pas confondre la résistivité électrique
dans ce tableau avec la densité de charge définie sous 5.1.1.

D’autres corps ne peuvent pas transporter 1’électricité. Ils sont appelés isolants. Finale-
ment, il existe des corps dont la propriété de conduction électrique est intermédiaire entre
les conducteurs et les isolants : ce sont les semi-conducteurs.

La propriété de conduire 1’électricité est mesurée par la résistivité électrique p. L’unité[ﬂ
de p est Qm. Le tableau donne l'ordre de grandeur de la résistivité de quelques corps.

Dans ce chapitre on admettra que :

— un isolant ne conduit pas du tout 1’électricité (c’est-a-dire p — 00)
— un conducteur a une résistivité p = 0 Q- m : c’est ’hypothése du "conducteur parfait"

5.1.3 Quantification de la charge

La célébre expérience de Millikan a montré qu’il existe une charge élémentaire dont la
valeur est 1.602176565 - 1071 C (avec une précision de 2.2 - 10_8)|ﬂC’est la valeur de
la charge de I’électron. Le coulomb est donc une trés grande unité comparée a la charge
de I'¢lectron ! Il faut environ 10 électrons pour faire 1 C! L’électron a donc une charge
égale a - 1.602176462 . 10~ !? C. Le proton a une charge positive égale & 1.602176565 .
10~ C, soit une charge égale et opposée a celle de 1’électron.

5.1.4 Densité de charge

Bien qu’en principe les charges soient quantifiées, nous serons amenés a définir une densité
de charge pe; comme la quantité de charge par unité de volume.

Pet = lim La
v—oV
[pel] =C- m73

3. © = Ohm = 'unité de résistance. - m = Ohm - métre
4. Référence : physics.nist.gov
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Nous notons pe; pour éviter la confusion avec la densité de masse p. Lorsqu’il n’y a aucune
confusion possible, nous écrivons aussi p pour pg;.

5.1.5 Conservation de la charge

Dans toutes les expériences, la quantité de charge totale est conservée. Par exemple,
dans une réaction de désintégration de type « (dans le jargon, le terme « est utilisé pour
désigner le noyau d’He), '’**®U se désintégre en 24Th :

88U - Th +* He

En ce qui concerne la charge électrique, le noyau d’U posséde 92 protons, sa charge est
donc de 92 x 1.6- 10719 C. Celui de Th en posséde 90 et sa charge vaut 90 x 1.6-1071? C,
et celui d’'He en posséde 2 et sa charge est donc 2 x 1.6 - 107 C. 11 y a donc égalité des
charges avant et aprés la désintégration

La masse du noyau d’U vaut 238 et la somme de celles des produits fils, le Th et 1’He,
vaut aussi 238.

La méme régle de conservation s’applique lors de la création de particules. Considérons
la création de paires d’électron et de positon par un photon - :

y—e +et

Le photon v n’a pas de charge. LLe membre de droite a aussi une charge nulle, car la
charge du positon et est égale et opposée a celle de ’électromn.

La conservation de la charge est une des lois fondamentales de la physique.

5.2 Loi de Coulomb

Faisons l'expérience suivante. Frottons une tige de verre avec une peau de lapin et une
autre tige de verre avec une peau de chat. En rapprochant les deux tiges de verre on
constate qu’elles s’attirent. Comme nous savons que les tiges de verre sont chargées
respectivement positivement et négativement, cette expérience montre que les charges
positives et négatives s’attirent. Par contre, deux tiges de verre frottées avec une peau de
lapin se repoussent. Les charges négatives se repoussent. De méme, deux tiges de verre
frottées avec une peau de chat se repoussent. les charges positives se repoussent. Notre
expérience montre que :

e des charges de méme signe se repoussent,
e des charges de signes opposés s’attirent.

5. Je suppose que vous connaissez la structure d’un atome.
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5.2.1 Loi de Coulomb

Soit deux charges q1 et go. La force de Coulomb F' entre ces deux charges vaut

_ 1 ae
dmeg 12

ol r est la distance entre q; et g2 et 9 = 8.85-10712 F-m~! la permittivité du Videﬁ
F est le farad, du nom du physicien Faraday. Dans le systéme SI, le farad a la dimension

2 A
Farad =F = [F| = A
kg - m?
La direction et le sens de F sont donnés par :
o F est dirigée selon la ligne qui relie ¢1 et ¢o.
e F est attractive si q; et g2 sont de signes opposés (qi1g2 < 0) et répulsive si g1g2 > 0.
Si on dénote par r le vecteur partant de ¢; et allant vers g9, la force de Coulomb Fqo
exercée par qo sur qi est

FIGURE 5.1 — Force de Coulomb

Nous pouvons mettre Fio sous une forme plus générale. Soit ry la position de g; et ro
celle de g (voir figure [5.2))

Nous avons r = (ry —ry) et

Fip— — 1 ¢ 1 Wa2__ ()
dmeg 13 dmeg ||lrg — rq ||

Notez la similitude entre la force de Coulomb et la force de la gravitation universelle de
Newton. Les deux lois ont une dépendance en %2 La seule différence est que la force de
la gravitation universelle est toujours attractive, alors que la force de Coulomb peut étre
attractive ou répulsive selon le signe de g1 ¢o.

La force F1 exercée par la charge 2 sur la charge 1 est égale & 'opposé de la force Fo
exercée par la charge 1 sur la charge 2 : c’est la loi de I'action et de la réaction.

kg.m 2.g2 2 g4
gm _ A°S® 1ot done leo] = kgnsi?"

oo e )
6. Nous pouvons voir directement que I'unité de €o est : =23 2 [e]
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<=}
=)
]

9,

0

FicuURE 5.2 — Force de Coulomb, forme générale

L} K,
—l ——
[ L >
1 r q,
q,9,<0

FiGURE 5.3 — F; égale & 'opposé de Fq

5.2.2 Additivité des forces de Coulomb

Soit une charge g entourée de n charges g;. Avec r; le vecteur partant de ¢ et allant vers
@i, la force de Coulomb F; exercée par les n charges ¢; sur la charge q est

I T

— ]’

5.3 Champ électrique

5.3.1 Définition

Soit une charge positive g située en P. Si nous placons cette charge go dans une région
de D'espace et que nous mesurons une force F qui s’exerce sur cette charge, nous disons
qu’il existe un champ électrique E donné par

F
EZ*,C]0>O
qo0

L’unité de champ E est

2-C 2 As  m

Le volt V est donc
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Gréace a nos connaissances sur la force de Coulomb, nous pouvons immédiatement définir
le champ électrique d’une charge ¢ placée en O :

_ 1 ld
4dmeg 12

ol r est la distance entre la charge g et le point otl le champ est mesuré. E pointe vers ¢
si q est négative, et pointe & 'opposé de ¢ si g est positive :

1 gr

E—
4deg 13

oll r est le vecteur OP.

L’additivité de la force de Coulomb permet de définir le champ électrique dt & un ensem-
ble de n charges comme étant la somme vectorielle des champs électriques dus & chaque
charge.

5.3.2 Champ électrique dii a une distribution de charge

Pour des distributions de charges différentes, nous utiliserons toujours le principe d’addi-
tion. Comme exemple, nous discutons le champ créé par un disque uniformément chargé.
Soit o la densité de charge par unité de surface. La charge dq par unité de surface est
donc

dg = odS

AZ

<y

x dr

FI1GURE 5.4 — Disque uniformément chargé

Nous considérons seulement le calcul du champ E pour des points situés sur I’axe Oz
perpendiculaire au disque et passant par son centre O. Par symétrie de la distribution
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de charge, sur 'axe Oz, la seule composante de E est dirigée selon Oz. Nous avons :

1 zo2mwrdr
dreg (22 +r2)3/2

B /RdE— oz /R 2mrdr
R © T dmeg Jy (22 +712)3/2

oz B ordr az/R2 dr’
 deo o (22 +r2)3/2 " deo Jo (22 +17)3/2
R2
= 272 (2 )
460 0

o A
E, = —|1-—F—
260{ \/z2+R2]

5.3.3 Lignes de champ

Soit le champ vectoriel E(r). Les lignes de champ électrique sont des lignes qui sont
tangentes en tout point a EE]

FIGURE 5.5 — Lignes de champ

Du point de vue mathématique, si nous connaissons en coordonnées cartésiennes les
composantes F,, Fy, et E, de E, I’équation des lignes de champ est

Le long d’une ligne de champ, la norme E du champ électrique n’est pas constante.

7. D’une maniére générale, soit un champ vectoriel A. Les lignes de champ correspondant & A sont
les lignes tangentes en tout point & A.
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Pour une charge ponctuelle négative, les lignes de champ sont :

q<0
FIGURE 5.6 — Lignes de champ (charge ponctuelle négative)

Les lignes de champ pour un ensemble d’une charge positive et d’une charge négative
sont :

\*

/% K<0

FIiGURE 5.7 — Lignes de champ entre une charge positive et une charge négative.

5.4 Loi de Gauss, équation de Poisson

5.4.1 Enoncé (sans démonstration)

Soit le champ vectoriel E(r). Considérons une surface fermée S avec 1’élément dS = ndS
dirigée vers l'extérieur. La loi de Gauss s’énonce :

50/ E - dS = Charges enfermées dans S = qnt (5.1)
S
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Surface S entourant le volume V

La loi de Gauss dit que :

eo X Flux de E & travers S = Valeur de la charge dans le volume V entouré par S
Si nous définissons la densité de charge p.;, la charge g;n: est

qint :/ d3TPel
14

ol V est le volume & 'intérieur de S.

L’équation de Gauss devient

1
/dS ‘E=— [ &®rpy
S €0 Jv

En transformant l'intégrale de surface en intégrale de volume par le théoréme de la
divergence (cf. Notations du cours)

/dS-E:/dBTV-E
S 1%

1
/ &PV -E=— [ drpy
1% €0 Jv

le théoréme de Gauss devient

Cette égalité étant vraie quel que soit le volume V', nous en déduisons

1
V-E=—pg (52)
€0

L’équation (5.2)) est appelée équation de Poisson. C’est la forme différentielle (ou forme
locale) de I’équation de Gauss (5.1) qui est une équation intégrale.

La loi de Poisson (5.2)) dit que :

La divergence de E évaluée au point ro =

1

= X Densité de charge électrique au méme point rg
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5.4.2 Applications de la loi de Gauss

Nous utiliserons souvent la loi de Gauss pour évaluer le champ électrique E d’une distri-
bution de charge donnée. Pour cela, nous devons faire appel a la symétrie du probléme,
ce qui doit étre déterminé au cas par cas.

a) Champ électrique dia a4 une distribution linéique de charge

Soit un fil rectiligne infini avec une densité de charge linéique A :

A =C-m™!

Nous cherchons & calculer le champ E & une distance r du fil. Nous utilisons la loi de
Gauss. Nous explicitons ici ce que nous pouvons déduire de la géométrie du probléme.

A) Indépendance du champ E vis-a-vis de la coordonnée z.
Le fil étant de longueur infinie et supposé confondu avec Oz, tout point Po(zo, yo, 20)
est équivalent & un autre point Pq(zo, yo, 21).

B) Indépendance du champ E vis-a-vis de la coordonnée angulaire 6 par symétrie de la
géométrie.
Au lieu de considérer le systéme de coordonnées cartésiennes, prenons le systéme de
coordonnées cylindriques (7,6, z). L'axe Oz est confondu avec le fil. La source du
champ E, c’est-a-dire le fil, et lespace dans lequel le champ est créé (ici le vide)
étant isotropes, le champ E ne peut pas dépendre de 6, car il n’y a aucune direction
préférentielle.
Nous avons donc E = E(r) seulement.

C) Quelle est la direction de E 7
Pour chaque point P ot nous devons calculer le champ E, la contribution infinitésimale
dE; due & dl; a une contribution équivalente dE9 due a dls. dls est le symétrique de
dl; par rapport & O’. La somme vectorielle dE; + dEs ne posséde qu’une composante
radiale. Donc E = E(r) ne posséde qu'une composante radiale.
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fil

<D

N~——]

FIiGURE 5.8 — Fil infini entouré d’un cylindre

La surface considérée pour I'application de la loi de Gauss est un cylindre coaxial a la
droite chargée ainsi que les deux surfaces qui ferment les deux bouts du cylindre.

Soit r le rayon du cylindre et h sa hauteur. Le rayon r vaut OP. Comme discuté avant,
le champ E doit étre radial. Donc, par la loi de Gauss,

1 1
/E -dS = 27rhE = —(somme des charges dans S) = —Ah
€0 €0
_ 1
C 2meg T

E est dirigé vers I'extérieur si la ligne de charge est positive, et dirigé vers l'intérieur si
elle est négative.

b) Champ électrique di 4 une distribution de charge uniforme sur une sphére

Soit une sphére de rayon R, de centre O, avec une densité de charge o uniformément
distribuée sur la surface. o a donc pour dimension Cm™2.

Calculons le champ électrique & une distance r du centre O de la sphére. Pour effectuer
ce calcul, nous utilisons & nouveau a loi de Gauss. La surface S est celle d’une sphére de
rayon r et de centre O.

Pour des raisons de symétrie, le champ E ne peut avoir qu’une composante selon la
direction radiale (essayez de vous en convaincre en considérant la géométrie du probléme).

Considérons maintenant 1’équation de Gauss. Si r < R, la surface S n’inclut aucune
charge. Le champ électrique E est donc nul.

Sir > R, nous avons

1
/ E.dS = 4m2E = —cdnR2 = L
S

€0 €0
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__1 q
 dweg r?

Résumons les résultats obtenus avec une distribution de charge uniformément répartie

sur une sphére de rayon R :

e le champ électrique E est nul pour r < R,

e le champ électrique E pour r > R causé par cette distribution de charge est celui
produit par une charge équivalente ¢ = 47 R%0 mise au centre O de la sphére.

5.5 Potentiel électrique

5.5.1 Définition du potentiel électrique

Notons qu’a part des constantes, la force de la gravitation et la force de Coulomb ont la
méme dépendance spatiale.

my Egravitation my

r

0
FIGURE 5.9 — Force de gravitation

mimsa

Fgravitation =G (I'Q - I‘1)

[y — ro®

F jravitation €st la force de gravité de la masse mo sur la masse my.

q, ECoulomb q,

L5

0

FIGURE 5.10 — Force de Coulomb

1 lq192]
dmeo vy — ro?

Fcoulomp = (rQ - I‘1)
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F couioms est la force de Coulomb de la charge g sur la charge ¢; dans le cas de ’attraction
(voir 5.2.1).

Nous savons que la force due & la gravitation universelle dérive d’un potentiel, c.a.d.

F g qvitation €st égal & — (gradient d'un potentiel U) = —VU :

Fgravitation = - VUgTavitation

La quantité F grquvitation - dl est donc égale a

oUu oU oUu
Frcwiaion' l=——+ - a_ - a_
gravitat d ox dr y dy 0z dz

Fgravitation -dl = —dU

Le travail Fgrquitation - dl est donc une différentielle totale exacte.

Comme la force de Coulomb a la méme dépendance fonctionnelle dans I’espace que la
force de gravitation universelle, nous concluons qu’un potentiel lui est également associé.
Plus précisément, nous définissons le potentiel électrique ®ere. (ou par simplicité )
comme

E=-Vo

Le potentiel ® d’une charge ¢ située en O mesuré a une distance r de g est

__1q
Cdrmegr

Le potential ® est un champ scalaire. Notons que si E est défini d’'une maniére univoque
par la force exercée sur une charge qg, le potentiel ® n’est défini qu’a une constante prés.
En effet, si ® satisfait

Vo =E

la quantité ® = ® + cte satisfait aussi cette égalité. Un potentiel n’est donc défini
qu’a une constante prés.

L’unité de ® se déduit de 'unité de force et est le volt :

car [E]=V/m. Rappelons que
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5.5.2 Additivité du potentiel
Le champ électrique en un point di & plusieurs charges étant la somme des champs

électriques créés par ces charges, le potentiel en un point est alors la somme des potentiels
dus a ces charges.

5.5.3 Exemple de calcul d’un potentiel
a) Potentiel dii 4 une distribution linéique de charge

Soit un segment de longueur L portant des charges de densité linéique A constante
(|\[=Cm™1!). La géométrie est donnée sur la figure

P

d

| % H—
X1 0 dx Xy
(x2-x9) =L

FiGURE 5.11 — Distribution linéique de charge

Le potentiel d® da & I'élément dx situé en x est

1 Az
dmeg (22 + d?)1/2
T2 A
> = / 2 - 21/2
e Ameg(z? + d2)Y/

. In [m + (2 + d2)1/2}

do =

€2

471'80 T
2 72\1/2
d — A 1y |2t (wg + d*)
d7eg Ty + (22 4 d2)1/2

Nous avons utilisé

/;lidz:ln [x+\/x2+d2}
Vv
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b) Potentiel di a un disque uniformément chargé

Nous cherchons le potentiel en un point P situé sur I’axe Oz passant par O et perpen-
diculaire au disque de rayon R.

¢P(z)

S >

FIGURE 5.12 — Disque uniformément chargé

Le potentiel dii aux charges sur une couronne circulaire 27wrdr est

B o2mrdr
 Admeg(r? 4 22)1/2

dd

donc

o — /R o2mrdr
Jo Ameg(r? + 22)1/2

o(P) = 7 (\/R2 + 22— z)

260

5.5.4 Surface équipotentielle

Une surface équipotentielle est définie par I’équation
O(r) = cte

Considérons maintenant une surface équipotentielle. Décomposons le gradient en deux
composantes :

e le gradient selon une direction tangente a la surface, soit V|

e le gradient perpendiculaire & la surface, soit V

La surface étant une surface équipotentielle, V| ® = 0, c’est-a-dire Ej = 0.

Par exemple, pour une charge ponctuelle, le potentiel au point P est

q

o(P) =
(P) dmegr
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ol r est la distance entre la charge et le point P. Une surface équipotentielle est donc ici
une sphére de rayon r centrée sur la charge.

Un autre exemple est le cas du champ électrique atmosphérique. Dans les conditions
normales (pas de précipitations), il existe au voisinage du sol un champ électrique E
dirigé verticalement de haut en bas, et d’intensité 100 V-m~'. Donc les équipotentielles
sont des plans horizontaux. Deux équipotentielles distantes de 1 m difféerent de 100 V.
Le corps humain étant conducteur, il déforme les surfaces équipotentielles (figure .

e N\ surfaces

équipotentielles

sol

FIGURE 5.13 — Surfaces équipotentielles atmosphériques

Par définition du champ électrique (E = —V®), le champ E en un point P est normal a
la surface équipotentielle passant par ce point. La ligne de champ électrique passant par
P (donc tangente & E en P) est alors normale a la surface équipotentielle passant par P.

5.5.5 Travail et potentiel

Soit une particule chargée. Elle se trouve au point A ou le potentiel est ®(A). Nous
I’amenons au point B o le potentiel est ®(B). Le travail fourni pour 'amener de A 4 B

est
B
W:—/ ¢E - dl
A

L’intégrale est évaluée le long de la trajectoire suivie par la particule. Le signe — provient
du fait que W est le travail fourni contre le champ E.

trajectoire_originale

B

A

F1GURE 5.14 — Trajectoires entre A et B
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Nous désirons montrer que

B
W:—/qul
A

est indépendant de la trajectoire, mais dépend seulement des points A et B.

B A
LV:—4/13m+/'Edq
A B

Ecrivons E - dl en utilisant le fait que E = —-V® :

gz 3y 3

Considérons la quantité

E-dl=-V® -dl=—|%dz+ —dy+ —dz

Ox oy 0

L’expression

0P 0P o0d
%d +a—d Y+ 5d

est la différentielle totale exacte d® de & :

0 9® 0
AP = 5 da -+ Gody + 5odz

A
W’:/ d@zOz%E-dl
A

B
—/ qE - dl
A
B

selon le chemin original (figure |5.14]) est aussi égal a l'intégrale — / qE - dl selon le
A

Donc

Par conséquent

deuxiéme chemin.

Le travail nécessaire pour amener une charge ¢ d’un potentiel ®(A) a un potentiel ®(B)
est indépendant de chemin suivi.

B
W= [ qBdl=q(o() - o)
A

Le deuxiéme résultat important est que

y{E-dlz()

L’intégrale de E - dl le long d’un contour fermé est nulle.
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5.6 Quelques problémes d’électrostatique

Le but de cette partie est de discuter quelques problémes importants de 1’électrostatique.
Elle vous introduit aussi aux techniques de calcul en électrostatique. Considérez-la comme
un petit recueil d’exercices corrigés!

5.6.1 Conducteur chargé

Un conducteur est un corps dans lequel les charges électriques peuvent se mouvoir. Nous
supposerons que ce mouvement n’est pas entravé : il n’y a pas de résistance électrique.

