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Notations du cours

Scalaire et vecteur

Dans le cours, nous distinguerons les quantités scalaires (p. ex. la masse, la charge élec-
trique) et les quantités vectorielles (p. ex. la vitesse u, les forces F). Les vecteurs sont
notés par une lettre en gras, comme par exemple u. Les quantités vectorielles sont dé�nies
par un vecteur qui possède une norme et une direction. Dans l'espace à trois dimensions,
elles sont dé�nies par leurs trois composantes. Par exemple, dans l'espace muni d'un
repère cartésien (ex, ey, ez) la vitesse u est

u = uxex + uyey + uzez

u = (ux, uy, uz)

‖u‖ = u =
√
u2
x + u2

y + u2
z

Une quantité scalaire (p. ex. la masse m) est dé�nie par une seule quantité.

Les quantités scalaires et vectorielles peuvent être fonction de la position r et du temps.
On les appelle alors respectivement champs scalaires ou champs vectoriels.

Opérateur ∇ et dé�nition du gradient, de la divergence et du rotationnel
dans les coordonnées cartésiennes

L'opérateur di�érentiel vectoriel ∇ (appelé "nabla" ou "del") est un opérateur dé�ni en
coordonnées cartésiennes par

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

3



4 NOTATIONS DU COURS

Le gradient d'une fonction scalaire f(r) est un vecteur.

∇f(r) = ex
∂f

∂x
+ ey

∂f

∂y
+ ez

∂f

∂z

La divergence d'un champ vectoriel u(r) est un scalaire.

∇ · u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

Symboliquement, c'est le produit scalaire de ∇ et u.

Le rotationnel d'un champ vectoriel u(r) est un champ vectoriel v dé�ni par le produit
vectoriel :

v = ∇∧u =

∥∥∥∥∥∥∥∥∥∥∥∥

ex ey ez

∂

∂x

∂

∂y

∂

∂z

ux uy uz

∥∥∥∥∥∥∥∥∥∥∥∥
= ex

(
∂uz
∂y
− ∂uy

∂z

)
+ey

(
∂ux
∂z
− ∂uz

∂x

)
+ez

(
∂uy
∂x
− ∂ux

∂y

)

Nous considérons que ∇ est un vecteur et que nous pouvons "l'utiliser" comme tel. Il
faut juste faire attention que les opérations ont un "ordre".
Notez que le gradient, la divergence et le rotationnel peuvent être dé�nis pour d'autres
systèmes de coordonnées que le système de coordonnées cartésiennes. Naturellement, on
a par exemple

∇f)cartésien = ∇f)coordonnées quelconques

Vous verrez ce genre d'égalité dans vos cours de mathématiques. D'une manière générale,
si pour des raisons de simplicité nous dé�nissons le gradient, la divergence et le rotationnel
en coordonnées cartésiennes, ces quantités sont indépendantes du système de coordonnées
utilisées pour les calculer.

Calculs avec le gradient, la divergence et le rotationnel

Nous donnons ici sans démonstration quelques formules dont nous aurons besoin.

∇ · (fu) = u · ∇f + f∇ · u

∇ · (fu) = (u · ∇)f + f∇ · u



NOTATIONS DU COURS 5

Formules avec les intégrales

Théorème de la divergence

Soit un volume V entouré par une surface S. Soit u un champ vectoriel.∫
S
u · dS =

∫
V

(∇ · u)dV

Ce théorème est connu sous le nom de théorème de la divergence.

Si nous dé�nissons

dS = nd2r

où n est le vecteur unitaire normal à S et dirigé vers l'extérieur de la surface, le théorème
de la divergence s'écrit

∫
S
d2r(n · u) =

∫
V
dV ∇ · u =

∫
V
d3r ∇ · u

Théorème du gradient

Soit f un champ scalaire.

Nous avons ∫
S
fdS =

∫
V
dV ∇f

où V est le volume entouré par S.

Loi de Stokes

Soit une surface S entourée par un contour fermé C. Soit un champ vectoriel B. Nous
avons ∮

C
B · dl =

∫
S

(∇∧B) · dS

Notation

Nous utilisons d'une manière indi�érente les notations suivantes :
� Intégrale de surface

∫
dSf ou

∫
d2rf

� Intégrale de volume
∫
dV f ou

∫
d3rf
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Chapitre 1

Fluide au repos

1.1 Introduction

Dans ce chapitre, nous introduisons la notion de �uide et quelques propriétés des �uides
au repos. Mais il est tout d'abord utile de préciser ce que l'on entend par �uide. Nous
avons distingué les états de la matière suivants :

• l'état solide,
• l'état liquide,
• l'état gazeux.

L'état plasma, souvent cité comme quatrième état de la matière, est un gaz ionisé : les
électrons, qui gravitent autour des noyaux chargés positivement, ne sont plus liés aux
ions. Nous avons alors un gaz formé d'électrons et d'ions.

Le terme de �uide rassemble les liquides et les gaz. Un �uide peut couler. Il prend la forme
du récipient dans lequel il est mis. Ce chapitre introduit des dé�nitions relatives aux
�uides : pression, densité, et pour les interfaces entre liquide et gaz, tension super�cielle.