Considérons d’abord un conducteur isolé. Physiquement, nous pouvons 'imaginer comme
un morceau de Cu (conducteur) isolé par un fil isolant :

UL

l<—fil isolant

surface pour
appliquer la
loi de Gauss

Fi1Gure 5.15 — Conducteur isolé par un fil

Plagons sur le conducteur un excés de charge q. Nous allons démontrer la propriété
suivante : toute la charge excédentaire placée sur un conducteur isolé se répartit sur
la surface du conducteur. Aucune partie de cette charge excédentaire ne se répartit a
I'intérieur du conducteur.
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Le raisonnement se décompose en plusieurs étapes :

e A Tintérieur du conducteur, le champ électrique doit étre égal & 0. Sinon, il mettrait
en mouvement les électrons libres du conducteurfl Nous aurions ainsi un courantf’]
perpétuel, ce qui n’existe pas.

e Considérons alors une surface fermée juste au dessous de la surface S du conducteur.
La loi de Gauss appliquée sur cette surface donne

/E-dS:()
s

dans le conducteur (car E = 0), donc sur la surface S. La charge a lintérieur de la
surface S est donc nulle.

o La charge excédentaire ne pouvant se répartir dans le conducteur est donc sur la
surface.

Direction et valeur du champ électrique a la surface

Quelle est la valeur du champ électrique & la surface du conducteur chargé?

Montrons que la composante paralléle a la surface Eﬁ du champ électrique E® a la surface

est nulle. Eﬁ doit étre nul, sinon il produirait un courant perpétuel.
Ef =0

Si Eﬁ = 0, la surface du conducteur est une équipotentielle (voir la définition d'une
surface équipotentielle).

A la surface du conducteur, le champ électrique E est donc perpendiculaire & la surface.
Les lignes de champ électrique partent perpendiculairement de la surface.

S S

Pour calculer Eﬁ en un point de la surface, définissons tout d’abord la densité de charge
de surface o sur une petite surface AS autour du point P ot nous évaluons Ei

Soit Aq la quantité de charge sur AS :

_2g
~AS

Nous utiliserons de nouveau la loi de Gauss.

g

8. Dans un conducteur, ce sont des électrons "libres" qui assurent le transport du courant électrique.
9. Un courant est la manifestation de charges électriques en mouvement.
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surface du
conducteur

L]
amEEE,
- LI ]

L]
g
.

T T LA

Nous formons un petit cylindre dont les deux faces sont paralleles & AS, de hauteur %

au dessus de la surface et % en dessous. Nous supposons AS assez petite pour que Ei
soit constant sur AS.

L’intégrale de Gauss sur le cylindre donne

AS
/ ES.dS=p5As =12
Cylindre €0
o
E} =—
L= %

Si o est positif, Ei est dirigé vers ’extérieur. Si o est négatif, Ei est dirigé vers 'intérieur.

5.6.2 Influence sur des conducteurs non chargés

Le probléme suivant illustre plusieurs concepts importants. Soit une coque sphérique
conductrice ayant une certaine épaisseur. Le centre de la coque est en O. En O, nous
placons une charge ¢q. Le probléme est de connaitre la distribution de charge sur les deux
surfaces de la coque.

Se

N

q>0]

F1GURE 5.16 — Coque sphérique conductrice
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Considérons d’abord la surface intérieure S; de la coque. Prenons comme surface pour
appliquer la loi de Gauss une sphere S juste a I'extérieur de la surface intérieure, dans
le conducteur :

50/ E -dS =0 car E = 0 dans le conducteur
S1

Donc la somme des charges dans 57 doit étre nulle.

/ 0;dS+q=0
SA

7

Il apparait donc une densité de charge o; de signe opposé & ¢ sur l'intérieur de la coque.
Comme ¢ est placé au centre de la sphére, par symétrie, o; est uniforme sur .S;.

P
7 S,L
A Tintérieur de la coque conductrice, E et les charges sont nuls.

Par contre a la surface extérieure Se, il doit apparaitre une densité de charge o, telle que

/ O'edS’ = '/ JidS' = |q|
Se S;

et le signe des charges sur S, est celui de ¢. En effet, s’il apparait une charge —q sur
la surface S;, comme le conducteur est neutre électriquement, la charge sur S doit étre
égale a +q.

5.6.3 Discontinuité sur une surface

Nous considérons une surface S avec sur cette surface une distribution o de charges de
surface. Nous nous intéressons au champ E di & cette distribution de charge spécialement
aux discontinuités de champ E & la surface S.

Pour traiter ce genre de probléme, rappelons les deux théorémes importants :

/ E.dS — charges
SGauss €0

y{E-dlz()

Par un choix adapté de la surface de Gauss et du contour d’intégration fermé, nous
pouvons avoir une information sur les composantes perpendiculaire et paralléle a S de E.

Pour appliquer la loi de Gauss, nous choisissons un cylindre avec les surfaces circulaires
paralléles (localement) & S. La hauteur du cylindre est infiniment petite. Donc

g
(Ee:ct - Eznt) n =
€0
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Le champ électrique perpendiculaire (ou normal) a S est discontinu en traver-
sant la surface.

Pour connaitre la variation de la composante paralléle, prenons un circuit fermé formé
d’'un rectangle perpendiculaire & S. La largeur du rectangle est infiniment petite. Sa
longueur est tangente a S. La normale au rectangle est tangente a S.

F B dl= By~ By =0

La composante tangentielle du champ électrique est continue a travers la
surface.

De ces deux résultats, nous notons que le champ E reste borné, méme si la composante
normale est discontinue. Du fait que E reste borné, le potentiel ® est une fonction con-
tinue.

5.6.4 Capacité et condensateur

Un conducteur sur lequel nous ajoutons des charges se mettra a un potentiel ®. Ce
potentiel est positif si les charges sont positives, et négatif si elles sont négatives.

Si maintenant nous approchons un conducteur chargé d’un autre, ils s’influencent 'un
I'autre. En effet, le champ électrique du premier conducteur va induire des charges a la
surface du deuxiéme, et inversement.
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Considérons N conducteurs chargés, isolés les uns des autres et placés dans le vide.
Soit ®; le potentiel de chacun de ces conducteurs. Comme le potentiel est linéairement
proportionnel & la charge g;, nous avons

¢; = § Dijq;
J
En résolvant ce systéme d’équations linéaires pour obtenir g;, nous pouvons écrire
qi = E Cij®;
J

Cj; est appelé la capacité du conducteur. C;; avec ¢ # j sont les coefficients d’induction.
La dimension de la capacité est le farad, c’est-a-dire A%s*kg=!lm=2.

Dans la pratique, ce que nous appelons un condensateur est formé de deux conducteurs
chargés avec des charges égales et opposées. La capacité C' est définie comme le rapport
entre la charge |q| et la différence de potentiel.

Comme exemple, calculons la capacité d’un condensateur plan et celle d’'un condensateur
cylindrique. Nous avons besoin pour cela :

e de la relation entre la charge g et le champ électrique E. C’est la loi de Gauss qui nous
donne cette relation.

e de la relation entre la différence de potentiel ®p — ® 4 et le champ E. C’est 'intégrale
bp — Dy = — ff E - dl, l'intégrale étant en principe prise le long de n’importe quel
parcours partant d’un conducteur et allant vers ’autre.

Condensateur plan

Considérons un systéme plan formé de deux plaques conductrices paralléles. Nous sup-
posons que les plaques conductrices sont assez grandes pour que le champ E soit uniforme
a l'intérieur et nul a 'extérieur.

Il y a des charges +¢ sur une plaque et —g sur 'autre plaque. Pour effectuer I'intégrale
de Gauss, nous choisissons la surface S qui entoure la charge +q.

/E-dS—q—ESC
S €0

q = €0ESC

S. est la surface de chaque plaque du condensateur.

Pour évaluer &g — @ 4, nous prenons un segment partant de la plaque chargée négative-
ment vers celle chargée positivement, et perpendiculaire aux plaques :

d
<I>B—<I>A:/ Edx = Ed
0
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d
——\
H E
+ —t—
+
+
M :
4 -
ks | parcours
M L - d'intégration
: | pour oo,
I -
M
surface S: q()l —= g
B A

FicUrk 5.17 — Condensateur plan

Op — Dy
p=-2""4
d

Nous avons donc

€0,
4= 7" (25— Ba) = C (B — D)
C est la capacité du condensateur. Cette capacité est donc
E()SC
C =
d

La capacité C est le facteur de proportionnalité entre ¢ et la différence de potentiel
(Pp — ®4). C dépend des facteurs géométriques du condensateur. La dimension de la
capacité C est le Farad.

Condensateur cylindrique
Considérons maintenant le cas du condensateur cylindrique formé de deux cylindres coax-
iaux de longueur L.

Soit b le rayon du cylindre intérieur et a celui du cylindre extérieur. Nous supposons
que la hauteur L du cylindre est telle que nous pouvons négliger les effets aux bouts du
cylindre. Par symétrie, le champ E est dans la direction radiale.

Soit S la surface utilisée pour Iintégration de Gauss. S = 2nrL.
q= 50/ E-dS =¢gE2nrL
S

_ q
eo2mwLr

q e dr

a
bp — Dy = Edr =
B A /b " eo2nLl J, T



106 CHAPITRE 5. ELECTROSTATIQUE

surface
d'intégration
de Gauss

parcours
d'intégration
pour Oy @,

FicuRrE 5.18 — Condensateur cylindrique

q a
Bp— By = 1 (7)
B A 27T€0L H b

La capacité d’un condensateur cylindrique est
2mwegL

I ( ravon extérieur
rayon intérieur

C =

Energie stockée dans un condensateur et densité d’énergie électrique
Un condensateur sert a stocker de I’énergie. Pour simplifier la notation, appelons U la
différence de potentiel entre les deux plaques du condensateur. La charge ¢ est alors CU.

Supposons qu’a un moment donné, la charge sur le condensateur soit ¢’. La dfférence de
potentiel est U" = &. Si nous rajoutons une charge dq’, la travail additionnel dWV est

¢

AW = U'dq =
1=¢

dq'
Le travail total pour charger le condensateur & la charge q est
1[4 ¢ 1
W=— [ ddf =--=-CU"
C /0 T4 =507 2
Prenons maintenant un condensateur plan de surface S¢ et de largeur d.

1 1 e0Sc 1
W=-Cu?== E%d? = ZegE%Sqd
20 =574 5e0b"So

1
W = 5EOEQV

ou V est le volume du condensateur. La quantité eg = %50E2 est la densité d’énergie
électrique.
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5.6.5 Capacité avec un diélectrique

Au début du XIX€ siécle, Faraday avait constaté que, si des substances isolantes (appelées
diélectriques) sont placées dans ’espace vide entre les surfaces conductrices d’un con-
densateur, la capacité du condensateur augmente par rapport & sa valeur dans lair.
Alors

Cdiel =E&r Cair

si le diélectrique remplit tout le condensateur. €, est une constante liée au matériau, et
est sans dimension. On l'appelle constante diélectrique relative. ¢, est plus grand
que 1.

Interprétation physique de cette observation
Si nous utilisons une batterie dont la différence de potentiel est U pour charger le con-
densateur, alors

e sans le diélectrique, la charge ¢ sur un conducteur est
q = CoiyU
e avec le diélectrique, la charge est ¢ :
¢ = CaialU > q

car Cyier > Cluir-

Si nous chargeons le condensateur & la charge g sans le diélectrique, la tension U a ses

bornes est
q

U= Uai?" - Cair

Déconnectons la batterie, et introduisons dans le condensateur un matériau diélectrique
de constante diélectrique €,. La charge q est la méme car le condensateur n’est connecté
a aucune batterie!. Alors :

Uair

r

Udiel = < Uair

De méme, le champ électrique dans le diélectrique est

Ey
Er

E

Dans ce cas, que se passe-t-il avec ’énergie 7 Lorsque le condensateur n’a pas de diélec-

trique, il a stockeé
1 2 q2
Wair — §CairUair — 2Caz'r
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Comme la batterie est déconnectée, 'introduction du diélectrique ne peut pas modifier q.
2

Wyie) = ——t——
' 2Cqirer

< Wair
Ou est donc passé (Wi — Waier) 7 L’expérimentateur qui tient le diélectrique sent que
le condensateur attire le diélectrique et lui transfére cette énergie.

Une image simple de ce qui se passe dans le diélectrique peut étre décrite ainsi :

e En l'absence de champ E, il n’y a pas de charge nette en tout point du diélectrique.

e Lorsque le diélectrique est dans le champ Eg, il v a une séparation de charge dans le
diélectrique (figure [5.19).

e A la surface du diélectrique, nous avons une densité de charge de surface, ce qui crée
le champ E, opposé a Eq (figure .

e La résultante E;y = Eg + E, a une amplitude inférieure & Eg, ce dernier étant le
champ dans le condensateur en ’absence du diélectrique.

D D D
@®» [ @
D D D
D D D

CE >R CE R CE

++++++++++++

FIGURE 5.19 — Séparation de charge

+||- +||-
+ -
+ -
+ E E -
+ —0 -—p -
+||_ -
+ |-
+ -
+ E -
+ =tot -
+ -
+ |- +1[-

FIiGURE 5.20 — Champ E dans un condensateur avec diélectrique

Définition de la constante diélectrique d’un diélectrique

La capacité d’un condensateur avec de l’air s’écrit d’une maniére générale

Clir = €0 f(dimensions du condensateur)
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ot f ala dimension d’une longueur, car [Cy;.] = Farad et [¢o] = Farad-m~1

Si le condensateur est rempli de diélectrique, nous avons

Cliel = €0y f(dimensions du condensateur)

€o€r a la méme dimension que £9. On appelle €pe, la constante diélectrique du milieu
diélectrique concerné. g, vaut 1.006 pour P’air, entre 2 et 4 pour les isolants usuels, 4 4 6
pour le verre, 80 pour l'eau.

Loi de Gauss en présence de diélectrique

Considérons un condensateur rempli d’air (figure dessin de gauche). Nous y intro-
duisons un diélectrique (figure dessin de droite). Nous avons donc les charges +q et
—q sur les plaques conductrices du condensateur, et les charges induites —q’ et +¢’ a la
surface du diélectrique.

Surface S

+q +q
+++++++++ +HHE+ [

FiGURE 5.21 — Condensateur avec un diélectrique

Appliquons la loi de Gauss sur la surface S.

60/ E - dS = somme des charges
S

E est le champ électrique dans le diélectrique (dans 1’exemple précédent de la figure
il s’agit de E4y). Soit Sy la surface du condensateur.

e0ESo=q—¢
q—q
5050

E est aussi le champ dans le diélectrique Fg;e;-

Nous avons ici un probléme : nous ne savons pas calculer ¢’. Nous pouvons résoudre ce
probléme en nous rappelant que, par rapport au condensateur sans le diélectrique, nous

avons E
0 q
Ejier = — = =FE
Epr E(]ETSO
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Nous en tirons
a—4q q

€0 E0Er

et donc
eoer/ EdS =q
S

Notez que le membre de droite est la charge ¢ sur les plaques conductrices du condensa-
teur, et non pas la différence ¢ — ¢'.

Dans la littérature (que nous n’adopterons pas), les charges ¢ sont appelées charges
libres car elles sont libres de bouger lorsque nous changeons le potentiel de la plaque
conductrice. Par contre, les charges induites sur la surface du diélectrique sont liées, car
elles ne peuvent pas bouger de la surface.

5.6.6 Equation de Laplace, équation de Poisson

Rappelons la forme différentielle de 'équation de Gauss :

V-E="d
€0
Cette équation est appelée équation de Poisson. Avec la définition du potentiel ®, ’équa-
tion de Poisson devient
V. (Vo) = —Ld
€0
V2o = L
€0
L’équation de Poisson signifie que la divergence de E (ou le laplacien du potentiel) évaluée
en un point ro dans 'espace est égale a pe(ro)/co (ou —pei(ro)/co). En particulier, si
p(r) est seulement non nul dans une partie de l'espace, dans la partie de ’espace o
pei(r) = 0, nous avons :
V-E=0

ou

Vi =0 (5.3)

L’équation (5.3) est appelée équation de Laplace. Les grands problémes de l'élec-
trostatique consistent en la résolution de 1’équation de Poisson ou de Laplace avec des
conditions aux limites. Nous allons discuter quelques exemples.

Méthode des images

Soit I'espace vide. Nous avons un plan conducteur dont le potentiel est nul (figure [5.22)).

Une charge +q est placée & une distance d du plan. Nous voulons calculer le potentiel
dans la région de I’espace contenant q.
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-d +d
| A Y]
+q y ) X

plan conducteur
au potentiel 0

FIGURE 5.22 — Plan conducteur en x = 0

Prenons le systéme de coordonnées indiqué sur la figure |5.22] Les coordonnées de ¢ sont

rg = (_d7 07 0)

On nous demande de calculer ®(P) = ®(r) avec les conditions suivantes :

e En r, nous avons une charge +q.
e Le plan x = 0 est un conducteur avec ®(0,y, z) = 0.

Le potentiel ®(r) de la charge g est donné par

q

dr)= ———
(r) dreg ||r — rg|

L’existence de la plaque conductrice en x = 0 change la disribution du potentiel. En fait,
elle nous conduit a imposer

O(x=0,y,2)=0

Une maniére simple de satisfaire cette condition est d’imaginer qu’il y a une charge —q
placée en r_, = (d,0,0). En effet, la superposition des potentiels causés par q et —q est

_ q B q
dmeg |[r —rg||  4dmeg|r —r—g]]

(I)tot

Nous voyons que ®4,(0,y, z) = 0.

Nous avons résolu le probléme en placant une charge image qui nous permet de satisfaire
la condition aux limites. Les équipotentielles de @y sont tracées sur la figure [5.23
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FIGURE 5.23 — Surfaces équipotentielles de Py

Technique de séparation des variables

Nous devons souvent résoudre des problémes décrits par 1’équation de Laplace avec des
conditions aux limites. Posons le probléme : cherchez le potentiel dans tout I'espace avec
les conditions aux limites suivantes :

e Sur un parallélépipeéde rectangle, 5 faces ont un potentiel 0 (toutes les faces sauf celle
en z = csont a 0).

A7

<y

X

e La face en z = ¢ a le potentiel &y = cte.
e Il n’y a aucune charge dans l’espace.

L’équation pour ® est donc ’équation de Laplace :

9’9 N 9’ N ’®
0x2  Oy? 022

V2P = 0
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avec les conditions aux limites précédentes.

Nous allons utiliser la technique dite de la séparation des variables. Nous supposons que

O(z,y,2) = X(2)Y (y)Z(2)

L’équation de Laplace est alors

10°X 10% 10°Z
55 tsaz+ts55=0
X 0x2 Y 0y?2  Z 022

Pour que cette équation soit vérifiée quels que soient x, y et z, nous imposons

1 0°X 9
X oz
l@QY_ e
Y 0y?
18227 5
7 022 =7

\ 02“‘52:'72

Posons a? > 0 et 42 > 0. X et Y sont des fonctions trigonométriques en sinus et cosinus.
Comme @ est nul en x =0, y = 0 et z = 0, nous avons

X selon sin(ax)
Y selon sin(By)

Z selon sinh(yz) = sinh (\/oz2 + 62z>

Comme ® =0 en x = a et y = b, nous devons imposer

nm

a=—, n entier =1,2,...
a
mm .

6:7, m entier = 1,2, ...

La fonction ® s’exprime donc comme somme de ®,, ,, :

D, (z,y,2) = App sin (%x) sin (%y) sinh [\/(TZT)Q + (WZT)Q,Z]

En effet,
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o &, (z,y, ) satisfait 1'équation de Laplace,

o O, (z,y, 2) satisfait les conditions aux limites, exceptée celle sur la face z = c,

e l’équation de Laplace est linéaire, la somme des ®,, ,,, est donc aussi solution de I’équa-
tion de Laplace et des conditions aux limites (exceptée celle sur la face z = ¢).

Donc

O(x,y,2) = i i Apm sin (%r:v) sin (?y) sinh [\/(T)z + (WZTY,Z]

n=1m=1
Imposons qu’en z = ¢, ®(x,y) est prescrit :

= 3 i () () s () ()

n,m=1

Les coeflicients A,,,, sont les coefficients de Fourier.

a b
Apm = 4 / da;/ dy®g sin <T$> sin <$y)
absinh {m/ (%)2 + (’Z‘)Qc] 0 0 @

5.7 Résumé des notions importantes

Charge électrique ¢
Il existe des charges positives et négatives. L’unité de charge est le coulomb C. Il existe
une charge élémentaire, celle que porte un électron, qui vaut 1.6 - 10719 C.

e Les charges (avec leur signe) sont additives.
e Force entre deux charges g1 et g2 : loi de Coulomb.

Champ électrique E(r)

Dans 'espace, on dit qu’il y a un champ électrique E(r) en un point r si une charge ¢
placée en r subit une force F = ¢E. L’unité de champ électrique est le volt/m = V/m.

Loi de Gauss, équation de Poisson
Soit une surface S fermée et entourant une volume V.

1
/ E.-dS = / perd®r = somme des charges dans V
S € Jv
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oll pe(r) est la densité volumique de charge.

Par le théoréme de la divergence, nous trouvons 1’équation de Poisson, qui est une loi
locale :

vV.E="d
€0

Potentiel électrique

Le champ E, en électrostatique, dérive d’un potentiel électrique ®(r) :

E(r) = -V&

%E-dlz()

Le travail pour faire passer une charge ¢ du potentiel ®4 au potentiel 5 est ¢(Pp—P4y)
et est indépendant du chemin suivi. L’unité de potentiel électrique est le volt V.

Expression de 1’équation de Poisson avec ®

—v2p = P
€0

Expression du laplacien V2 en coordonnées cartésiennes :

o> 9* 5

2 [ —_— [
v Ox2 * Oy + 022

Champ E a linterface

La composante tangentielle du champ électrique E est continue a 'interface.

La composante normale du champ E est discontinue :

[E:Q—E:l]-n:g
€0

o = densité de charge de surface.
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1
o

+
o

+++++++

FIGURE 5.24 — Condensateur

Condensateur

Un condensateur est un systéme formé de deux conducteurs portant une charge égale et

de signe opposé.
Sdp -0y =U

q=CU

C est la capacité du condensateur et ¢ la charge sur une des plaques du condensateur.
Un condensateur chargé avec un potentiel U emmagasine une énergie W = %C’U 2,

Unités
‘ Grandeur ‘ Unité ‘

Charge Coulomb = C = A-s
Potentiel Volt =V =W-A~!
Champ électrique Ve~ !
Capacité Farad = F = C-V~!
Charge de ’¢lectron | 1.6- 1071 C
€0 8.854-10712 F-m™!

TABLE 5.2 — Unités dans le systéme SI

Vous notez que nous utilisons des unités dérivées comme le volt, le farad et trés rarement
Iéquivalent avec les unités SI. (Voir Annexe sur les unités électrique et magnétique).



Chapitre 6

Circuits électriques

6.1 Introduction

Jusqu’a maintenant, nous avons surtout considéré des problémes ot il y avait des charges
"immobiles". Avant d’aborder la magnétostatique, nous devons introduire la notion de
courant électrique, donc parler des circuits électriques. Nous pouvons bien sar dire la
chose suivante : le champ électrique E crée une force F sur des charges libres de se mou-
voir. Ce sont ces charges en mouvement qui créent le courant I.

Définissons le courant. Tout d’abord supposons que dans le milieu (que nous appellerons
un "conducteur") il y ait des charges qui peuvent se déplacer sans aucune "friction"
(dans le langage électrique : sans aucune "résistance"). Soit S la section du conducteur,
n le nombre de charge par unité de volume, ¢ la charge électrique de ces charges, et vp
la vitesse de chaque charge. Le courant I est défini par

I=nquvp S
n=Lcme=c
m s s

n est de l'ordre de 8 x 10%® charges par m?® dans un conducteur et vp de 'ordre 10™3m/s.

L’unité de courant dans le systéme ST est 'ampére, A. Le coulomb C est donc A- s et est
donc la quantité de charge apportée par un courant de 1A pendant 1s. On voit, d’aprés
la définition du courant, que la charge ¢’ derriére la surface S varie car I apporte des
charges. Donc localement on peut dire

dg

I =
dt

117
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Nous pouvons aussi définir la densité de courant j par
J=nqvp

ou avec la densité de Chargep_-] Pel
j = Pel VD

j est donc un champ vectoriel j(r,t).

Une petite remarque amusante. Lorsque vous appuyez sur le bouton d’une sonnerie située
4 10% m , vous savez que la sonnette sonne "immeédiatement". Si vous voulez calculer le
temps mis par un électron pour parcourir 1000 m vous trouvez 1 s! En fait, la propagation
du signal est donné par les ondes électromagnétiques (Chapitre 9). Ce ne sont pas les
mémes électrons mis en marche par le bouton et ceux qui actionnent la sonnette!

Nous adopterons dans ce chapitre une approche plus technique. Nous dirons que pour
faire bouger les charges, il faut un appareil avec une force électromotrice. De tels
appareils sont par exemple des piles, des accumulateurs, des piles & combustible et au
laboratoire des alimentations. Ils produisent une force électromotrice (fém) entre deux
bornes. Si nous connectons un tel appareil & un circuit (par exemple & une résistance),
du courant circule.

Tfémf © [:IR

FI1GURE 6.1 — Circuit avec fém

Par convention, le courant circule dans le circuit du poéle positif au pole négatif. Dans
I’appareil & fém, il circule du poéle négatif au poéle positif. Dans un conducteur, les charges
sont des électrons. Les électrons circulent dans le sens opposé au sens du courant con-
ventionnel 1.

6.2 Deéfinition de la fém

Un appareil a fém doit fournir du travail pour faire bouger les charges dans le circuit. La
fém e est définie comme le travail dW fourni pour une charge dgq.
aw
€= —
dgq

1. Des fois, lorsqu’il n’y a aucune ambiguité avec la densité de masse p, nous noterons pe; = p.
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Remarquons que 'unité de ¢ est le volt. En effet,

N~m_kgm2 1 _kgm2

[E]:A~S_ 2 As A =V

La puissance dP correspondante est donc :

AW dWdg  dq

oy _4ared_ Y _ g
dt  dg dt  Cdt -

Le produit du courant I par la fém est la puissance.

6.3 Eléments de circuit : résistance et condensateur

6.3.1 Reésistance

Une résistance est un élément qui, lors du passage d'un courant I, développe a ses bornes
une différence de potentiel proportionnelle & I.

I
Un
& o Résistance
o
Us

FIGURE 6.2 — Circuit avec résistance

Us—Ug = RI (6.1)
V

L’équation (6.1) est appelée loi d’Ohm. Le coefficient de proportionnalité R est la
résistance. R dépend du milieu considéré et des dimensions géomériques du corps.



120 CHAPITRE 6. CIRCUITS ELECTRIQUES

Pour un corps de section S et de longueur [, la résistance R est donnée par

l

p est la résistivité électriqueE] et son unité est :

[p] = m

L’inverse de la résistivité (1/p) est la conductibilité électrique o. L’unité de o est
(Qm)~L.

’ Matériau ‘ o=1/p [(Q’m)_l] ‘

Cu 5.8 107
Ag 6.14 - 107
Acier (0.5 —1)-10"

Eau distillée | 2- 1077
Eaudemer | 3-5
Quartz <2-1077

TABLE 6.1 — Quelques conductibilités électriques

La puissance perdue par le passage du courant dans une résistance est

P =1(Us - Up) = RI?

C’est Veffet Joule. Seuls les supraconducteurs ont une résistivité p = 0.

6.3.2 Appareil a fém idéal, appareil a fém réel

Dans un appareil a fém idéal, lorsque le circuit est fermé (c’est-a-dire lorsqu’un courant
I circule), la fém e mesurée est égale a celle mesurée lorsque I est nul (circuit ouvert).

Dans un appareil a fém réel, la fém & mesurée lorsqu’un courant circule est inférieure a
celle mesurée ¢ lorsque I vaut 0. Cela est da a la présence d’une résistance R; (appelée
résistance interne) a Uintérieur de 'appareil qui provoque une différence de potentiel a
ses bornes.

e =e—R;I

2. Ne confondez pas la résistivité électrique p avec la densité de masse ou la densité de charge! Ni
la conductibilité électrique o = 1/p avec la densité de charge de surface! Le contexte vous indique la
signification du symbole.
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0]

0

FIGURE 6.3 — Appareil a fém idéal

0

FIGURE 6.4 — Appareil a fém réel, avec la résistance interne R;, ¢’ = ¢ — R;1. € est la fém
mesurée en circuit ouvert (I = 0). ¢’ est la fém mesurée en circuit fermeé.

La puissance transférée au circuit externe est
P=¢T=(c—RI)I =¢cl—R]I*
Dans I'appareil a fém, la puissance R;I? est dissipée. Expérimentalement, vous constatez

qu'une pile chauffe lorsque vous la court-circuitez, a cause de la puissance R;I? dissipée
dans la pile.

6.3.3 Condensateur

Soit un condensateur de capacité C. Supposons qu’il ne soit pas chargé au moment ou
nous le connectons & un appareil & fém idéal. Cet appareil va le charger jusqu’a ce que
la tension aux bornes du condensateur soit égale a ¢ (appareil & fém ideal).

FIGURE 6.5 — Circuit avec condensateur
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En pratique, nous ne faisons jamais un circuit avec uniquement un condensateur, mais
plutét des circuits comme dans 6.3.4.

6.3.4 Circuit RC

interrupteur

I
oN—1
+| O R
e e
H T

FI1GURE 6.6 — Circuit RC

Au temps t = 0, nous fermons U'interrupteur. Avec la loi d’Ohm, et la tension aux bornes
d’un condensateur donnée par ¢ = CU, ’équation du circuit est

52R1+%
Or ; da
T dt
D’ou d g
€= RE + c

C’est I’équation différentielle pour ¢(t).
La technique utilisée pour résoudre cette équation est de :

a) Trouver une solution générale de I'équation différentielle sans second membre.

dg q
R=+2L=0
it o

b) Trouver une solution particuliére de I’équation différentielle avec second membre.

dg —q
Rdt—I—C—e

¢) Trouver les constantes d’intégration a partir des conditions initiales.

Pour la premiére étape, nous avons

t
q= QOeXP{—RC}



6.3. ELEMENTS DE CIRCUIT : RESISTANCE ET CONDENSATEUR 123

oll go est une constante & déterminer avec la condition initiale.

Pour la deuxiéme étape :
q=¢eC
est une solution particuliére.

Donc
t
q(t) = qoexp {_RC} +eC
At=0,q(0)=0.Donc ¢go = —¢C.

La solution générale pour ¢ est

el

L’évolution temporelle du courant I est

1= 40~ fow {7}

7 = RC est appelée constante de temps du circuit RC. Aprés 5 fois la constante de
temps, 'exponentielle e vaut 6.7 x 1073, ce qui pratiquement est nul.

Iﬂ

/R

FIGURE 6.7 — Evolution du courant I

Au début de la charge (t = 0) du condensateur, ce dernier se comporte comme un court-
circuit. Le courant est seulement limité par la résistance R. C’est pour cela que nous
devons mettre une résistance en série avec le condensateur pour limiter le courant.
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6.4 Lois de Kirchhoff

Dans la pratique, nous avons des circuits comportant plusieurs éléments en série ou en
paralléle. Pour leur analyse, nous avons plusieurs régles importantes, connues sous le nom
de lois de Kirchhoff.

6.4.1 Loi de Kirchhoff sur le courant
La somme des courants qui entrent en un point est égale & la somme des courants qui
sortent de ce méme point.

Cette loi exprime juste la conservation de la charge au point considéré. (Pourquoi ? Voyez-
vous une analogue avec les circuits hydrauliques ?)

Considérez le circuit suivant :

=1ad
G——
=24 1=2A
1=
1=3A
I=4A

Quel est le courant I dans la derniére branche, et dans quelle direction est ce courant ?

Ce circuit se rameéne a

I=1A4
I1=2A
I=5A, C®——
\ ] 1=34
I=2A A '\ Bl 1I=24
Fd i Y
I
S
I=3A I=4A

a) Au point A, nous avons les courants de 2 A et 3 A qui entrent. Un courant de 5 A
doit donc en sortir.

b) Au point C, nous avons les courants de 2 A et 1 A qui sortent. Un courant de 3 A
doit donc y entrer.
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Finalement, au point B, les courants de 5 A (résultat a), 2 A et 4 A entrent, donc en
tout 11 A. Pour le moment, seul un courant de 3 A sort du point B. Selon la régle de
Kirchhoff, le courant I doit donc sortir du point B pour que ’on puisse avoir :

3A +1=11A
I=8A

Sur le schéma original, I vaut donc 8 A, et est dirigé vers la droite.
Notons que nous pouvons aussi résoudre le probléme en prenant la convention suivante :

e les courants qui entrent sont comptés positivement,
e les courants qui sortent sont comptés négativement.

La régle de Kirchhoff impose que la somme algébrique des courants soit nulle. Au point
B, nous avons donc :

2A +5A +4A -3A +1=0
I=-8A

Le courant I cherché sort du point B.

6.4.2 Loi de Kirchhoff sur la tension

Lorsque l'on suit un circuit sur un tour complet, la somme algébrique des tensions est
nulle.

Soit le circuit

B¢ C
e+ ———

Le courant part de B, passe par C, puis D, et arrive & A. Partons du point A et faisons
le tour du circuit dans le sens des aiguilles d’une montre. Nous avons donc :

VB=e>0
Vg = Vi car le fil n’a pas de résistance

On supposera toujours que les fils n’ont pas de résistance. S’ils en avaient on devrait en
tenir compte en introduisant des résistances.
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Le point D a un potentiel inférieur & celui en C, et sa valeur arithmétique est RI.

Vp = —RI

Finalement, Vp = V4.
La loi de Kirchhoff pour la tension est donc
e—RI=0
e=RI
Essayons de tourner dans I'autre sens en partant de A. Le point C a un potentiel supérieur

a celui de D, et vaut +RI. Le point A a un potentiel inférieur & celui du B, et a une

valeur absolue de ¢ (¢ > 0).
—+RI=0

e=RI

Supposons finalement que nous avons indiqué le courant I dans l'autre sens :

1
B¢ C
£+ —=—
A D

Prenons le circuit partant de A dans le sens des aiguilles d’'une montre. Le seul change-
ment causé par notre "erreur" sur le sens de I est que le point D a un potentiel supérieur
a celui de C, et vaut RI.

e+ RI=0

RI = —¢
Et donc .

="z

L’interprétation est simplement que la physique nous dit qu’avec notre convention, le
courant est opposé & ce que nous avons supposé. La physique fonctionne toujours!



6.4. LOIS DE KIRCHHOFF 127

6.4.3 Exemples

Essayons d’appliquer maintenant ces deux lois pour un circuit plus compliqué :

& &

T

+ - -+
A_{ B }7(:
\/Il 13 /\12

Ui

Connaissant €1 et g9, cherchons les courants dans les trois résistances. Supposons que les
courants ont les directions indiquées sur le schéma. La loi de Kirchhoff sur les courants
nous donne au point B :

L+ 1Is=1

Appliquons la loi de Kirchhoff au circuit ADB :

—Ry1 + R3l3+¢e1=0

Appliquons finalement la loi de Kirchhoff au circuit BDC :

—R3[3 — RQIQ — E9 = 0

Nous avons donc :
I —Is +1I3 =0

—Ri1; +R3l3 = —&1

Roly +R3l3 = —¢&3

La résolution de ce systéme donne I, I et I3.

Notez que la loi de Kirchhoff sur la boucle ADC donne :
—RiI1 — Ryly —e9+6e1=0
qui n’est autre que la somme des deux équations

—Ryy + R3l3+¢e1 =0
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et
—R3l3 — Roly —e2=0

Ce n’est donc pas une nouvelle équation.

Comme deuxiéme exemple, prenons le cas de deux résistances en paralléle :

I A

Iy I

gt — %, []Rz

La loi de Kirchhoff sur les courants appliquée au point A donne la relation

I=5LH+1

De plus, nous avons

R1[1 = RQIQ =&

Donc . .
H=— I = —
1 R 2 Ry
Et le courant total est
7 1 n 1
=& | — —_—
Ry Ry

Vis-a-vis de I'appareil a fém, les deux résistances Ry et Ro peuvent étre représentées par
une résistance équivalente R.q,; donnée par

L1
Requi Rl RQ

Sinous remplagons 71 et Ro mises en paralléle par Reqqyi, l'appareil & fém débite le méme
courant [.

Rappelons finalement des résultats que vous avez vus au gymnase :

e Résistance équivalente & plusieurs résistances R, en série :

Requi = Z Rn
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e Condensateur équivalent & plusieurs condensateurs C,, en paralléle :
Cequi = Z Cn
n

e Condensateur équivalent & plusieurs condensateurs C), en série :

6.5 Résumé

Les points importants de ce chapitre sont les notions

e de force électromotrice fém,
e des deux lois de Kirchhoff.

Pour I'étude des circuits eux-mémes, nous avons montré comment calculer 1’équation
d’un circuit RC.

Finalement, nous avons rappelé les valeurs de résistance équivalente et de capacité équiv-
alente pour le cas des résistances et condensateurs en série ou en paralléle.
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6.6 Appendice - Voltmétre et ampéremétre

Un voltmétre est un appareil qui permet de mesurer la différence de potentiel entre 2
points, par exemple aux bornes d’une résistance

|
'y

Voltmétre

Un voltmeétre est placé en paralléle avec I’élément de circuit. Idéalement, le voltmétre ne
devrait pas perturber le circuit : le courant I qui circule dans la résistance R ne devrait
pas varier lorsque I'on branche le voltmétre. Ceci implique que la résistance interne du
voltmetre soit tres grande devant R. Nous dirons qu’un voltmeétre idéal a une résistance
interne infinie.

Un ampeéremétre est un appareil qui permet de mesurer le courant qui traverse un circuit.

Ampéremetre

L’ampéremeétre est placé en série dans le circuit. Idéalement, il ne devrait pas y avoir
de chute de tension aux bornes de 'ampéremétre. Un ampéremétre idéal doit avoir une
résistance interne nulle.



Chapitre 7

Magnétostatique

Nous nous proposons d’étudier maintenant les champs magnétiques. Notre expérience de
tous les jours du magnétisme est celle du magnétisme créé par les aimants permanents.
Nous savons que certains poles des aimants s’attirent, tandis que d’autres se repoussent.
Mais contrairement aux charges électriques, les aimants ont toujours deux péles. Il n’est
pas possible d’isoler un seul pdle magnétique, c’est-a-dire de charge magnétique
isolée.

7.1 Définition du champ magnétique B

Nous disons qu’il existe dans ’espace un champ magnétique B(r) si une particule de
charge q et de vitesse v subit une force F égale a

F =¢q(vAB) (7.1)

ou v AB est le produit vectoriel de v et B. Dans I’équation (9.24)), la force F est la force
de Lorentz. L’unité du champ B est le Tesla :

_Ns kgms kg

Bl =T= Cm s2Asm  Ag?

Le tableau donne quelques valeurs typiques de champs B.

On emploie aussi le gauss comme unité. 1 gauss vaut 10~ tesla. Le champ magnétique
terrestre vaut 0.5 gauss.

Comment pouvons-nous utiliser cette définition 7 Supposons que nous avons une région
dans I'espace ou il existe un champ B. Mettons dans cette région un fil de cuivre qui
porte un courant /. Le champ B va donner lieu & une force F comme indiqué sur la
figure|7.1

131
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| Milieu | BI[T] |
Champ magnétique terrestre 0.5-1074
Champ magnétique d’appareil & imagerie 1
Espace interstellaire 10719
Surface d’une étoile a neutrons 108

TABLE 7.1 — Champ B dans divers milieux

B

© 0|6 06
—F

© 0|l O
11

FIGURE 7.1 — Fil portant un courant I dans un champ B. Ce champ pointe hors de la
feuille.

L’origine de cette force F n’est autre que la force de Lorentz agissant sur les électrons qui
portent le courant I dans le fil, et qui possédent donc une vitesse vp dirigée & 'opposé
de I (la vitesse vp est dirigée a 'opposé du sens conventionnel du courant I). La force
dF agissant sur une longueur dl du fil électrique est donc :

dF =I1dIAB

Comme pour le champ électrique E, nous pouvons définir les lignes de champ magnétique.
Ce sont des lignes qui sont tangentes en tout point a B.

B

=

FIGURE 7.2 — Lignes de champ magnétique
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7.2 Couple agissant sur une boucle de courant

Soit une boucle rectangulaire ABCD portant un courant /. La boucle peut pivoter autour

de 'axe OO’ (figure [7.3).

FiGURE 7.3 — Boucle de courant dans un champ magnétique

Nous placons les cotés AB et CD perpendiculairement au champ B, qui rentre dans la

feuille (figure .
®B ® ®

A . B
Q__| O
D < C

® ® ®

F1GURE 7.4 — Boucle de courant : AB et CD perpendiculaires 4 B

Les cotés BC et DA ne sont pas perpendiculaires au champ B. Soit 6 'angle entre la
normale de la boucle et le champ B (figure [7.5)).

Les forces agissant sur les cotés BC et AD sont égales et opposées. Elles valent :

B x I x BC xsin(90 — ) = B x I x BC x cos#f
B x I x BCsin(90° — 0) = B x I x BC cos(f)

BC' est la longueur du segment BC. Comme ces forces sont colinéaires avec OQO’, elles
n’exercent aucun couple.
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ZAB cote AB

I
D

FIGURE 7.5 — Boucle de courant : vue de coté

Considérons maintenant les forces agissant sur AB et CD. De nouveau, elles sont égales
et opposées :

Fap=—-Fcp

Fup = Fop = BIAB

Elles générent un couple qui tend & aligner la normale n de la boucle parallélement au
champ B.

7.3 Champ magnétique crée par un conducteur

Montrons d’abord qu’un conducteur parcouru par un courant crée un champ magnétique.
Pour cela, considérons l'expérience suivante : soit un fil portant un courant I. Mettons
prés de lui un deuxiéme fil, parallele au premier, qui porte un courant i dans le méme
sens que I (figure . Nous remarquons que les deux fils s’attirent.