1.1.1 Densité d'un �uide

Soit un élément de volume ∆V d'un �uide. La masse de cet élément est ∆m. La densité
ρ du �uide est donc

ρ =
∆m

∆V
(1.1)

L'unité de ρ, notée [ρ], est une unité de masse par unité de volume :

[ρ] = kg ·m−3

7



8 CHAPITRE 1. FLUIDE AU REPOS

La dé�nition (1.1) de la densité nous donne une densité macroscopique. On dé�nit la
densité au point r du �uide en faisant tendre le volume ∆V pris autour de r vers un
"petit" volume dV .

ρ(r) = lim
∆V→0

∆m

∆V

∣∣∣∣
au point r

(1.2)

Nous avons utilisé le terme "petit" volume dV . En pratique, dV est grand par rapport
aux dimensions atomiques, mais reste petit par rapport aux échelles de variation de la
densité dans le �uide.

D'une manière générale, la densité locale ρ(r) peut aussi dépendre du temps.

ρ = ρ(r, t) (1.3)

ρ = ρ(r, t) dé�nit un champ scalaire. Un champ scalaire est une fonction qui décrit une
propriété physique descriptible par un scalaire, et qui est une fonction de l'espace r et
du temps t.

Le tableau 1.1 donne l'ordre de grandeur de la densité de quelques corps.

Milieu Densité [kg·m−3]

Espace interstellaire 10−20

Atmosphère terrestre à 20 °C et 1 atm 1.21

Coeur du soleil 1.6 · 105

Densité moyenne du soleil 1.4 · 103

Etoile à neutrons 1018

Trou noir avec une masse d'un soleil 1019

Fer 7.9 · 103

Mercure 13.6 · 103

Densité moyenne de la terre 5.5 · 103

Table 1.1 � Quelques densités typiques

1.2 Pression hydrostatique

1.2.1 Pression dans un �uide

La pression sur une surface S exercée par une force F est p = F/S. L'unité de pression
est le Pascal : [p] = N·m−2 = Pascal ≡ Pa. La pression est un scalaire.

Nous considérons des �uides qui sont au repos, et nous cherchons une expression de la
pression en fonction de la profondeur (�gure 1.1).
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Figure 1.1 � Deux éléments dans un �uide : un cylindre et un cube. F1 est dirigée selon
g et F2 selon −g.

Par convention, p0 désigne la pression atmosphérique. Nous considérons un cylindre dont
les faces planes sont à des hauteurs z1 et z2. Le �uide exerce sur la face plane en z1, de
surface S, une force F1 = p1S De même, nous avons une force F2 = p2S qui s'exerce sur
la surface plane en z2. Notez que, par convention dans cette démonstration, F1, F2 et g
sont des quantités arithmétiques. L'équilibre des forces donne

F2 = F1 +mg

où m est la masse du �uide dans le cylindre. Avec h la hauteur du cylindre, nous avons

p2S = p1S + ρg(z1 − z2)S

p2 = p1 + ρgh (1.4)

En prenant z1 = 0, p1 est la pression atmosphérique à la surface du �uide.

p(h) = p0 + ρgh (1.5)

La pression à une profondeur h en-dessous de la surface du �uide est égale à la pression
atmosphérique p0 additionnée à ρgh. Elle ne dépend pas de la forme du récipient.
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Exemple

Soit un tube en U rempli de mercure et d'eau.

Nous avons p0 + h1ρeaug = p0 + h2ρHgg. En posant h1 − h2 = d, calculons d :

ρeau(h2 + d) = ρHgh2

d =
(ρHg − ρeau)h2

ρeau

Forme di�érentielle de l'équation (1.4)

Considérons un petit volume cubique dans le �uide de la �gure 1.1. Sur la face Sz s'exerce
une force Fz :

Fz = pz(∆Sz)

De même, une force Fz′ s'exerce sur la face Sz′ :

Fz′ = pz′(∆Sz′)

L'équilibre des forces s'écrit : Fz′ = Fz + ρ(∆Sz)g∆l

avec ∆l = z − z′ Nous supposons (z − z′) petit. A la limite, (z − z′) = dz → 0.

Fz − Fz′
(z − z′)

=
dF

dz
= −gρ(∆Sz)

soit
d(F/∆Sz)

dz
= −ρg
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Et donc

dp

dz
= −ρg

Si dz > 0 (voir �gure), dp < 0 (g > 0).

Plusieurs remarques doivent être faites ici :

• C'est le vecteur g qui dé�nit la direction de l'axe Oz. Pour des grandes surfaces (par
exemple dans les océans), la direction de g peut varier, donc celle de l'axe Oz également.
• La pression hydrostatique varie le long d'une ligne de champ de g(r). Rappelons qu'une
ligne de champ d'un champ de vecteur g est tangente en tout point au vecteur g. La
norme de g (soit g) change le long de la ligne de champ.

Nous venons de voir que la pression varie dans la direction parallèle à g. Un raisonnement
analogue nous montre que la pression reste constante dans une direction perpendiculaire
à g.