Cette expérience montre que le fil portant le courant I crée un champ magnétique qui
est responsable de la force sur le fil qui porte le courant . En effet, il suffit d’interpréter
que le courant ¢ est juste la manifestation des charges électriques qui se meuvent dans
le conducteur. La force d’attraction est due & la force de Lorentz. Notons que si nous
inversons le sens du courant I et maintenons celui de i, la force devient répulsive.

Expérimentalement, nous avons montré que :

e un conducteur portant un courant crée un champ magnétique,
e ce champ magnétique dépend de la direction du courant.



7.3. CHAMP MAGNETIQUE CREE PAR UN CONDUCTEUR 135

FIGURE 7.6 — Deux fils parcourus par des courants

7.3.1 Loi de Biot et Savart

Pour calculer le champ B en un point P, considérons la situation suivante :

P

La contribution dB au champ B au point P est donnée (sans démonstration) par

wo Idl A r
dB ==
Adr 3

ol dl est 1’élément de longueur le long du conducteur et r le vecteur reliant 1’élément dl
au point P. pg vaut 47 - 1077 TmA ™! et est appelée perméabilité du videﬂ En unité
pratique, Uunité de jg est appelé Henry/m ou H/m. Notez que (gouo)~ /2 est égal a la
vitesse de la lumiére ¢ dans le videfl

(7.2)

Le champ B est obtenu par intégration sur toute la longueur du conducteur :

B(P) = ’;‘f;/dlrg (7.3)

L’équation (7.3]) est connue sous le nom de loi de Biot et Savart.

1. o] = [EH][r] = %@ = 2gm = ey Te Henry (H) vaut donc

2. = ! =3 x10°m/s
VEORO  \/4rx10-Tx8.8x10-12 /

kgm2
A2s2 "
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7.3.2 Exemples

a) Champ créé par un conducteur rectiligne infini portant un courant [/

FicURE 7.7 — Conducteur rectiligne portant un courant [

D’apres la figure nous avons :

e dlAr, et donc dB, est perpendiculaire & la feuille;
e il nous suffit de calculer 'amplitude de dB.

ol dlsin 6
dr 12

dB =

En notant la position de I’élément dl = dz par z, et la distance du point P & la droite
par R, nous avons :

1 in
Or
sin@ = sin(w — ) = (ZQJF}IZQ)UQ
Et donc I Rd
2
B T e
5 IR [ dz _ polR [ dz

dr  J_o (22 + R2)3/2 o2 (22 4+ R2)3/2
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En utilisant

dz B x
(22 + a2)3/2 o a2(x? + a2)l/2

nous obtenons

pol z < ol

B = —
27 R (22 + R2)1/2 0 21R

Le champ magnétique dii & un courant infini et rectiligne ne dépend que de la distance
R du point P au conducteur. La direction est perpendiculaire au plan contenant le con-
ducteur et le point P.

B

FI1GURE 7.8 — Direction du champ B

Les lignes de champ magnétique (Cf 5.3.3 pour la définition des lignes de champ) corre-
spondant sont des cercles situés dans le plan perpendiculaire au conducteur, et centrés a
I'intersection du conducteur et du plan.

Le calcul du champ B produit par un courant rectiligne nous permet de calculer la force
entre deux conducteurs paralléles portant respectivement les courants I et i (figure [7.9)).

Supposons que les deux courants I et ¢ ont le méme sens. Le champ B créé par le fil
conducteur 1 est perpendiculaire au plan formé par les deux conducteurs et "sort" de ce
plan.

La force Fo; exercée par le conducteur 1 sur le conducteur 2 est :
Fo = Z/dl AB

ou B est le champ crée en dl (sur le conducteur 2) par le conducteur 1. Fy; est attractive :
deux conducteurs parcourus par des courants dans la méme direction s’attirent.
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D’aprés la loi de Biot et Savart, B vaut :

_ Hol
2md
<€ d >
‘_
Fa 4
@ dl
Al +
Al
Conducteur 1

Conducteur 2

FIGURE 7.9 — Deux conducteurs portant deux courants différents

Comme dl et B sont perpendiculaires, Fo; a comme amplitude

ou L est la longueur d’intégration sur le conducteur.

b) Champ créé par une boucle de courant circulaire de rayon R le long de
I’axe perpendiculaire a la boucle et passant par son centre

1=y

dl sort de 0 dl rentre dans di
la feuille la feuille

FiGURE 7.10 — Boucle de courant
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Nous avons
wol dl AT

dB =
Adr 13

Décomposons dB en composantes selon OP (soit dB)) et perpendiculaire, soit dB . Par
symétrie, 'élément dl diamétralement opposé crée une composante dB’, opposée a dB | .
Il ne reste que la composante dB).

Calculons dl A r. Notons que dl.Lr (voir figure [7.10]). Donc

Mo] dl

dB = "——

47 r?

ol dlcos
dB = —

= "4r 2
(3-) B
cosa=cos|——a')=sina = —
2 r

Or [dl =27R. Donc

B — piol R?
= 2(R? + 22)3/2

Pour de grandes valeurs de z (2 > R), B| vaut

/J[)IR2 . ,u,()ITI'R2

By = 223 2mz3

B varie comme 1/23. La quantité u = ITR? est appelée moment magnétique dipo-

laire.
Ho

By =5 3k
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7.4 Loi d’Ampére
7.4.1 Forme intégrale

Soit un contour C' fermé qui entoure des conducteurs portant des courants I, (figure

711).
v
S

Contour C.

La direction selon laquelle
le contour d'intégration est
suivi est indiquée (sens
trigonométrique).

FI1GURE 7.11 — Contour entourant des conducteurs

La loi d’Ampére s’écrit (sans démonstration)

f B - dl = pp(somme des courants inclus dans C)
C

L’intégration sur C se fait en suivant la direction marquée sur la figure [7.11] Dans le cas
de cette figure :

§ Bdi=pu(h+ 1 1)

C

Les courants I4 et I5 ne comptent par car ils sont en dehors de C.
Plusieurs remarques doivent étre faites ici :

o [l est nécessaire de préciser le sens dans lequel l'intégration se fait.

e Les courants sont des quantités algébriques. Dans le cas particulier de ’exemple précé-
dent, I; et I» sont positifs et I3 est négatif. Comment détermine-t-on le signe des
courants 7 Ce signe est lié au sens du parcours le long de C. Dans le cas de notre
exemple, le sens du parcours d’intégration est le sens trigonométrique (systéme d’axes
Oxyz droit). Les courants I et I3 sortent de la feuille et sont dans le méme sens que
e, : ils sont donc positifs. I3, rentrant dans la feuille, est négatif.

Une autre maniére pour déterminer le signe des courants est d’utiliser la main droite.
Courbez votre main droite avec les quatre doigts selon le sens du parcours d’intégration.
La direction du pouce tendu vers le haut correspond a la direction positive.
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e Comme pour la loi de Gauss en électrostatique, la loi d’Ampére en toute généralité
ne nous permet pas de calculer B. Elle donne simplement la valeur de § B -dl le long
d’un contour d’intégration C' fermé.

7.4.2 Forme différentielle (ou locale)

Supposons que le conducteur n a une section S, :

in

Nous pouvons écrire

In:/ Jn -dS,

ou j, est la densité de courantE] dans le conducteur n. Notez aussi que cette formule
définit la notion de densité de courant. Notez aussi que la densité de courant est une
quantité vectorielle.

En reprenant le cas précédent, nous pouvons donc écrire

fB-cu:uo[/ jl~dsl+/j2~dsz+/j3~dss}
C S1 So S3

Le fait que I3 est compté négativement se refléte dans la densité de courant j; qui est
une quantité vectorielle, qui posséde donc une direction.

Naturellement, Si, Sz et S3 sont totalement inclus dans S entourée par C (figure [7.12).

Avec la convention
j, dans S,

jTL =
0 horsde S,

nous pouvons récrire

C S S S
B-dl:uo/ j, | -ds
g (2
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Contour C

Surface S

FIGURE 7.12 — Contour entourant des conducteurs

ou la somme sur les j,, inclut seulement les courants (ou les parties de courant) dans S.

Rappelons l'identité de Stokes (cf. Notations du cours) :

fB~d1:/(V/\B)~dS
C S
Donc

/(V/\B)-dS:uo/j-dS
S S

ol nous avons désigné par j la quantité ), j,. Cette égalité devant étre satisfaite quelle
que soit la surface S, nous avons :

V AB = pgj (7.4)

C’est la forme locale de la loi d’Ampére. Elle relie la densité de courant j au rotationnel
de B au méme point.

7.4.3 Exemples d’utilisation de la loi d’Ampére

FIGURE 7.13 — Conducteur circulaire
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Soit un conducteur circulaire infiniment long de rayon R (figure|7.13)). Le courant I sort
de la feuille et la densité de courant j est uniforme & travers la section. Nous avons donc

I=nR?jl]

Calculons B au point P dans le conducteur. P se trouve a une distance r (r < R) du
centre du conducteur.

Le conducteur étant infiniment long, le champ B est dans le plan perpendiculaire au
conducteur. La symétrie du probléme suggére d’utiliser un contour d’intégration pour la
loi d’Ampeére pris comme un cercle de centre O et de rayon r. Le sens d’intégration sera
le sens trigonomeétrique.

La symétrie du probléme indique que B est tangent au cercle de centre O et de rayon r
(essayez de vous en convaincre). Donc :

%B-Cﬂ:BQﬂ'T
C

polmr? - polr?

No/j'dszuojﬂ2=
s

mR2 R?
polr?
B27rr:j{B-d1:uo/j-dS:
c s R?
Donc
_ polr
- 2TR?

Le champ & l'intérieur du conducteur augmente linéairement avec le rayon.

Si le point P se trouve a lextérieur du conducteur (r > R), la méme méthode conduit a

2mrB = pol
p = Mol
2mr

A Vextérieur du conducteur, B décroit en % A la surface du conducteur les deux expres-
sions donnent la méme valeur :

ol

B(r=R) = o R

Nous avons dit que le champ B est tangent au cercle de centre O et de rayon r. Vérifions
que ce champ B satisfait a la forme locale de la loi d’Ampére

V AB = ]
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Dans le conducteur, au point P(z,y),

B_ polr -y x 0
- 271—R2 (x2+y2)1/2’ ($2+y2)1/2’

Avec 72 = 22 + y2, nous avons
_ o ya,0) = B (g a0)
27TR2 b ) 2 ) b

Calculons VA B :

ex e e e, ey e,

o o 9 0 o 9 poj | Hoj

B - a = ~ — a,, a. = _— _— e ) — 1
VA O ay Oz ox 6y 0z ez( 9 + 9 > 2LV Hol
HoJ 0]
Be By Bl | =y Sre 0

Donc V A B = poj.

Pour un point P en dehors du conducteur, nous avons

_ Mol —y z 0
2mr \ (22 + y2)1/27 (22 + ¢2)1/2’

Avec 7 = (22 + y?)'/2, nous avons

pol Y x
B: - P 70
2m ( a2 +y? 2% +y? )

Calculons VA B :

e, ey e,
0 9 0
VAB = Ox Oy 0z
—ypol zpol 0
2m(a? +y?) 2m(x? +y?)

_ oMl o (@ N 9 y
om0z \ a2+ 2 oy \z% +y?

o &.I 224y — 222 2?4 y? — 242 _0
Zor (22 + 2)2 22+ 422 |
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Et donc VAB = 0 pour un point P en dehors du conducteur. Notre résultat est conforme
a la relation
V AB = pugj
avec
j pourr<R
j=
0 pourr>R

Champ d’un solénoide

Un solénoide est formé de 'enroulement hélicoidal d’un conducteur. Un solénoide idéal

FIGURE 7.14 — Solénoide

est un solénoide infiniment long, et dont les enroulements sont serrés les uns contre les
autres. Le champ & l'intérieur du solénoide est uniforme et paralléle a I'axe du solénoide.
Le champ a lextérieur d’un solénoide idéal est nul. Calculons maintenant le champ
magnétique a l'intérieur d’un solénoide idéal. Prenons un parcours d’intégration C' (figure

7.15)).

Y 3

l |

€ L g

DX

FIGURE 7.15 — Solénoide idéal

%B'dl:BL:,ugInL

oll n est le nombre de tours par unité de longueur et I le courant par tour. Nous avons
donc :
B = ponl
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7.5 Valeur du flux f g B - dS sur une surface S fermée

Expérimentalement, nous vérifions la loi

/B‘dS:O
S

sur une surface fermée S. Par le théoréme de la divergence,

/SB.dsz/V(v-B)d?’r

avec V' le volume entouré par S, nous avons
/ (V-B)d*r =0
1%

Cette relation étant valable pour tout volume V', nous devons avoir

V-B=0

/B-dSzO
S

indique que le flux de B & travers toute surface S fermée est nul. Le flux rentrant est égal
au flux sortant. Pour mieux illustrer cette notion, prenons un tube fermé par des lignes

La relation

de champ magnétique.

s/ I
Ss s,

FIGURE 7.16 — Tube fermé par des lignes de champ magnétique

La surface S est prise comme celle formée par les deux faces S et S normales aux lignes
de champ. La surface latérale est fermée par les lignes de champ qui forment 'extérieur

du tube.
/B-dS:():/ B-dS+/ B-dS
S S1 So
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/ B-dS=0
S3

Le flux rentrant ‘fsl B- dS‘ est donc égal en valeur au flux sortant ‘fs2 B- dS‘.

car

da au fait que, sur S3, B_LdS.

Nous avons ici une propriété importante du champ magnétique. Si nous prenons un petit
tube formé de lignes de champ magnétique, le flux magnétique a travers une surface
perpendiculaire aux lignes de champ est conservé. Si nous imaginons S trés petit, nous
dirons que toutes les lignes de champ qui rentrent dans Sy ressortent en So. Les lignes
de champ magnétique ne sont jamais interrompues!

Plus précisément, si vous suivez une ligne de champ magnétique, vous avez deux possi-

bilités :

e soit elle forme une courbe fermée,

e soit elle part de 'infini et retourne vers I'infini. En fait, dans ce cas, nous pouvons dire
qu’elle se ferme a l'infini, ce qui nous rameéne au cas précédent.

Une comparaison avec 1’électrostatique nous aidera & mieux comprendre cette discussion

sur les lignes de champ.

Electrostatique Magnétostatique
Il existe une charge ¢ Pas de charge magnétique
50/ E - dS = somme des charges dans V' entouré par S / B-dS=0
S S
vV-E=L V-B=0
€0

TABLE 7.2 — Comparaison entre électrostatique et magnétostatique
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Prenons le cas de 1’électrostatique avec une seule charge q.

FIGURE 7.17 — Lignes de champ électrique

Les lignes de champ E partent radialement & partir de ¢. Si nous intégrons sur une sphére
S centrée sur g, le flux de E a travers la sphére vaut

/E-dS:q
S €0

ce qui dénote simplement que les lignes de champ partent de ¢ et "rayonnent" & partir
de la.

Si maintenant nous intégrons sur une sphére S’ non centrée sur ¢, les lignes de champ
qui rentrent dans S” vont ressortir de S’ de sorte que le flux soit nul :

/E-dS:O

Ce qui différencie ’électrostatique de la magnétostatique, c’est que :

e en électrostatique, si nous suivons une ligne de champ, elle sera interrompue quelque
part par une charge (la ligne part ou arrive sur une charge)

e en magnétostatique, une ligne de champ n’est jamais interrompue, et forme soit une
boucle fermée, soit une ligne qui part de 'infini et va vers 'infini.

Les formes locales

v E=".
€0

et
V-B=0

montrent aussi la méme différence. En électrostatique nous avons des charges ¢ localisées
en r, nous pouvons donc définir p(r).

L’équation V - B = 0 n’exprime que le fait qu’il n’y a pas de charge magnétique au
méme sens que la charge électrique. Cette charge magnétique hypothétique, qui n’est pas
montrée expérimentalement, serait le monopdle magnétique.
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Applications

Lignes de champ d’une boucle de courant

N
N

2

I=

| eT—>

I=
----..—’.--

FIGURE 7.18 — Boucle de courant

Nous savons que le champ B le long de 'axe Oz est parallele & Oz. Par application de la
loi de Biot et Savart, le champ B en un point P situé dans le plan de la boucle est aussi
dirigé le long de Oz.

En utilisant le fait que les lignes de champ sont soit fermées soit vont & l'infini, nous
pouvons esquisser les lignes de champ d’une boucle de courant (figure [7.19)).

B

Figure 7.19 — Lignes de champ d’une boucle de courant

Lignes de champ d’un solénoide de longueur finie

Le solénoide est formé de boucles juxtaposées. Le champ le long de I'axe des boucles est
le long de ’axe du solénoide : la ligne de champ correspondante est donc aussi dans ’axe
du solénoide.
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I

NPX{K{NMM X

F1GURE 7.20 — Lignes de champ d’un solénoide

Toutes les autres lignes de champ passent dans l'intérieur du solénoide vers I’extérieur en
se refermant. Comme toutes les lignes de champ se referment en passant par ’extérieur,

nous avons
/ B-dS = / B-dS
Sint Sezt

ol Sine est la surface intérieure du solénoide et perpendiculaire & I'axe du solénoide, et
Sext la surface (infinie) a 'extérieur du solénoide et perpendiculaire a 'axe. Le champ a
I'extérieur du solénoide est donc beaucoup plus faible qu’a l'intérieur.

7.6 Equation de continuité

Rappelons ’équation d’Ampére sous sa forme locale :

V AB = o)

Calculons V- (VAB) :
V- (VAB) = 1oV -
Or V- (VA A) =0 (identité vectorielle)[f]

Nous avons donc
V-j=0

4. Vous pouvez vous rappeler de cette identité
e soit en vous mémorisant : la divergence du rotationnel est nulle,
e soit en notant que nous avons formellement (Vecteur V)-(Vecteur V) A A)= 0 (ceci est un “truc”
mnémotechnique).
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qui n’est autre que I’équation de continuité pour la densité de courant électrique dans le
cas statique.

En effet, la densité de courant j est
j=mnevp

ot n est le nombre d’électrons porteurs de charge (c’est-a-dire les électrons) par unité de
volume et e la charge d’'un électron, vp la vitesse des électrons. En écrivant p,; = ne

J=pavp

L’équation de continuité (cf. Dynamique des fluides) est

apel
ot

8pel
ot

+ V- (pavp) = +V-j=0

Comme nous considérons des phénomeénes stationnaires, % =0 et donc

V-j=0

7.7 Relation a 'interface entre 2 milieux

(Voir le chapitre 5.6.3 pour le champ électrique.)

Rappelons les 2 équations
V-B=0

V x B = ]
Considérons deux milieux séparés par une interface 3.

L’équation V - B = 0 montre qu’il n’y a pas de charge magnétique

Interface X

Milieu 1

Milieu 2
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Considérons un petit cylindre de hauteur h (h — 0) dont une moitié se trouve dans le
milieu 1 et 'autre dans le milieu 2

/ B.-dS=0
S du cylindre

Lorsque h tend vers 0, on a donc

|selon la normale dS dans milieu 1 — B|selon la normale dS dans milieu 2

Il y a donc toujours égalité des composantes normales de B & travers 'interface.

Considérons maintenant le contour C (cf 5.6.3)

Interface X

Milieu 1

Milieu 2

Nous ferons tendre h vers 0. Selon V - B = pj, nous avons
wall:uo/jwlS
C

Il peut y avoir discontinuité de la composante paralléle de B.

Donc By — B2 = tojsur face



Chapitre 8

Phénoménes d’induction magnétique

8.1 Introduction

Lors de I’étude de I'électrostatique et de la magnétostatique, nous avons considéré que
les sources des champs E et B, c’est-a-dire les charges, les courants, et les champs E et
B eux-mémes, ne dépendent pas du temps. Les lois que nous avons trouvées sont, sous
forme intégrale :

€0 / E - dS = Somme des charges dans V entouré par S (fermée)
S
f E-dl=0
C
/ B -dS =0 (S est fermée)
S
?{ B - dl = p [Somme des courants traversant la surface entourée par C|
C

Sous forme locale, ces quatre lois sont :

v.E="

€0
VAE =0
V-B=0
VAB = poj

ol p est la densité (volumique) de charge électrique et j la densité de courant.

Que se passe-t-il si nous introduisons maintenant la possibilité que les quantités physiques
en jeu dans ces équations varient dans le temps 7 C’est le but des chapitres suivants, qui
vont se terminer avec la présentation des lois de ’électromagnétisme dues a Maxwell.

153
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Ce chapitre sur I'induction discutera des relations entre les champs E et B lorsque le flux
de B a travers une surface S donnée (surface qui sera définie le moment venu) varie dans
le temps.

8.2 Présentation de quelques phénoménes expérimentaux

Variation du flux du champ magnétique terrestre a travers une boucle
circulaire

Nous savons que nous sommes immergés dans un champ magnétique terrestre By qui
peut étre considéré comme constant dans l'expérience suivante (figure |8.1)) :

By

Voltmétre

Boucle entourant une surface S (en gris).
La boucle est un fil conducteur.

FiGurE 8.1 — Boucle circulaire dans le champ magnétique terrestre

Faisons tourner la boucle, de rayon R, comme si nous sautions & la corde. Nous avons
successivement les situations suivantes :
1) dS est dans la méme direction que By et de signe opposé.

d = / Br-dS = —nR’Br
S
L'unité de ® est le Weber (Wb) égal a T-m?.

— 0O
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2) La boucle est paralléle & By : / Br-dS =0.
S

3) /BT -dS = 7R?Br.
S

> O

4) La boucle est paralléle & By : / Br-dS =0.
S

—_—) ds

5) Nous revenons a la situation 1) : / Bt -dS = —7R?Br.
S
Naturellement, nous passons & travers ces étapes d’une maniére continue et la variation

du flux magnétique ® est également continue entre —mR?Br et mR?Br.

Qu’observons-nous sur le voltmeétre 7

Premiére observation : le fait de tourner la boucle engendre une différence de poten-
tiel aux bornes de la boucle.

Deuxiéme observation : la différence de potentiel mesurée augmente avec la vitesse
de rotation de la boucle.

Notons immeédiatement que si nous observons une différence de potentiel aux bornes de

la boucle, qui est conductrice, cela veut dire qu’il y a un champ électrique le long du

conducteur et donc qu’il y a un courant qui circule.
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Interprétation de I’expérience

Cette expérience nous montre que lorsque le flux ® du champ magnétique a travers une
surface S entourée par un conducteur varie temporellement, il apparait une différence de
potentiel aux bornes de la boucle. Pour utiliser la terminologie que nous avons introduite
dans le chapitre sur les circuits électriques, nous disons que la variation temporelle du
flux magnétique ® donne naissance a une force électromotrice €.

Cette force électromotrice est liée & la variation temporelle du flux ®.

Le phénomeéne que nous venons d’observer est appelé induction. Le courant et la fém
observés sont respectivement le courant induit et la fém induite.

Critique de I’expérience

Cette expérience appelle plusieurs commentaires :

i) Que se passe-t-il si, au lieu d’avoir une surface S entourée par une boucle & un seul
tour, S est entourée par une boucle & n tours serrés les uns contre les autres? Une
réalisation de cette expérience est assez simple et montre que la force électromotrice e,
produite aux bornes d’une boucle a n tours est égale & n fois la force électromotrice €1
produite aux bornes d’une boucle identique, mais a un seul tour.

€n = NEL

Le flux ®,, aux bornes d’une boucle & n tours serrés les uns contre les autres est aussi
égal & n fois le flux & travers la boucle & un tour.

(I>n = n<I>1

Donc, du point de vue pratique, si vous avez une boucle avec n tours, le flux magnétique
est égal & n fois celui & travers une boucle & un seul tour.

ii) Nous avons obtenu que la fém induite € est proportionnelle & la variation temporelle
du flux ® en maintenant B fixe et en changeant ’angle entre dS et B. Ce résultat est-il
aussi valable si 'on garde constant ’angle entre dS et B et que 'on varie temporellement
l'amplitude du champ B ?

iii) Nous ne pouvons pas varier la direction du champ magnétique pour pouvoir vérifier
la relation entre le signe de ¢ et celui de la variation de ®. Cette déficience ne peut
pas étre supprimée, car nous ne pouvons pas changer la direction du champ magnétique
terrestre Bp. Il faut concevoir une autre expérience!
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Réponse a la question ii)

Considérons ’expérience suivante :

Solénoide S, Boucle
i Fer doux
Lignes de champ
i(t)
Source de courant Voltmetre
sinusoidale i(t) alternatif

Le champ B dans le solénoide S; est créé par le passage d'un courant i(t) qui varie
sinusoidalement :
i(t) = Iy cos(wt)

Le champ B(t) varie de la méme maniére. La barre de fer doux qui passe dans le solénoide
S1 et dans la boucle sert seulement & "canaliser" le champ B créé par S vers la boucle.

La variation du flux magnétique ® dans la boucle est maintenant causée par la variation
du champ B(t), la boucle étant fixe. Nous observons, comme dans les autres expériences,
I’apparition de courant et de fém induits dans la boucle.

Nous pouvons donc dire en toute généralité que le phénoméne de l'induction et de 'ap-
parition du courant et de la fém dépend seulement de la variation du flux magnétique ®
a travers la surface S entourée par la boucle conductrice.

Réponse a la question iii)

Changeons le dispositif expérimental.

N S
T 1

—
Mouvement

Surface S de I'aimant

Voltmeétre

F1GURE 8.2 — Aimant permanent dans une boucle
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Au lieu d’utiliser le champ magnétique terrestre, utilisons le champ B créé par un aimant
permanent que l'on approche et éloigne de la boucle (figure . Le flux a travers la
surface S varie, car en bougeant I’aimant permanent par rapport & .S, le champ B sur la
surface S varie, car le champ B créé par ’aimant n’est pas uniforme dans I’espace.

L’expérience consiste & observer le signe de la fém e indiquée par le voltmétre lorsque
I'on inverse le sens de ’aimant permanent.

a) b)
N S S N
I 11
A— A—
Voltmeétre Voltmetre

Le résultat expérimental est le suivant : pour une méme vitesse de déplacement de
l'aimant permanent vers la boucle, 'amplitude de la fém est la méme dans les deux
cas, mais le signe de la fém s’inverse.

Interprétation

L’amplitude du champ B a la surface S est la méme dans les deux cas, seule sa direction
a changé. Le mouvement de 'aimant étant le méme, la variation de ® dans les deux cas
est égale, mais de signe opposé.

Le signe de la fém ¢ dépend donc du signe de ®.

Tachons d’étre plus précis. Considérons le cas a) ou nous rapprochons de la boucle le
pole nord de 'aimant. Le champ B est dirigé de la droite vers la gauche et augmente.

~ - .

. N S

- »> «—| I |

B

- —
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Dans ce cas, le courant induit I dans la boucle est tel que le champ B;,4 induit par [
s’oppose & l'augmentation du champ B créé par I'aimant :

B augmente
=ind

Si on éloigne maintenant 'aimant (toujours dans la méme configuration), le champ B
va diminuer. Le courant [ induit dans la boucle crée un champ B;,q qui s’oppose & la
diminution de B :

=—ind

B diminue

Si maintenant le champ B est dirigé de gauche a droite (on inverse les poles nord et sud
de 'aimant) et que ’aimant est rapproché de la boucle, B va augmenter. On trouve que
le courant induit I crée un champ induit B;,q qui tend & contrecarrer 'augmentation de
B. B4 est donc dirigé de droite a gauche :

B. . B augmente

Finalement, toujours dans la méme configuration, si nous éloignons ’aimant, B diminue
et I va essayer de contrecarrer cette diminution en créant B, dirigé de gauche a droite :

E ind
>

B diminue



160 CHAPITRE 8. PHENOMENES D’INDUCTION MAGNETIQUE

8.3 Loi de Lenz et loi de Faraday

8.3.1 Loi de Lenz

Les quatre cas que nous venons de décrire donnent la base expérimentale de la loi de
Lenz :

Le courant induit I dans la boucle crée un champ magnétique induit B;,4 qui s’oppose
au changement du flux magnétique qui crée le courant induit.

8.3.2 Loi de Faraday
Soit une boucle conductrice de surface S. Le flux magnétique ® & travers cette boucle

est :
@:/B~dS
S

Supposons que ® dépende du temps. La loi de Faraday (8.1) donne la relation entre la
fém induite £ dans la boucle conductrice et @ :

dd®

=—— 8.1
e=- (8.1)
Si la boucle comporte n tours, alors € dans la boucle vaut :
dd
=-—-n—0 8.2
€ n— (8.2)

8.3.3 Exemples d’application de la loi de Faraday

Considérons un solénoide infiniment long (solénoide idéal) dont le nombre de tours par
unité de longueur est n. Chaque tour porte initialement un courant 4g.

A l'intérieur du solénoide, on place une boucle de rayon r comportant m tours. La boucle
est perpendiculaire & I’axe du solénoide et son centre est sur I'axe du solénoide. r est
inférieur au rayon R du solénoide (figure [8.3).

ooooooooooook i
e[eJe[e[e]e[e[e]e[eTe]e]i(t) Ai(t)

_____ @TrR "
0| t

At

FI1GURE 8.3 — Boucle dans un solénoide idéal



8.3. LOI DE LENZ ET LOI DE FARADAY 161

On réduit le courant ¢ dans le solénoide de la valeur ig & 0 A durant un temps At. Quelle
est la fém aux bornes de la boucle?

Pour résoudre le probléme, nous devons utiliser la loi de Faraday

dd

62_%

Dans un premier temps, il nous faut calculer ® en fonction de 7.

Le champ dans un solénoide idéal est paralléle & son axe et uniforme. Sa valeur est :

B = pgni

Le flux ® & travers la surface S de la boucle vaut
® = 1’ B = mruoni
La boucle comportant m tours, le flux total ®;,; = m®.

Pour t < 0, i(t) = ip = cte. Donc

dd
dzOt =0pourt <0
“ o o
€= — d;Ot z—mazopourt<0

Pour 0 < t < At,

i) = io (1 _ AZ)

donc

t
&(t) = mriugnio [ 1 —
(t) = mr Momo< At)

— = —mrfugn——
dt HOTAY

Par application de la loi de Faraday :

dd dd '
— d;Ot = _mg = mnﬂ"’"Q,UOgiot pour 0 <t < At

E =

Finalement, pour t > At, i(t) =0 et ¢ = 0.

Notons que le courant induit I dans la boucle crée un champ induit B;,4 qui s’oppose &
la diminution du flux ®.
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Force pour déplacer une boucle dans un champ magnétique

Considérons le cas idéal suivant, qui n’est pas réel. Supposons un champ magnétique
statique B limité dans une région de I'espace, comme indiqué sur la figure [8.4

1 F 1
1 1
1 =2 1
1
=X ; X >4
: L A
x | x x Ix -_—
On tire la boucle vers
X X X X la droite avec une
A 4 .
f‘_“l | vitesse constante v.
I x|'x x x
x | x x x
: A 4

k,

FiGURE 8.4 — Boucle dans un champ magnétique

Considérons une boucle rectangulaire de largeur | et dont une longueur z est dans le
champ magnétique. On tire la boucle vers la droite. Décrivons ce qui se passe avant cela :
un flux magnétique ® passe & travers la boucle :

® = Blx

Si on tire la boucle vers la droite avec une vitesse v constante, le flux ® diminue car la
longueur x diminue. Selon la loi de Lenz, le courant induit I tendra & contrecarrer la
diminution du flux ® : I doit donc augmenter le champ B statique. Le sens du courant
I est indiqué sur la figure.

Quelle est la fém e induite dans la boucle ? Selon la loi de Faraday, cette fém vaut :

dx

= Bl
dt

= Blv

H_dg_ dBlz
T T @

La valeur absolue de la fém est proportionnelle & la vitesse de déplacement v de la boucle.

Montrons que, pour tirer la boucle, nous devons exercer une force. Lorsque nous tirons
la boucle, un courant induit est généré. Nous nous trouvons dans la situation ol nous
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avons un conducteur portant un courant I perpendiculaire & un champ magnétique B.
Le conducteur ressent donc une force magnétique

F:I/dl/\B

Cette force magnétique s’exerce sur trois cotés de la boucle, comme le montre la figure

B4
||| = 1B

2|l = [[F3]| = [Bx
F,=—F;

Donc, pour tirer la boucle vers la droite & vitesse constante v, I'expérimentateur doit
exercer une force égale a —F;.

8.4 Champ électrique induit

Jusqu’a maintenant, nous avons considéré des boucles fermées avec des fils conducteurs.
Nous avons vu que, lorsque le flux magnétique a travers la boucle change, un courant
induit I circule dans la boucle, c’est-a-dire dans les fils conducteurs formant la boucle.
Nous savons d’autre part que, dans un conducteur, ’apparition d'un courant est liée a
I’existence d’un champ électrique E.

Ces deux faits (création d’un courant induit I dans le conducteur et nécessité d’avoir un
champ E lorsque nous avons un courant /) nous aménent & un résultat trés important
qui relie le champ électrique E & un champ magnétique B(¢) variable dans le temps :

Un champ magnétique B(¢) variable dans le temps produit un champ électrique E.

Montrons ceci & travers 'exemple suivant. Soit un champ magnétique uniforme dans
I’espace, mais variable dans le temps :

B(t) = —By(t)e.
Pour fixer les idées, supposons que By(t) soit du type

t
BO (t) = BOE

c’est-a-dire que By(t) augmente avec le temps.

Placons une boucle conductrice circulaire de rayon R dans le plan Oxy (figure [8.5).
Comme By(t) augmente avec le temps, un courant induit / circule dans la boucle. La
direction de I est le sens trigonométrique.
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X X X X X X
X X X X

B
X X
X X
X X X X

X X X X X X

Ficure 8.5 — Boucle dans un champ magnétique fixe dans 'espace et variable dans le
temps. Le champ B(t) est créé par un solénoide dont 1’axe passe par O.

D’autre part, nous savons qu’avec la présence de [ il existe un champ électrique E,
nécessaire pour mettre en mouvement les électrons.

Par la pensée, enlevons le conducteur qui forme la boucle, tout en laissant au méme
endroit les électrons qui produisent le courant 7. Ces électrons en mouvement ressentent
I'action d’une force électrique due & un champ électrique E.

E

X X XN\ X X X
X X X X

B
X X
X X
X X X X
X X X X X X

B(t) est croissant

FiGURE 8.6 — Champ électrique produit par un champ magnétique variable dans le temps

Ce champ électrique E est constant et, par un argument de symétrie, tangent au cercle
de rayon R.

E est dans la direction indiquée sur la figure si By(t) est une fonction croissante du
temps. Si By(t) reste constant, E est nul. E inverse sa direction lorsque By(t) est une
fonction décroissante du temps.
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8.4.1 Loi de Faraday exprimée avec le champ électrique induit E

Soit un champ magnétique B variable dans le temps.
B = B(r,t)

1l existe un champ électrique induit E.

Soit une boucle fermée mathématique C' encerclant une surface S. Sur une base expéri-
mentale, et sans démonstration, nous écrivons

jqiE.dl:_/S((iB> .dS (8.3)

Cette loi (8.3)) est également connue comme loi de Faraday portant sur le champ électrique
induit E. Elle exprime simplement que la fém (membre de gauche) est égale a (variation
du flux).

Rappelons a nouveau que le champ électrique induit E n’existe que si B varie dans le
temps. Pour des champs B constants dans le temps, et §’il n’y a pas de champ électro-
statique Egg, alors

E=0

8.4.2 Différence entre les champs électriques induit et électrostatique

Il existe plusieurs différences entre le champ électrique induit et le champ électrique
électrostatique. Ces différences sont indiquées dans le tableau [8.1]

Champ électrostatique | Champ électrique induit
) . d
Cause Charge électrique —%CID
Ligne de champ Part (ou finit) sur la charge Se ferme sur elle-méme
. . dd
Circulation sur C fermé Egs-dl=0 E.-dl=——

TABLE 8.1 — Différences entre champs électriques induit E et électrostatique Egg

La discussion sur la topologie des lignes de champ pour le cas du champ électrique induit
E est analogue & celle que nous avons faite pour les lignes de champ magnétique. Comme
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pour le champ magnétique, le champ électrique induit n’est pas généré par des charges.
Toute la discussion pour les lignes de champ magnétique est donc valable pour les lignes
du champ électrique induit.

8.4.3 Forme locale de la loi de Faraday

La forme intégrale de la loi de Faraday est

fE.dlz—d/B.ds
c dt Jg

ot S est la surface entourée par C' (contour d’intégration fixe). Comme C' est fixe, S lest

également, et donc
G| Bras=[(§B)as
dt Jg s \ dt

Nous pouvons transformer y{ E - dl & ’aide du théoréeme de Stokes :
C

j{CE-dlz/S(V/\E)-dS

L’équation de Faraday devient donc

[wnm)as—- [ (4B)-as (5.4

L’égalité (8.4]) devant étre satisfaite pour toute surface S, nous devons avoir :

0B
VAE = —— 8.5
ot (85)
L’équation (8.5)), qui est la forme locale de 'équation de Faraday, permet de relier le
champ électrique E(r,t) et le champ magnétique B(r,t). Cette équation est I'une des
quatre équations de Maxwell qui décrivent ’électromagnétisme.

8.5 Circuit électrique en présence de phénoménes d’induc-
tion

Nous avons remarqué qu’une boucle conductrice présente une fém lorsque le flux mag-
nétique & travers elle varie dans le temps. Nous allons maintenant essayer de préciser
ces notions du point de vue des circuits électriques. Comme nous ’avons vu lors des
expériences, le cas le plus fréquent que nous avons rencontré est celui du solénoide.
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Soit un solénoide idéal ayant n tours par unité de longueur. Le champ créé & Uintérieur
de ce solénoide est
B= ,LL()In

ol [ est le courant par tour du solénoide. Si S est la section du solénoide, le flux & travers
une boucle du solénoide est
® = BS = ppInS

Si nous considérons une longueur [ du solénoide, le nombre de tours N sur cette longueur
est
N =nl

Le flux total @4 sur la longueur [ est donc

Py = NO = pon?IlS

Nous définissons le coefficient d’induction (ou inductance) L du solénoide de longueur
[ par

L=—= pon?lS (8.6)

L’unité de L est le Henry :
[L] = Henry = H = Tm?A ™!
Rappelons que jig a une unité de Hm=! :

o = 471077 Hm™*

8.5.1 Self-induction

Soit un solénoide (ou bobine) dans un circuit (figure [8.7)). Initialement, il n’y a pas de
courant dans la bobine.

Si I commence & passer, il y aura un phénomeéne d’induction dans la bobine : en effet, le
flux & travers elle est initialement nul, et le courant I crée un champ B et un flux ®. Il
y a donc apparition d’'une fém induite €;,4.

e _ _dq)tot
ind dt
Par I'équation , Py = LI, et donc :
dl
ind — —L—
Sind dt

La figure donne la fém dans les deux cas d’un courant I croissant (dessin de gauche)
et décroissant (dessin de droite).
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I (augmente)

ST____ & dT Bobine

F1GURE 8.7 — Circuit avec bobine

o > o >—
I croissant I décroissant

€ind €ind

o o

FIGURE 8.8 — La fém ¢;,4 s’oppose a la croissance (ou décroissance) du courant
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Ce phénoméne est appelé self-induction. La bobine (ou le solénoide) est aussi appelé
une "self". Pour définir une self, du point de vue électrique, il nous suffit de connaitre le
coefficient d’induction (ou inductance) L. Par abus de langage on appelle aussi L la self
de la bobine.

Si la bobine est formée d’un fil conducteur résistif, elle posséde une résistance R et le
circuit équivalent de la bobine se compose d’une résistance R en série avec la self.

R

o

F1GURE 8.9 — Circuit équivalent d’une self

8.5.2 Etude d’un circuit électrique avec une self

Considérons le circuit de la figure Au temps t = 0, l'interrupteur est fermé et le
courant commence & circuler dans la résistance R et la self d’inductance L.

T S e W

sT —t SindT L

FIGURE 8.10 — Circuit avec une self

Lorsque le courant circule, il se développe une fém induite €;,4. Par application de la loi
de Kirchhoff sur les tensions sur le circuit ABC, nous avons :
e en B une tension —RI,
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e en C une tension égale & €;,0 = —L% obtenue par la loi de Faraday,
e en A la fém e.
Par application de la loi de Kirchhoff :

I
RI-1% 41—
a e

dal
RI+L— =c¢
dt
avec la condition initiale I(t = 0) = 0.
La solution de cette équation différentielle est la somme
e de la solution générale de ’équation différentielle sans second membre

dl
RI+L— =0
+ dt

e et d’une solution particuliére de ’équation différentielle avec second membre

dl
RI+L— =
+ 7t €

La solution générale de I’équation différentielle sans second membre est

10 - o {1

Comme solution particuliére de I’équation avec second membre, nous voyons que

€
==
R

la satisfait. L’équation générale est donc

Rt
I(t) :IOexp{—L} —I—%

avec la condition initiale I(¢ = 0) = 0. Cette condition nous permet de définir

9
I():—E

I(t) = % [1 —exp{—}th

Nous notons que le courant I(t) varie exponentiellement avec une constante de temps
égale & }%. Plus R est petit, plus la constante de temps pour atteindre la valeur asympto-
tique est grande. Si la résistance externe R est supprimée et que la self elle-méme est faite
de supraconducteur et n’a donc pas de résistance, la constante de temps % est infinie!
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R

aT—__—

FiGuRre 8.11 — Circuit équivalent lorsque ¢t — oo

Pour t — oo, I — 5. Ce résultat est attendu, car si t — oo, la fonction exponentielle tend
vers 0 et il n’y a plus de variation de I. Les effets de self-induction sont alors négligeables,
et le circuit se raméne a celui de la figure [8.11]

Pour le circuit de la figure la différence de potentiel Vi aux bornes de la résistance
est
Rt
VrR=RI=c¢ [1 — exp {—H
L
Pour ¢t — oo, Vg est égale & ¢.
La différence de potentiel V7, aux bornes de la self est

dl e R Rt Rt
Vi =—-L— = Lexp{—L} = 5exp{—L}

Comme nous l'avons mentionné, pour ¢ — oo, Vp, tend vers 0, car le courant I ne varie
plus et il n’y a plus d’effet de self-induction. Ce résultat est consistant avec le fait que
Vg tende vers € pour t — oo.

L’évolution du courant en fonction du temps est représentée dans la figure Les
graphiques de la figure montrent les évolutions de Vg et Vi, en fonction du temps.

8.5.3 Energie magnétique

Rappelons que lorsqu’un courant I traverse la fém e, cette derniére fournit une puissance
P = I¢. Dans le cas de notre circuit de la figure [8.10] & chaque instant ¢ nous avons

dI
Ie = RI?+ LI—
e=RI*“+ 7

Nous trouvons deux termes :
e RI? qui représente la puissance thermique perdue dans la résistance,

° LIE qui est la puissance stockée dans la self.
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AIR/e

0 1 2 3 4 5 RoL

FIGURE 8.12 — Evolution du courant dans un circuit avec une self

AV /e AV, /e

0 i 2 3 4 5 RroL i 2 3 4 5 ROL

FIGURE 8.13 — Evolutions de Vg etV en fonction du temps
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En effet, si la fém e fournit une puissance, par conservation de ’énergie, cette puissance
est transférée et stockée dans la self. L’énergie totale stockée dans la self lorsqu’un courant
Ip la traverse est :

Iy 1
Wierf = / Tedt = / LIdI = 5Lfg
0
Une self traversée par une courant Iy stocke donc une énergie

1
Weerf = §Lf§

Récrivons Wye s avec la valeur de L pour un solénoide de longueur [ :

(n* 1§ 15)

1
Wself = 7:“'077‘21513 = 240

5 LS

Or le champ B dans le solénoide (considéré comme idéal) avec un courant Iy vaut :

B = ponly
D’ol )
B
Weerr = —1S
self Z,UO

Du point de vue dimensionnel, B%/2/q a la dimension de Jm™3, et est donc une densité
d’énergie appelée densité d’énergie magnétique. A un champ magnétique de valeur B
correspond une densité d’énergie up :
B2
ug = — Jm_3
2410

Notez que lors de I’étude de ’hydrodynamique, nous avons remarqué que la pression p a
aussi une dimension de Jm™3 :

[]_E_Nm J
pl= 5=

m3  m3

La quantité B2/ug a donc la méme dimension qu’une pression p. C’est pour cela que
B? /g est aussi appelée pression magnétique. Vous la sentez lorsque vous rapprochez
deux aimants permanents de méme polarité.
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Exemple de calcul de I’énergie magnétique

Considérons un systéme formé par deux conducteurs cylindriques concentriques, comme
sur la figure [3.14

FI1GURE 8.14 — Deux conducteurs cylindriques concentriques

Le conducteur interne porte un courant I pointant vers I’extérieur de la feuille. Le courant
dans le conducteur externe vaut I et pointe dans la feuille. Nous nous proposons de
calculer ’énergie magnétique Up dans la zone entre les deux cylindres sur une longueur

L.

Appliquons la loi d’Ampére sur un cercle C' de rayon r :

fB-dl—uOI
C
p_ Mol
2mrr

Localement, la densité d’énergie up est donc
B B2 MOIQ

T 2up w22

up

up dépend donc de r. L’énergie magnétique Up vaut donc :

2 b 2
Lol T g = Lol In <b>

b
U :l 2 d = —_— f —
B /QUBWTT T J, 2 4 a
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8.5.4 Décharge d’une self

Supposons que nous avons le circuit suivant :

— 5
$1

m
—_—
=I
g
=
IRt

Dans un premier temps, S est fermé et Sy ouvert :

O—=0 P—i
Sy I

m
—_—
=I
g
=
i

Nous sommes donc dans le cas étudié précédemment, et le courant I(¢) vaut

1) =+ [1 —exp {_TH

Au bout de plusieurs dizaines de temps L/R, I(t) atteint sa valeur asymptotique ¢/R.
A cet instant ¢ = t/, nous ouvrons S; et fermons simultanément Ss :

— 5 —
Sq |

m
—_—
=I
e
=
i
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L’équation du circuit est simplement :

dl
I+ L— =
RI + 7 0

avec I = & a l'instant ¢'. Le courant décroit avec la méme constante de temps L/R, et

finit par disparaitre. Du point de vue énergétique, la self portait en ¢’ une énergie

1., 1 &

A la fin de 'expérience, I est nul, donc Wy = 0. L’énergie

1. &2
2 R?

a été dissipée sous forme d’énergie thermique dans la résistance.

8.6 Circuit avec une fém ¢ = V, coswt

Nous considérons maintenant une fém e qui varie avec le temps. Si e = () alors I = I(t).

8.6.1 Circuit avec R

£=V,cos wt C-D

RI(t) = V,coswt
I(t) = %coswt

Utilisons la notation complexe e(t) = V, exp{iwt} (voir 3.2.2)

RI(t) = Vyexp{iwt}
I(t) = %exp{iwt}

Le courant I(t) est en phase avec la tension (t).
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8.6.2 Circuit avec L et R

| S
R
V, exp{iwt) (9 L
L’équation du circuit est
dI(t
—RI(t) — Ldi)(t) +e(t)=0
dI
t)=RI+ L—
e(t) +L
Nous écrivons
. dl
Vo exp{iwt} = RI(t) + LE Vit

Le courant I(t) doit donc avoir la méme dépendance exp{iwt}. Nous écrivons

I(t) = I, exp{iwt}

avec I, = nombre complexe. Nous avons pris V,, comme nombre réel. Nous avons donc

Vo exp{iwt} = RI, exp{iwt} + LI, iw exp{iwt} (8.7)
D’ou
Lo = it = ‘;%(2?;26;)
= ||| exp{—ip}
avec
v
1Lo]| = ;

(R2 + L2w2)1/2
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iLw
®
R
Donc
1) = ||| exp{—ig} explict}
I(t) = |[lLo|lexp{i(wt — ¢)}

Le courant I(t) est déphasé par ¢ par rapport a la tension.

8.6.3 Circuit R et C

£=V, cos wt —9 ——C

L’équation du circuit est

—RI(t) — q(Ct) +e(t)=0
e(t) = RI(t)+ Y
e(t) = RI®)+ % [I(t)dt

Sie(t) = V,exp{iwt} alors I(t) a la méme dépendance

I(t) = I exp{iwt} avec I, = Nombre complexe
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D’oit I'équation du circuit

1
V, exp{iwt} = RI] exp{iwt} + ——1I| exp{iwt}

D’ou

avec ]| =

1Cw
_ Vo _ Vo ]
I(/) - R_Ciw - R2+w2102 (R+ &)
=[]l exp{iv’}
Vo -
/2
21Cz>
Y A
.R
@’ ' X
-if/ Cw +

8.6.4 Notion d’impédance

Reprenons les 3 équations de circuit

RI, exp{iwt} + iLwl, exp{iwt} = V) exp{iwt}

1
RI, exp{iwt} + EI[/’ exp{iwt} = V, exp{iwt}

RI, exp{iwt} = V, exp{iwt}

Equation

Equation

179
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Faisons d’abord une analyse dimensionnelle

_ Vot _ V __
[R] - Amcl))ére - AT Q
_ Volt
[L] - Am(p))ére XS
— Volt __
[Lw] - Amcl))ére =
Coulomb A-
€] = i~ =7
[L] — Molts _ _Volt __
Cw A-s Ampére

Les trois quantités R,iwL et i ont la méme dimension, Volt/Ampére soit Ohm. Elles
différent seulement par le fait que la résistance R est une quantité purement réelle, alors
que (iwL) et [1/(iwC)] sont des quantités purement imaginaires. On appelle impédances
7 des éléments de circuit R, L et C ces quantités :

Elément de circuit | Impédance

R Zr=R
L Zy, =iwlL
C Zc = iwlC'

Dans le plan complexe Z = x + iy, les impédances sont représentées par les vecteurs
21, Zg et Zg.

Z, =iwl

y Z,=-1/iCw
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Par définition des impédances, si on vous donne un courant I = Iexp{iwt} avec I =
nombre réel, la relation entre la tension et le courant est

- Pour R Ve = RIexp{iwt}
- Pour L Vi = Zplexp{iwt}
- Pour C Vo = Zclexpliwt}

Importance de la notion d’impédance pour un circuit oscillant.

On peut calculer I'impédance équivalente d’un circuit comprenent R, L et C en appliquant
les mémes régles que pour un circuit avec des résistances.

Soit n impédances Z; en série

n

Zeq = ZZZ'

i=1

Soit n impédances Z; en paralléle

1 i 1
Zegq po Z;
Par exemple, calculons I'impédance équivalente du circuit suivant

R Zr

C’est un circuit ayant Zg, Z1, et Z¢o en série

1
Zeg = R+ L— —
q —|—z<w wC)
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Nous avons

971/2
1
_ | p2 272
|| Zeg|| @ un minimum pour
1
W= —
VLC
et ce minimum vaut Zg,), . = R
Dans le plan complexe des impédances nous avons :
Y
itwl
z,
@
R X
1/iwC

Avec w =1/VLC , |Z| = |Zc| et Zeg =R

Pour w — oo Zc — 0 et Z;, — oo sur ’axe imaginaire

Pour w — 0 Zo — oo et Zr, — 0 sur ’axe imaginaire
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Dans ces 2 derniers cas Zgq; — 00 et le courant est nul. La fréquence w = 1/v LC est la
fréquence de résonance du courant. Si on trace 1/|Z.4| en fonction de w on a

A1/ |1Zl]

La phase ¢ de Z;, par rapport & R est de /2 pour w — 0 et de 7/2 pour w — 00. ¢ est

0 pour w=1/VLC.
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Chapitre 9

Equations de Maxwell

9.1 Introduction

De notre étude sur les phénoménes électriques et magnétiques, nous avons obtenu ’ensem-
ble des lois suivantes :

Equation de Gauss

50/ E -dS = somme des charges dans V = / peld?’r
S \%

/B-dS:O
S

Dans ces deux cas, S est une surface fermée qui entoure le volume V. pg; est la densité
de charges électriques.

Equation de Faraday

7{E.d1 _ P

c dt
7§E.cu - —/dB-dS
C /dt

Equation d’Ampeére
j{ B.-dl =y [somme des courants qui traversent S'] = uO/ j-ds
C S/

C' est une contour fermé entourant la surface S’. j est la densité de courant, et @ le
flux magnétique a travers S’.

185
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Les formes locales de ces quatre équations sont :

vV-E = 2
€0
V-B = 0
OB
E - -2
VA ot
VAB = puoj

9.2 Critique de I’équation V A B = pj

9.2.1 Rappel : Equation de continuité

Faisons un paralléle avec la dynamique des fluides. En supposant que la masse M est
conservée, nous avons abouti a I’équation de continuité

oll pp, est la densité de masse et j,,, = pmu la densité de flux de masse.

Pour les phénoménes électriques, nous avons également la conservation de la charge
électrique (en négligeant les phénoménes de recombinaison entre un ion positif et un
électron négatif). Par les mémes méthodes que pour I'hydrodynamique, nous avons donc

8pel
ot

+V-j=0

ol pe est la densité de charge électrique et j = pegu la densité de courant électrique.
Il est "normal" que nous ayons cette équation de continuité (identique formellement a
Péquation 2.5) car la charge est conservée.

Nous supposons que pe; = pei(r,t) et j = j(r,t).

L’équation
apel
ot
est ’équation de continuité pour les phénomeénes électriques. Cette équation est une
équation locale, satisfaite en tout point r de I’espace et en tout temps t.

+V-j=0

9.2.2 Interméde mathématique

Soit un champ vectoriel A(r). Nous pouvons facilement montrer que

V- (VAA)=0
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Un moyen mnémotechnique est de se rappeler qu’avec notre notation le rotationnel est
le produit vectoriel entre 'opérateur vectoriel V et le vecteur A, et la divergence d’'un
vecteur C est le produit scalaire entre V et C.

Par application de
a-(aAb)=0

car a A b est perpendiculaire & a, on se rappelle que

V- (VAA)=0

9.2.3 Critique de I’équation V A B = pj

Ce fut le coup de génie de Maxwell de noter cette critique et de proposer une solution.

Supposons que B = B(r,t) et j = j(r,t). Nous avons donc
V- (VAB)=0=uV-j
V-j(r,t)=0

Pour des phénomeénes variables dans le temps, nous ne pouvons donc pas satisfaire I’équa-
tion de continuité

ape‘l
- +V.j=0
or v
si nous considérons ’équation
V AB = ]

9.3 La quatriéme équation selon Maxwell

Maxwell postule un nouveau terme dans ’équation avec VA B :

OB OE
YV AB = poj + €opto = = pio |j + €0
AB = pioj + eotto g = Ho [J €0 (%}

La quantité 50% a la dimension d’une densité de courant, et est appelée densité de

courant de déplacementE]. Son existence est indépendante d’un milieu, car il est généré
par % : le courant de déplacement peut méme exister dans le vide. j est la densité de

courant de conduction.

IE 9
ot *

1. [eg0E] = (A%t | (kam®  _1 ). 1_ A
. 07t | = \kgm?2 s2 Asm s~ m?2

Quelle est 'amplitude relative de j et gq
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Prenons comme exemple un fil parcouru par un courant alternatif & 50 Hz. Le fil a une
section de 4 mm? et porte un courant de 4 A.

B 4 A
" 4-10-6 m2

Prenons £ =1 Vm~!. La période & 50 Hz est 20 ms.

j =105 Am~2

OE —12 NI | Vm~! -10 -2
— &~ 8.8-10 AsV e ~44-10 A
0Bt S0 108 s H
Donc
a2 <]
P
0 ot J

Ceci explique la difficulté d’observer le courant de déplacement par des mesures simples !

Est-ce que l'introduction du courant de déplacement permet de satisfaire I’équation de
continuité ?

Calculons V- (VAB) :

E
V-(VAB)=0=pg |:V'j—|—€0v'aat:|

Nous pouvons intervertir 'opérateur V et % :

E
Ozv-j+éov-izv-j+g(€ov-E)

ot ot
En utilisant ’équation de Poisson
g0V - E = pg
nous avons
V-j+ Oaptel =0

qui n’est autre que ’équation de continuité!

9.4 Les équations de Maxwell

Les quatre équations de Maxwell sont (formes locales) :

0B
E = — A
VA 5 (9.1a)
. OE
VAB = MOJJ’_EOMOE (9.1b)
V.-E = P (9.1c)
€0

V-B = 0 (9.1d)



9.4. LES EQUATIONS DE MAXWELL 189

Les formes intégrales correspondantes sont :
Loi de Faraday

0B
E -dl=-— — .dS 9.92a,
fc E- (9.22)

Loi d’Ampére-Maxwell (Maxwell & cause du courant de déplacement)

E
%B~dl:ug/j-ds+eou0/a~ds (9.2)
C S S ot
Notez que
OE d d
—-dS=— [ E-dS = — (Flux de E a travers S)
s Ot dt /s dt

Loi de Gauss pour le champ E

1
/E-dS:/ PeldV (9.2¢)
S €o Jv

Loi de Gauss pour le champ B

/ B-dS =0 (9.2d)
S

Notez que formellement par rapport & U'introduction les différences sont :
e ces équations sont dépendantes du temps,
e la loi d’Ampeére est modifiée par le terme

d
— [ E-dS
€0Modt/s

introduit par Maxwell.
Notons que pour résoudre ces équations, nous avons besoin de connaitre la densité de
charge pei(r,t) et la densité de courant j(r, t). Il est important de rappeler que le probléme
est plus compliqué qu’il n’y parait, car l'évolution de pe(r,t) et j(r,t) dépend des champs
E et B a travers les équations du mouvement et la force F exercée sur les charges par E
et B :
F=¢[E+vAB]j

Nous n’aborderons pas ce chapitre qui appartient a la branche de la physique appelée
électrodynamique.

9.4.1 Les quatre équations de Maxwell sont-elles indépendantes ?

Notez que nous avons deux groupes d’équations :
e deux équations avec 'opérateur rotationnel,
e deux équations avec 'opérateur divergence.
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Montrons que les deux équations avec I'opérateur divergence sont des conditions initiales

des deux équations avec 'opérateur rotationnel.
Calculons 9B 5
-(VAE)=0=-V-—=—-—(V-B
V- ) v ot ot (V-B)

En intégrant par rapport au temps, nous avons
V -B = constante = Valeur at =20
L’équation de Maxwell V- B = 0 est simplement la détermination de la constante & 0 au
temps t = 0.
De méme :

E
V'(V/\B):OZMQ |:v‘j+€0v‘88t:|

. 0
O—,UU |:V'l]+at(80v-E):|

Notons qu’une équation du type
eoV - E = pg + constante initiale
satisfait cette équation. L’équation de Poisson
eV -E = pg
signifie simplement que la constante initiale vaut 0.

En résumé, les deux équations en divergence

V-B=0
vV.E="d
€0

sont des conditions initiales d’équations dérivées des équations en rotationnel.

9.4.2 Les équations de Maxwell a I’état stationnaire

A Détat stationnaire :

VAE = 0 (9.3a)
VAB = uj (9.3b)
V-E = pa/eo (9.3¢)
V-B = 0 (9.3d)

Nous notons que seules les équations (9.3b]), respectivement (9.3c)), nous fournissent une
relation entre B (resp. E) et j (resp. per). Ce sont en effet celles que nous avons utilisées
en magnétostatique et en électrostatique.
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9.5 Les équations de Maxwell et la lumiére dans le vide

9.5.1 Interméde mathématique : définition de VA (VA A)
Soit un champ vectoriel A(r). Il est assez simple de montrer que

VA(VAA)=V(V-A)-V?A

Rappelons que
0? 0? 0?

2—7 —_— —_—
V= 0x2 + Oy? + 022

VA = (V?4,,V?4,,V?A,)

Donc

o (0A, 0A, O0A,
VA(VAA) = { < Y+

oz 8x+8y 0z

0 (04, 0A, OA\
6y<8x+8y+8z> VA,

0 (0A, 0A, O0A, 9
— —V7A
82(8x+8y+8z> v Z]

) — V24,,

9.5.2 Les équations de Maxwell dans le vide

Dans le vide, pe; = j = 0. Les équations de Maxwell deviennent :

VAE = —%]:’ (9.4a)
VAB = 60#0% (9.4b)
V-E =0 (9.4¢)
V-B = 0 (9.4d)

Laissons de coté les deux équations en divergence, au moins pour le moment, pour nous
concentrer sur les deux équations en rotationnel. Nous pouvons considérer que la "source"
de E, resp. B, selon ’équation (9.4al), resp. (9.4bl), est —9B/0t, resp. poeoOE/Jt. Prenons
le rotationnel de la premiére équation :

oB 0

VA(VAE)=-VA— =—

o~ VB
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En remplacant V A B par sa valeur selon I’équation ((9.4h)) :

2

V A (V A E) = —EOMO@E

Or VA(VAE)=V(V-E) - V2E, et dans le vide, V- E = 0.

VA(VAE)=-V?E

Donc
O’E

V2E — —
C0k0 55

=0

¢ % s i . Y :
Par une démarche analogue avec 1’équation ([9.4bf), nous avons

9’B

V’B — it
Eolo 8752

=0

Dans le vide, les champs E et B satisfont a la méme équation différentielle :

O*E
V’E — — =0 9.5
E0HO 53 (9.5)
0°B
V’B — —— =0
Eolho 8t2

Pour résoudre cette équation, prenons 1’ansatz d’une dépendance en exp {i(wt — kz)},
c’est-a-dire en onde planeﬂ, avec k = (0,0, k), et en choisissant :

E = [Eyexp{i(wt—£kz)},0,0] = (E,,0,0) (9.6)
B [0, By exp {i(wt — kz)},0] = (0, B,,0) (9.7)

Montrons d’abord que, avec cet ansatz, E et B satisfont bien

OB
E=-—
VA o

si les amplitudes Fy et By satisfont g—g = 7. En effet,
VAE =0, —ikEyexp {i(wt — kz)},0]
_9B _
ot

2. Rappelons qu’'une onde plane a une dépendance spatio-temporelle du type cos(wt — kz). Nous
utilisons la notation complexe exp {i(wt — kz)} pour décrire cos(wt — kz) (voir le chapitre sur les ondes).
Rappelons que k est le vecteur d’onde et w la pulsation. k] =m™*', [w] =rad-s™*

[0, —iwBy exp {i(wt — kz)}, 0]
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B E
VAE = —aa—t & B—z = % = vitesse de phase de 'onde

La valeur de la vitesse de phase sera connue lorsque nous aurons dérivé la relation de
dispersion. Notons aussi que

Bl _V _kgm® 1 As® m
Bl mT A " m kg s

En substituant E de dans (9.5) :

82 ] (92 .
E [(%2 exp {i(wt — kz)} — €010 55 €XP {i(wt —kz)}| =0

—EO [k2 - Eo,u()CUQ] =0

Pour éviter la solution triviale Fy = 0, il faut que

k’2
wr= —— =k (9.8)
oMo

1 ] _ kgm’m A%°m _ m?
oo~ A’s+ kgm® S
Remarquez aussi que (u9/€0)"/? a la dimension d’une résistance et vaut 377 Q. On ob-
tient cette valeur par E/(B/ug). 377 Q est appelé "impédance" du vide.

ou c est la vitesse de phase. [ et numeériquement vaut c2.

La relation indique que la relation de dispersion des ondes est linéaire :

k
w =
VEoK0
1
C =

VEOLO

Ces ondes sont donc non dispersives. Les quantités perturbées sont les champs élec-
trique E et magnétique B.

E = (Ey,0,0) exp {i(wt — kz)}
B = (0, By, 0) exp {i(wt — kz)}
k = (0,0, k)

avec
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Dans le vide et avec le systéme SI, 'amplitude du champ magnétique By est donnée par
By [V/m]
¢ [m/s]

By [T]

avec ¢ = 299 792 458 m/s.

Ces ondes sont appelées ondes électromagnétiques. Les champs E et B sont en phase.
Nous pouvons représenter, & un instant donné, les quantités E, B et k (figure [9.1)).

F1GURE 9.1 — Onde électromagnétique dans le vide, avec propagation selon z. Nous avons
supposé que E est selon e, et B selon e,,.

Les champs E et B étant perpendiculaires 4 k, ’onde électromagnétique est une
onde transverse.

Nous avons utilisé, pour dériver la relation de dispersion, seulement les équations en
rotationnel. Il est aisé de calculer les expressions des équations en divergence.

V-E:aEZ:OcarEZ:O
0z
V-B:8€Z:0carBZ:0

Ces deux équations sont donc aussi satisfaites.

Remarquons que la relation de dispersion des ondes électromagnétiques dans le vide
fait intervenir seulement €q et pg, constantes qui interviennent dans d’autres expressions
comme la force de Coulomb entre deux charges (pour £g) ou la loi de Biot et Savart (pour
to)- Elles peuvent donc étre déterminées en dehors du cadre des ondes électromagnétiques
(cf. 9.5.3.).

9.5.3 Ondes électromagnétiques et lumiére

Ce fut le mérite de Maxwell de proclamer que les ondes électromagnétiques qu’il a dérivées
A partir des équations de Maxwell décrivent la lumiére!
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Comment a-t-il raisonné ? Il a d’abord remarqué que la vitesse de phase w/k pouvait étre
déterminée & partir des constantes ¢ et po (avec nos notations modernes). A ’époque
(vers 1860), les meilleures mesures (Weber et Kohlrausch) donnaient

1

w
k  \/eoko

= 310 740 000 ms~!

D’autre part, la mesure de la vitesse de la lumiére par Fizeau donnait

¢ =314 858 000 ms !

Citons Maxwell :

The wvelocity of light in air, as determined by M. Fizeau, is 70 843 leagues per second (25
leagues to a degree) which gives

V 314 858 000 000 mallimetres per second (c’est-a-dire c)

= 195 647 mules per second

The wvelocity of transverse undulations in our hypothetical medium (c’est-a-dire les ondes
électromagnétiques) , calculated from the electro-magnetic experiments of MM. Kohlrausch
and Weber, agrees so exactly with the velocity of light calculated from the optical experi-
ments of M. Fizeau, that we can scarcely avoid the inference that light consists in
the transverse undulations of the same medium which is the cause of electric
and magnetic phenomena.

L’accord entre les deux valeurs )
w

k  \/eoko

et ¢ est de 1.3%. Notez et admirez la hardiesse du rapprochement : we can scarcely avoid
the inference...

Notez aussi qu’avec cette remarque, Maxwell présente une vue unifiée de toutes les ra-
diations connues & son époque (c’est-a-dire la lumiére), mais aussi de celles découvertes
plus tard dans tout le spectre de fréquence, depuis les fréquences extrémement basses
(comme les phénomeénes a 50 Hz) jusqu’aux rayons X, =, etc.

Ce fut en 1888 que Hertz généra et détecta les ondes électromagnétiques avec des appareils
de laboratoire, et confirma la theorie de Maxwell[f]

En guise de conclusion, citons[] Hertz :

What is Mazwell’s theory ? I know no shorter or more definite answer than the following :
Mazwell’s theory is Mazwell’s system of equations.

3. Pour une description de ’expérience de Hertz, voir p. ex. An introduction to Classical Electromag-
netic radiation par G. S. Smith, éd. Cambridge, p. 161.
4. Cité dans D. M. Siegel, Innovation in Mazwell’s Electromagnetic Theory.
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Citons également cette remarque conclusive du méme ouvrage de Siegel, remarque qui
nous semble trés intéressante pour la Section de Mathématiques, et qui est sous-jacente
& tout ce cours de physique :

Ultimately, then, Mazwell’s electromagnetic theory comes to play a central role in... the
transition to o twentieth century emphasts on the "system of equations” as the
essence of physical theory.

Notez finalement que la vitesse de la lumiére dans le vide a été choisie comme étalon
(avec la seconde) pour définir le meétre.

Le métre est la distance parcourue par la lumiére dans le vide pendant un
intervalle de temps de 1/299 792 458 s.

Dit autrement, ¢ est 299 792 458 m/s. Les valeurs de pg et £¢ sont :

po = 4m-1077 H/m
0 = 1/ctup=8.854187817-1072 F/m
9.5.4 DPolarisation
Dans l'exemple de la section nous avons arbitrairement choisi la direction du

champ E selon la direction e, par rapport a la direction du vecteur d’onde k qui, lui, est
fixé selon e,. B est alors selon e, (voir figure . E, B et k forment un triédre droit.

A Efle,

>
¢z klle,
y Ble,

FiGURE 9.2 - E, B et k : triédre droit

Nous disons dans ce cas que I'onde électromagnétique est linéairement polarisée avec
le champ électrique selon e, :

E = e, Ey cos(wt — kz)

B = e, By cos(wt — kz)
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Nous pouvons aussi choisir E selon e, :
E = e, Eycos(wt — kz)
Dans ce cas, B doit étre tel que le triedre (E, B, k) est un triédre droit. Donc
B = —e, By cos(wt — kz)

On dit alors que 'onde est linéairement polarisée avec son vecteur E selon e,.
Notez que, d’'une maniére générale, la lumiére (= onde électromagnétique dont la longueur

d’onde A est dans le domaine d’environ 300-600 nm) n’est pas polarisée.

Vous pouvez aussi avoir le cas ou le champ électrique E tourne dans le plan (Oegey)

Y

FiGURE 9.3 — Champs E et B dans le cas d’une polarisation circulaire.

Le vecteur E(t) a une position Z donné peut décrire

a) un cercle dans le sens trigonométrique

b) un cercle dans le sens des aiguilles d’'une montre
¢) une ellipse dans le sens trigonométrique

d) une ellipse dans le sens des aiguilles d’une montre

Le cas a) est appelé "Polarisation circulaire gauche", b) "Polarisation circulaire droite",
c¢) "Polarisation elliptique gauche" et d) "Polarisation elliptique droite".
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Le vecteur champ magétique B est perpendiculaire & E de sorte que (E x B) est paralléle
a k.

Notez que la lumiére naturelle n’est pas polarisée. C’est en la passant & travers un "po-
lariseur” qu’elle devient polarisée.

9.5.5 Vecteur de Poynting et transport d’énergie

Considérons les ondes électromagnétiques émises depuis le soleil jusqu’a nous. Notre
expérience nous dit que ces ondes transportent de I’énergie. Les exemples scientifiques
sont les effets photovoltaiques, le chauffage, et moins scientifiquement le bronzage !

La puissance transportée par unité de surface par une onde électromagnétique est donnée

par le vecteur de Poynting S :
_EAB

Ho

S

(9.9)

Du point de vue dimensionnel,

VTA VA
mTm  m?
kgm?A B kgm? 1
As?m2 s sm
Nm 1

X
s Surface
Puissance

5] =

2

5] =

Surface
S est un flux de puissance lié aux champs E et B.

Pour une onde électromagnétique plane avec k = (0,0, k), le vecteur de Poynting S est
dirigé selon k, E selon e, et B selon e,,.

Quelle est la signification du vecteur de Poynting 7 Calculons l'intégrale suivante :

d [€0E2 32

4 2 av
dt Jy [ 2 +2M0]

ot V est un volume fixe. egE2/2 et B?/2u0 ont la dimension d'une densité d’énergie et
sont respectivement les densités d’énergie électrique et magnétique.

d eoE? B2 OE B 0B
— — | dV = E-—+—=.—|dVv
dt v{ 2 2/10} /v{go ot " o 575}

Rappelons que, dans le vide (j = 0),

0B
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0E
VAB = —
EOMO ot

d eoE? 32} /[E B
— +—|dV = — - (VAB)— — - (VAE)|dV 9.10
dt v[ 2 210 v Lo ( ) Ho ( ) (510)

Rappelons l'identité

V.- (AAB)=B-(VAA)—A-(VAB)

Le membre de droite de I'équation (9.10) est donc

EAB
- / v-( A >dV
Vv Ho
et ’équation (9.10)) devient

d eoF? BQ} / (E/\B)
— +—|adv=—-[ V- dv 9.11
dt Jyv [ 2 210 v 10 (911

2 2 L ) ., . L. .
8°2E et QB% sont les densités d’énergie électrique et magnétique vues dans les chapitres

0.6.4 et 8.5.3.

Soit S la surface qui entoure V. Le théoréme de la divergence nous permet de transformer
le membre de droite de (9.11]) en

EAB
—/ A -dS
s Mo
On a donc I’équation
d E? B? EAB
= [50 +} dV:—/ "B as (9.12)
dt Jy | 2 20 s Mo

La variation temporelle de la somme des énergies électrique et magnétique dans un vol-
ume V est égale a 'opposé du flux du vecteur de Poynting & travers la surface S qui
entoure le volume V. Le signe — est lié a la direction de dS qui pointe vers 'extérieur.
L’équation 9.12 décrit en fait la conservation de I’énergie électromagnétique

€0E2 B2:|
+ — 1 dV
/v{ 2 210
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9.5.6 Vecteur de Poynting dans quelques cas particuliers
a) Conducteur coaxial

Considérons un conducteur coaxial de géométrie cylindrique (figure [9.4).

®B ExB

Ho

FI1GURE 9.4 — Conducteur coaxial

Le champ E est radial, B est azimutal et S = % est selon e,.

b) Conducteur a 2 fils

Considérons le cas des deux fils électriques dans la distribution de puissance électrique

classique (figure :

fém ¢ T E ExB
250 Hz<> ©B Ho HR

F1GURE 9.5 — Deux fils paralléles

La encore, la puissance électrique est portée par le vecteur de Poynting dans la région
entre les deux fils. En dehors de cette région, les champs E et B sont faibles et on peut
négliger le vecteur de Poynting.

Ce dernier exemple nous montre que ’on peut aborder les phénoménes électromagné-

tiques de deux points de vue :

e du point de vue des circuits électriques : la puissance dissipée dans R est amenée &
travers le courant I et la fém ¢,

e du point de vue de Maxwell : la puissance est amenée par le champ électromagnétique
EAB

(E,B) et est décrite par le vecteur de Poynting S = "

5. B est azimutal selon la loi d’Ampére car le courant dans le conducteur central est selon e,.
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Cette deuxiéme approche nous permet de résoudre le petit probléme suivant. La vitesse
des électrons dans le fil de Cu est de l'ordre de 2 mm/h. Mais dés que vous avez appuyé
sur linterrupteur, la lumiére s’allume. En fait, I’énergie est transportée par les champs
électromagnétiques (E, B), qui se propagent a la vitesse c.

9.5.7 Retour sur les phénoménes d’interférence

Nous avons vu au Chapitre 3.3 le phénoméne d’interférence. Si la lumiére est une onde
de lumiére, pourquoi l'expérience suivante ne nous donne pas des figures d’interférence ?

/
=
&

Source lumineuse S;

N

- 7
g
s

Source lumineuse S,

Ecran

Fixons-nous les idées. Prenons une source lumineuse a une longueur d’onde A = 500 nm.
L’oeil est sensible au domaine de longueur d’onde entre 500 nm et 700 nm. La fréquence
v qui lui est associée est donnée par

v=rc/A=6x10" Hz ou
w = 27mv = 3.77 x 10" radian/s

Notons que nous avons deux sources lumineuses en S7 et So & la méme longueur d’onde
A. Les champs électriques émis sont donc

E, = Ecos(wt —k r1)
By = Ecos(wt —k - ro + )

ol  est un déphasage arbitraire entre les sources S7 et Ss.
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Donc sur I’écran, en appliquant (3.6) du chapitre 3.3

2

~ 1 1
E= 2Ecos(§kdsin«9 - %)cos(wt —k-r — §k:dsin9 + 5

La seule différence formelle avec la formule 1’ est que Pamplitude 2E cos(%kd sin 0)
est remplacée par 2F cos(3kdsinf — £).

A ce stade, nous devons faire plusieurs remarques, liées & la physique des phénomés en
cours :

1. le déphasage ¢ varie avec le temps : ¢ = p(t) entre [0 et 2 7|. Cette variation est
beaucoup plus rapide que la période 27 /w. La condition

Lpdsing — £0 _ 7
2 2 2
devient

1
§kdsin0 = ng + o(t)

2. Poeil (tout comme tout autre appareil) est sensible au vecteur de Poynting S x |E|?
et inteégre le signal sur une intervalle de temps Tj,; >> 27 /w.

En conséquence, a cause de la remarque 1), on ne peut pas voir les figures d’interférence :
la condition décrite sous 1. n’est satisfaite que pour un temps ¢ donné dans 'intervalle
0 <t < Tjng. Les zones de maximum et de minimum bougent tout le temps!

Pour voir les figures d’interférence, on doit faire 'arrangement suivant (expérience de
Young)

Fente 1

Fente2 ——
Sl

Ecran
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Les champs en Sp et Sy ont tous les deux le méme déphasage ¢(t) en tout temps. La
propriété que deux sources lumineuses, méme exactement a la méme fréquence v, sont
déphasées par (t) est appelée non cohérence. La phase d’une source non cohérente a un
point fixe change d’une maniére aléatoire. Seule la lumiére d’un laser est cohérente.

A cette étape, nous avons encore

I x 4|Ep|? cos® (kdsm@)

2

et ’on a toujours des interférences !

9.6 Interprétation des différents termes dans les équations
de Maxwell

9.6.1 Introduction du probléme

Si les équations de Maxwell sont particuliérement simples dans le vide (p = 0, j = 0),
nous devons bien comprendre la signification de pe; et j lorsque nous nous trouvons dans
la matiére. Prenons les deux équations ot nous avons p et j :

v.E="d (Equation de Poisson)
€0

V AB = pioi + oty
Dans un milieu porteur de charge, en chaque point, il existe une densité de charge p et
une densité de courant j. La densité de charge p,; a deux contributions : la densité de
charge p;ns produite par les charges du milieu et une densité de charge pe,; introduite par
I’expérimentateur. Les charges du milieu sont sensibles aux champs E et B donnés par
les équations de Maxwell, donc p;n; dépend de E et B. Par contre, p.,; est introduite par
I’expérimentateur et est donc contrélée par un appareillage externe au milieu et insensible
a E ou B.

De méme, nous devons distinguer j,,,;, causé par le mouvement des charges p;n: et donc
influencé par E et B, de j,,;, créé par un appareillage externe au milieu et insensible &
E et B.

Nous avons donc comme équations de Maxwell

0B
ANE = -2
v ot
. . OE
VAB = o (it +dext) + 50#05
V-B = 0

eV-E = (Pmt + pext)
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Milieu ——{ o1 (E.B) jint(E,B)

jext(SZ)
. -0
: Source externe
: S
Epext( 1) Sz dejext

Source externe S; de pey¢

9.6.2 Interprétation physique de p.,; et j.,,

Reprenons le cas souvent évoqué du systéme WiFi dans la salle de classe et identifions
les pints Jints Pext €t Jezs- On assimile l'air au vide en ce qui concerne les propriétés
électromagnétiques :

Pint = Jint = 0

Nous notons au fond de la salle 'antenne WiFi. Dans cette antenne, il circule un courant
oscillant caractérisé par une densité de courant j,,, dans la région de ’espace ot se trouve
I’antenne.

. # 0 1a ou se trouve 'antenne
ezt 1 = 0 ailleurs

Du point de vue mathématique, nous avons les équations de Maxwell suivantes :

0B
AE = -2
v ot
OE )
VAB = Eoko 5 + HoJext
V-B =0
V-E =0

avec
.| Jewt(r,t) dans la région de I’antenne
ezt =1 = 0 ailleurs

Jest €5t la source qui crée les ondes électromagnétiques dans la région de 'antenne : elle
fixe Pamplitude et la fréquence de 'onde dans cette région. Cette onde se propage depuis
cette région dans tout le reste de la salle, pour étre éventuellement captée par ’antenne
de votre ordinateur.
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9.6.3 Equations de Maxwell dans un milieu diélectrique

Nous considérons d’abord un milieu ol pegt = jour = 0 €t o1 il y a simplement p;n; et
Jine- La densité de charge p;n: et la densité de courant j,,,; dépendent de E et B & travers
la force de Lorentz :

F=¢[E+vAB]j

Dans la pratique, calculer la relation entre p;,: et j;,,; et E et B n’est pas simple. Sché-
matiquement, nous avons le schéma suivant :

Equations de Maxwell
OB
V NE = A,
> ()f
. JOE }
VAB = pojin + Soto 5
Influence de ) Influence de
V-B=0, 5V -E= Pint
Pint €t Jin E et B sur
sur E et B Pint €t Jinu

{ Pint = pz‘n?(E-B)
<

jz‘-nt = j?'-nt(E- B)

La partie la plus complexe du probléme est de calculer la relation pin: = pint(E, B) et
Jint = Jine(E,B). Diverses méthodes existent, comme les théories fluides ou les théories
cinétiques. Nous ne les discuterons pas ici.

Comme nous ne savons pas décrire pin: et j;,¢ en fonction de E et B, nous faisons une
approche plus phénoménologique. Une telle approche a déja été discutée lorsque nous
avons montré 'influence d’un diélectrique sur la capacité d’un condensateur. Rappelons
qu’un condensateur rempli d’un diélectrique a une capacité donnée par

Cdiel = gcvide

ou Clyie est la capacité du condensateur rempli de diélectrique, Cyiqe la capacité du
condensateur sans le diélectrique et € la constante diélectrique relative caractéristique du
diélectrique considéré.

Sans donner une démonstration, les équations de Maxwell dans un milieu diélectrique

sont :
0B
VAE = ——
ot
OE
VAB = 505,&05
V-B = 0

ceV-E = 0
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Notez que lintroduction de € n’a fait que déplacer le probléme de la théorie (calculer
Pint = Pint(E,B), Jint = Jins(E,B)) & la détermination de ! Souvent on introduit

D= €0€E

D est appelé vecteur déplacement électrique. Les équations de Maxwell sont donc

0B
VAE = ——
ot
oD
VAB = —
Ho ot
v.-B =0
V-D =0
si € ne dépend ni de ¢ ni de r.
En remplacant D par geE, on obtient
0B
VAE = ———
ot
OE
VAB = —
€0EMO ot

On voit que par rapport au vide, ce sont les mémes équations si on remplace gg par €gpe.
Par conséquent, la relation de dispersion des ondes électromagnétiques planes dans un
diélectrique possédant une constante diélectrique relative € est

v _ 1 _c
ko Eomove Ve

L’indice de réfraction n est défini comme

k

w

€ étant plus grand que 1, I'indice de réfraction est supérieur & 1. Dans un diélectrique, la
vitesse de phase de 'onde est inférieure & c.

Si nous avons des charges et courants externes alors

0B
VxE = -2
% ot
oD
B = oo + o
V x Hogy + Hodext
V-B = 0
V-D = Pext

D = ¢pcE
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A Tinterface entre deux diélectriques, la composante normale de D est discontinue s’il y
a une charge externe de surface ogey¢. Si 0z = 0, alors la composante normale de D est
continue :

[DJ_]% =0= EQE(f) — E1E(j)

9.7 Transformation des champs E et B

9.7.1 Introduction

La question que nous posons est la suivante : dans un certain référentiel R, nous avons
un champ E et un champ B. Comment se transforment-ils lorsque nous les observons
dans un référentiel R’ en mouvement uniforme par rapport & R? Dans le cadre de
cette introduction, nous ne pourrons malheureusement pas démontrer les formules de
transformation. Contentons-nous de dire que les formules de transformation satisfont
toutes les exigence de la théorie de relativité restreinte. En particulier, les lois de la
physique sont invariantes lors d’une transformation d’un référentiel & un autre réfrentiel
qui se meut & une vitesse linéaire uniforme.

Nous supposons que le référentiel R’ bouge par rapport a R avec une vitesse v = (0,0, v)
uniforme avec v < ¢. Nous définissons = v/c oul ¢ est la vitesse de la lumiére.

9.7.2 Formules de transformation

Soient E et B les champs électrique et magnétique dans le référentiel R. E et B satisfont
les équations de Maxwell. Soient E’ et B’ les transformés de ces champs dans le référen-
tiel R’. Nous exigeons aussi que E’ et B’ satisfassent les équations de Maxwell dans le
référentiel R’ ou les coordonnées d’espace sont (2,1, 2') et le temps t'.

Rappelons tout d’abord que (2/,y/,2',¢') dans R’ sont liés & (x,y, z,t) dans R par la
transformation de Lorentz :

— vt)

1
\/1—52(2
o= (Y

N 4/1_52<_c22)

Sans démonstration, nous donnons la transformation des champs (E,B) en (E',B’) :
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B, = \/1177 (B: + 2 E,)
_ 1

BZ// - 1-52 (By - C%Ex)

B, = B,

E;j = 11752 (EJ? + 'UBy)

E; = 1:L—ﬁ2 (Ey — 'I)Bw)

E. = E.

Ces relations donnent un résultat étonnant : les champs électrique et magnétique n’ont
pas d’existence indépendante comme des entités séparées. Prenons par exemple le cas
d’un champ B créé par des aimants permanents et observé dans le référentiel R. Dans
R, nous avons donc seulement B, et E = 0. Les formules de transformation nous donnent :

I 1

B, = ~=B:
! 1
Y 1_62 Y
/

B, =B,

Le champ B’ est modifié par rapport & B : les composantes x et y sont augmentées par
le facteur (1 — (2)~1/2_ Mais le fait important est apparition du champ électrique E' :

_ 1
E; - M(—UBy)
E; = 711_[32 (UBI)
E. =0

Nous notons que le vecteur (£, Ey,0) n’est autre que

1
E = ———(vAB)
V1— 2
car
e; €, e,
(vAB)=[ 0 0
B, B, B.
(vAB) =e;(—vBy) + e, (vB:)

Dans R’, outre le champ magnétostatique B’, nous avons aussi un champ électrostatique
E = (1 — £%)"Y2(v A B). Pour de faibles vitesses v/c < 1, (1 — $2)"Y2 ~ 1. Alors :
E' =v AB.

Prenons le cas inverse. Dans R, nous avons une charge fixe et le champ qu’elle génére
est un champ électrostatique E. Il n’y a pas de champ magnétostatique B : B = 0. De



9.8. LOI DE L’OPTIQUE GEOMETRIQUE ET EQUATIONS DE MAXWELL 209

/
nouveau, dans R/, nous pouvons calculer le champ E’ :

_ 1
E, = —=E,
_ 1
E?/J - 1_62 Ey
E.=FE,

En plus, dans R’, nous avons un champ magnétostatique B’ :

! 1 (&E ) _ 1 g&
z /1-p2 2] /1—g2¢ ¢
B, == 1 (—LE ) = — 1 2&
Y \/ﬁ c2 T 1-pg2¢ ¢
B. =B,

Donc
Bf:1<EAV>
W c c

Pour I'observateur dans R’, outre le champ électrostatique E’, il existe aussi un champ B'.
Comme nous savons que les lois de physique sont valables aussi dans R’, on peut dire que
B’ doit étre généré par un courant. D’oll vient ce courant ? Dans R/, la charge immobile
dans R est en mouvement : toute charge en mouvement correspond & un courant et c’est
ce courant qui crée B'.

Ce petit calcul montre que les champs E et B sont intimement liés. On peut trouver un
référentiel ot seul un champ existe et dans un autre o E et B existent.

9.8 Loi de 'optique géométrique et équations de Maxwell

Nous nous proposons de retrouver, au moins pour le cas le plus simple, la loi de la
réflexion sur une surface métallique plane & partir des équations de Maxwell.

Hypothése :

Nous considérons une onde électromagnétique plane incidente sur une surface métallique
plane. La géométrie est donnée sur la figure

Le plan d’incidence est défini par le vecteur d’onde k; de I'onde incidente et la normale
n (||n|| = 1) a la surface métallique. Sur la figure c’est le plan de la feuille.

Les champs électriques E; et magnétique B; sont indiqués sur la figure. (E;, B; et k;)
forment un triédre direct. La dépendance de E; et B; sont

E; =E, exp{i(k;-r —wt)}
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Br vide

Surface métallique

F1GURE 9.6 — Réflexion sur surface métallique plane

Bi = Boi exp{i(kl- - r— wt)}

avec

% = ¢ = vitesse de la lumire
i

HEozH — ¢

| Boi|

Les champs réfléchis sont notés avec 'indice R

ER = EOR exp {Z(kR - r— wt)}

Br=Bor exp{i(kg -r—wt)}

L’onde réfléchie se propageant également dans le vide nous avons

w . [Eorll _
kr [[Bor||

Montrons que © = ©r c’est-a-dire que ’angle d’incidence est égal a 'angle de réflexion.

A la surface métallique définie par n - r = 0 nous avons

Eo; exp{ik; -r} +Eor exp{ikg-r} =0 Vn-r=0 (9.13)

par suite de deux considérations physiques :
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a) dans le métal le champ E est nul
b) le champ E est continu a U'interface car il est tangentiel

Faisons maintenant quelques manipulations vectorielles. Nous avons Vr dans ’espace

r=(n-rn—nx(nxr)

Donc sur l'interface n-r = 0, r est donné par

r=-nx(nxr)

La condition (9.13)) étant vraie pour tout n - r = 0 nous devons avoir

ki-r=kg-r (Vn-r=0&Vr=-nx(nxr))

ki-(nx (nxr))=kg-(nx (nxr))

or

ki-(nx(nxr))=(k; xn)-(nxr)

krp-(nx(nxr))=(krxn)-(nxr)

Donc

[(kixn)— (kg xn)]-(nxr)=0 Vrtelquen-r=0

= (ki xn) = (kg x n) = ||k; x n|| = ||kr x nl|

De plus |[n|| =1 et ||k;|| = [|kr|| = £.

On doit donc avoir

sinOp = sin(m — ©;) = sin O;
C’est la loi de la réflexion bien connue.

Les directions de E; et de Er sont indiquées sur la figure.

D’une maniére générale, on peut retrouver les autres lors de 'opération géométrique a
partir des équations de Maxwell. [cf. p. ex. Electromagnetic theory par J. D. Stratton p.
490 et suivantes|
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9.9 Appendice - Potentiels

9.9.1 Potentiels vecteur A et scalaire ®

Reprenons les équations de Maxwell :

V-B=0 (9.14)
0B
VXE= 5 (9.15)

A partir de la premiére équation [9.14] nous pouvons définir B par :

B=VxA (9.16)
car
V- (VxA) =0
L’équation devient :
0A
) Y Ealnd
V x ( + 875)
soit
0A
E+ —=-Vo
+ e \Y
0A
E=-Vb-— — 9.17
Ve - — (9-17)

On voit donc que E et B peuvent étre exprimés par les potentiels vectoriel A et scalaire
®. Pour exprimer A et ®, nous utilisons les deux derniéres équations de Maxwell :

V-E=1X (9.18)

1 OE

B = pod + 55—+ 9.19
V x pod + 55 (9.19)

ol p et J sont respectivement les densités de charge et de courant. En remplagant

et[0.I7 on a :

0 P
Vo4 —V-A=-L1 9.20
+ + ot €0 ( )



9.9. APPENDICE - POTENTIELS 213

1_00 109%A

x( XA)+02 8t+028t2 = #od
1 0P 1 0°A
2 _
VA—V(V.A—I—CQat>—CQ iz = Mo (9.21)

Plusieurs remarques importantes doivent étre notées :

— les quatres équations de Maxwell sont réduites aux deux équations couplées et
9.21] pour les potentiels A et @ et a la définition des champs E et B et

— les quantités physiques sont les champs E et B. Ce sont E et B que 1’on mesure.

— les potentiels A et ® ne sont pas déterminés univoquement. Par exemple, on peut
rajouter & ® une constante sans pour cela changer E.

Soient deux couples de potentiels (A et @) et (A’ et ). Cherchons la condition qui

laisse E et B invariants. Comme B =V x A, on voit immédiatement que

A=A+VSf

ne change pas B.

VXA'=VXA+Vx(Vf)=VxA=B

E doit rester invariant lorsque ’on transforme A en A’ :

O0A OA’ of OA’
E=-Vd—-—=-Vob— V2L =_-Vo' —
ot o Vo ot
On doit également transformer ® en @'
of
o=
ot
Les transformations
A=A+ VS (9.22)
of
=0 = 9.23
ot (9.23)

laissent les champs E et B invariants. On les appelle transformations de jauge et les
champs E et B sont invariants par transformation de jauge. Notons de nouveau que
les transformations de jauge et nous laissent encore une liberté de choisir une condition
auxiliaire car la fonction scalaire f est arbitraire. On peut, par exemple, trouver une
jauge ou
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214
=0

mais par contre il est impossible de trouver A’ = 0 car ceci implique trois conditions.

9.9.2 Jauge de Lorentz
On note que les équations et couplent A et ®. Utilisons le fait que nous pouvons
encore imposer une condition scalaire que nous choisissons comme :
(9.24)

109,
Ay L
\% L+CQ BN 0

Ce choix particulier d’une relation entre Ay et @1 est appelé jauge de Lorentz. L’indice

L est mis pour Lorentz. Les équations et deviennent :
(9.25)

1 0%°A
2 L _
VIAL = G = Hod
1629

0oL __» (9.26)

V2P, — =
L C2 8t2 €0

Par la méthode de transformée de Fourier on trouve :
- J
AL (w k) = k;‘“ - (9.27)
2
) i
o7 (w, k) = " €0 — (9.28)
2

Vérifions que Ay, et @y satisfont a la condition :

= 1 ~ = ~
ok - 3+ 5 —wp = po (kT +wp) =0
C~ €

car ce n’est autre que la transformée de Fourier de ’équation de continuité :

dp
o TV I=0

Exprimons maintenant Ay et ®; comme fonction de r et t.
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oy (r,t) = /dSkdw exp [i (wt — k- r)]

/ / K3 LX) p 5 expli (wt — k)] (9.29)

Rappelons que nous avons montré que

1 /k3 exp (—ik-r)  exp[—i(wr/c)]

(277)3 k2 —w?/c? Ay

d’ou par transformation inverse de Fourier

1 exp (+ik - rp) exp (—i%ro)
- _—[a € :
k2 — w2/ / "o Arrg (9.30)
En insérant [0.30] dans [0.29] on obtient :
oy (rt) — l dw/dgk/d?’roﬁ (k. w) exp [iwt — ik (r — rg) — iwrg/c]
471'7‘0
(o
— dw/dgmp I'—I'O) exp [ZW( C)]
471'7“0

En écrivant r{ = r — rg, on obtient alors :

X p (t _ ‘r_crl‘ ’ 1‘1)
By (rt) = /d " (9.31)

dmeg|r — 11|

De méme

mJG—E%¥m)

dmeg|r — 11|

Aj (r,t) = / d®ry (9.32)

Il est important de noter qua dans l'intégrale, le temps t' =t — @ n’est pas une con-
stante. Pour un point d’observation donné r, et pour un moment d’observation ¢ donné,
t' doit tenir comptedu temps de propagation \I‘—crll depuis la source r; jusqu’au point r
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[lustrons ce point en calculant les potentiels ® et A produits par une charge en mouve-
ment :

prt) = q8(r—ro(t))
J = qv(t)d(r—ro(t))

Le potentiel scalaire est alors :

o ry (1 o
<1>L(r,t)=Cl/<13’7"16(1 O(t ¢ >) (9.33)

La simplicité formelle de I'expression [9.33] cache en fait plusieurs difficultés. Tout d’abord
notons que la fonction de Dirac sélectionne un point rg de la trajectoire et un moment

tp:
B |r — ro|

th =t
C

qui donne une contribution au potentiel ®(¢,r). A un point d’observation donné r et a
un temps d’observation donné ¢, tg est constant et ri(tg) est identique a ro(tg) :

Pulrt) = . ] /d3r15 <r1 —ro (t - |r_crl|>> (9.34)

La deuxiéme difficulté est liée & la fonction de Dirac dans ’équation Formellement
cette fonction de Dirac a pour argument une fonction f(r1). La régle dans ce cas est la
suivante :

Si on a 0(f(x)) et que f(x) a un zéro d’ordre 1 en x = x1, alors autour de z1 on
a:
ox—=x
(/) = 22 =) (9.35)
Ox
r=x1

)

T=x1

En effet, 0(f(x)) = 8((z — 21) 2L

Revenons a I’équation et définissons :

R =r—r(tr)
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et choisissons un systéme d’axe de coordonnées avec la direction (1) selon R.. La direction
R est une direction privilégiée dans le probléme : en effet lors de ’évaluation de[9.34] rg
doit étre évalué en tg, c’est-a-dire pour :

leewoltn)| IR
C C

tr =1

Autrement dit, le zéro de 'argument de la fonction de Dirac est égal & R. En choisissant
R comme étant I'un des axes (1, par exemple) du systéme de coordonnées dans lequel
nous travaillons, on rameéne alors le probléme a un probléme unidimensionnel.

3 _ro(tr)) _ 1
/d“5<“ c )-1_WR>.R
R

ou vo(tr) est la vitesse de la particule en (tg,ro). @1 est donc égal a :

p
47eq (R — Lmﬂ'R)

c

b =

O (r,t) = & (9.36)

dmeo (‘r —ro(tr)| — V““R>'<I‘—ro(t}a>>>

C

De méme :

[op vo(tr)
A 4 _ Hop 9.37
SR (PR Y o

C

_|r—ro(tr)|
C

th=t (9.38)

®; et Ay donnés par et sont les potentiels de Liennard-Wiechert retardés,
c’est-a-dire que la position et la vitesse de particule doivent étre prises sur la trajectoire

au temps retardé tr donné par tr dépend explicitement de la trajectoire de la
particule, de r et de ¢. Il est important de se rappeler ce point pour calculer E et B.

9.9.3 Jauge de Coulomb

Une autre maniere de découpler les équations et est de choisir :

V-Ac=0
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Ce choix de jauge est appelé jauge de Coulomb.

En effet, I’équation devient :

Vi = - L
€0
soit
=
b — 9.39
C= (9.39)
1 p(ro,t
Po(r,t) = d3rg 2 9.40
olrnt) = o [P (9.40)

L’indice C est utilisé pour indiquer la jauge de Coulomb. Notons la forme de I’équation
9.40] qui est identique au potentiel coulombien de 1’électrostatique.

Considérons maintenant ’équation pour A¢ :

1 0’A o0d
2A,, 22 8C _ il o)
9 w2 = = 1 =z
-k + 07 Ac=—pod + EVZWQC (9.41)

Le membre de droite de peut se simplifier en utilisant 1’équation de continuité :

dp

== J =0

5tV :
iwp—ik-J = 0

iwk®®cey = ik-J

:kJ
= J— =25k
Ac = po—s5— _’“;22 (9.42)

On remarque que le potentiel vecteur A dans la jauge de Coulomb est donné par la
composante de J transverse a k (cf. Appendice suivante)

n

_kJ
k2|

G 22
G 22

= k (9.43)
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(9.44)

C’est pour cela que la jauge de Coulomb est aussi appelé jauge transverse. Dans espace
direct le courant transverse Jp (r,t) est donné par :

r07

Jr(r,t)=J(r v/d3 oL

v — ro

Le courant transverse comporte également une composante qui en chaque point r varie
instantanément avec la densité de charge. De plus méme si J et p sont localisées dans
lespace, J7 (r,t) ne l'est pas.

Faisons maintenant quelques remarques sur la jauge de Coulomb. Tout d’abord 'ex-
pression explicite de ®¢(r,t) montre que ®¢ ne présente pas le retard : c’est un po-
tentiel instantané. Ce fait illustre 'importance de faire une distinction entre les quan-
tités physiques comme E et B et les potentiels. Le champ électrique total E est formé
de la composante électrostatique —V®¢(r,t) et d'une composante électromagnétique

8AC . Les composantes “instantanées” de ces deux champs se compensent de sorte que
le champ électrique total est causal. Notons également qu’en relativité restreinte la rela-
tion V- A¢ = 0 n’est pas invariante lors d’un changement de référentiel. Par contre la
jauge de Lorentz :

1 09y,
V-A =0
=R
est invariante lors d’un changement de référentiel dans le cadre de la relativité restreinte.
Calculons maintenant E dans la jauge de Coulomb :

0Ac
E = —-Voog——
“T ot
E = Eg+Een
E:; = —Vo¢

La composante E.; est appelée électrostatique ou longitudinale car :

V x Ees = =V x (V&) = 0

E.s est parallele a k. Bien entendu, V - E.s = p/eg
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Qu’en est-il de E.,,, = _8{3tc 7 Rappelons que A est généré par le courant transverse :
0 0
Jr = J—e¢=Vod=1] —E¢s
T €0 atv + € T
V-Jdr=0 = V:-E.,=0
V xE = —Q(VXA)——QB
o ot T o
10
—=En = —podr— VA
2o podr — VZAc

Or V x (V X Ac) = V(V : Ac) — V2Ac, donc :

10

IUOJT + cjaEem =V xB

Notons finalement une autre propriété du courant transverse Jr. Prenons la transformée
de Fourier inverse dans l’espace r :

Jr(w,r) = / Bk e XTI (w, k)

En remplacant Jr par sa valeur :

~ = . k j k .
Jr(w,k) = / Bk (w,k) e KT / a3k ’k((;’)ke_’k'r

= ~ kj k .
Jr (w,k) = JT(w,k)—/d?’k“f(;)’)ke_’k'r

k.J(wk)

Or Tk est la transformée de Fourier de :

- 1 roF (!
Jr (w,k):—v4/d3r’w
7I

=7

oit V' - J est la divergence de J selon la variable 1.

En effet, calculons la transformée de Fourier de Jr (w,r) donnée par Iexpression précé-
dente :
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z 1
L@k = o /d3rJL(w r) e®T
L1 VI (' w) ik
_ k d3 d3/ iKr &
+ (271)3/ rar |r — 7’| A7
zk r r
. 1 a2 € ~ )
— k : dd dd/ / J KT
+1 (271)5/ T47r\r—r/]/ rvV' - (r w)
k 1 / 3 I 3 / ik.r’
= d°r'vV' - J (7, w) e
i @ 1)
Kk.J
= +k
|2
On a donc :
- VI (' w
Jr(r,w) = J(r,w) v/d3/47rr—r|)

= J(rw) —J; (r,w)

Meéme si le courant J est localisé dans Uespace r?, les courants longitudinal J, (r,w) et
transverse Jp (r,w) existent dans tout 'espace. Ceci a pour conséquence que, du point
de vue pratique, il ne sera pas possible de consédirér le développement en champ lointain
pour évaluer Ac.

Finalement montrons comment on peut passer de la jauge de Lorentz & la jauge de
Coulomb. Les équations et appliquées au cas particulier de ces 2 jauges don-
nent :

Ap=Ac+Vf
of
Py =do — =
L C ot
1 0%y, 1 0dc 1 0°%f

V-Ap+ =0=V- Ac+Vf+C—27

2 ot o 2o
2r — lﬁ = 1 9%c
c2 otz 2 Ot

Les indices C' et L désignent respectivement les potentiels dans les jauges de Coulomb et
de Lorentz.
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A la fin de cette discussion sur la jauge de Coulomb, notons qu’elle est souvent utilisée
lorsque p = 0. Dans ce cas & = 0 et

0Ac

ot
B = VXAC

avec Jr = J.

9.10 Appendice - Champ transverse et champ longitudinal

Un champ vectoriel vy, est dit longitudinal si

Vxvp=0 en tout point de l'espace

Un champ vectoriel v est dit transverse so

V-vr=0 en tout point de I'espace

En transformée de Fourier on a :

Un champ longitudinal dans ’espace k est paralléle & k tandis qu'un champ transverse
est perpendiculaire & k. Cette définition nous permet de décomposer tout vecteur v en
composantes longitudinale et transverse :

vV = vVp+vVr
- - k/k _
Vi = V—Vr



Annexe

Unités électrique et magnétique
Systéme SI : m, kg, s, A
[Courant] — Ampeére — A

Coulomb = A - s

Champ électrique [E] = &i‘ﬁgﬁ) = k;;’%” X A%s = lffs??

[E] = % = % avec Volt =V = kg’;f

Potentiel électrique : [®] = Volt
Capacité C' d’'un condensateur : ¢ = CU

[C] = Ceuomb — Farad = F

_ _ A-s
Farad =F = T /A

[C] = Farad = F = 2}2:12

Unité de g, permittivité du vide

_ A%t F _ —12 F
[60] = kgni?’ = 0 = 8.8 x 10 m
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Résistance R

R =1 —q=¥ _ km?
Impédance Z

[Z] =Q
Champ magnétique B

Force [F] = [I][m][B]

13 Newton
[B] = Tesla =T = 1 — Newlon _

(1][m]
frack‘gmszﬁ = %

Permeéabilité du vide pg

T-m kgm _ Henry _ H

[MO] T A T A% T T m m
2

[H] = %

po = 410774

Inductance [L] = Henry

Relation importante :

1
€010

= ¢? = Carré de la vitesse de la lumiére
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