Force associée à la pression

Considérons un petit élément de �uide.
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La force fy exercée sur la face ∆Sy perpendiculaire à y est

Fy = −(p(y + dy)− p(y))|x,z=cte ∆Sy

Fy = −p(y + dy)− p(y)

dy

∣∣∣∣
x,z=cte

dydxdz

Fy = −∂p
∂y
dydxdz

Fy = fydydxdz

fy = −∂p
∂y a la dimension d'une densité de force : [fy] = N

m2 · 1
m = N

m3

De même, nous avons

fx = −∂p
∂x

et fz = −∂p
∂z

La dimension de ∇p est N
m3 . D'une manière générale, nous avons :

f = −∇p

f est le gradient du champ scalaire de pression p.

La densité de force f associée au champ scalaire de pression p(r) est

f(r, t) = −∇p(r, t)

1.2.2 Principe de Pascal

Nous savons qu'un solide transmet les forces : si nous appuyons sur un bâton avec une
force F à l'une des extrêmités, une force est transmise à l'autre extrémité. Quelle est la
propriété analogue pour les �uides ? Considérons l'arrangement expérimental de la �gure
1.2.

Initialement, les deux pistons P1 et P2 sont à la pression atmosphérique. La hauteur de
la colonne h est la même des deux côtés. Nous appliquons une force F1 sur le piston P1.
Pour pouvoir maintenir le piston P2 à la même hauteur h, il faut appliquer une force F2,
qui donne lieu à une pression p2 = F2/S2. La hauteur h restant la même, l'application
de l'équation (1.5) donne

F1

S1
= p1 = p2 =

F2

S2
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Figure 1.2 � Principe de Pascal

C'est l'expression mathématique du principe de Pascal. Dans un �uide incompressible,
un changement de pression est transmis sans changement à chaque partie du �uide et à
chaque portion des parois du récipient qui le contient.

1.2.3 Interface entre deux �uides immiscibles

Nous considérons deux �uides immiscibles (c.à.d. qui ne peuvent pas se mélanger), et
nous allons nous intéresser à la forme de l'interface entre ces deux �uides. Supposons que
l'interface soit celle de la �gure 1.3.

Figure 1.3 � Interface entre deux �uides immiscibles
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Le point C est dans le �uide 2, à la même profondeur que le point B. Nous avons donc
pC = pB. Or pC = pA + ρ2gh.

pC = pA + ρ2gh = pA + ρ1gh

ρ2h = ρ1h

La seule solution pour ρ1 6= ρ2 est alors h = 0. L'interface entre deux �uides de densités
di�érentes est un plan horizontal.

Notions d'équilibre et de stabilité

Nous venons de dé�nir la condition pour l'interface entre deux �uides immiscibles de
densités di�érentes. Cette condition donne seulement la condition à l'équilibre. Elle ne
nous permet pas de savoir si l'équilibre est stable ou instable. L'expérience de chaque
jour nous permet de dire que de l'huile sur du vinaigre forme une situation stable. Par
contre, mettre de l'eau sur de l'huile aboutit à une situation instable : après un certain
temps, la situation se "renverse" et l'huile se met au-dessus de l'eau, malgré le fait que
l'interface originale est bien un plan horizontal (ce qui satisfait la condition d'équilibre).

En e�et, une fois l'équilibre établi (de l'eau sur de l'huile avec une interface plane), de
petites perturbations de cet équilibre se feront spontanément. L'interface sera légérement
déformée (voir �gure 1.4).

Figure 1.4 � Fluides immiscibles : perturbations de l'équilibre

Dans la con�guration dé�nie par la �gure 1.4, la perturbation va croître : l'amplitude
de la "bosse" d'eau dans l'huile va augmenter. C'est l'instabilité de Rayleigh-Taylor
d'un �uide lourd sur un �uide léger.
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L'expérience de l'huile sur l'eau ou de l'eau sur l'huile nous amène donc à distinguer deux
problèmes :

• Le premier est de trouver les conditions que doit satisfaire un état d'équilibre.
• Le deuxième est de savoir si cet équilibre est stable (c'est-à-dire si les perturbations de
cet équilibre vont diminuer) ou instable (si les perturbations vont croître et détruire
l'équilibre initial).

1.3 Tension super�cielle

Jusqu'à maintenant nous n'avons pas considéré les problèmes liés à une interface. Par
exemple, une bulle de savon est un �lm de liquide avec deux interfaces air-�lm liquide,
une à l'intérieur de la bulle, et l'autre à l'extérieur.

1.3.1 Dé�nition de la tension super�cielle

Soit un �lm de liquide tendu dans un cadre ABCD (�gure 1.5).

Figure 1.5 � Film de liquide dans un cadre

Si nous voulons déplacer BC en B'C', nous devons exercer une force F .

En posant BB' = CC' = dl, le travail de la force F est

δW = Fdl = 2γBCdl = 2γdS (1.6)

où γ est appelé tension super�cielle. Le facteur 2 a été introduit car, dans cette
expérience, nous avons 2 interfaces liquide-air (une "au-dessus" et une "au-dessous" du
�lm liquide). L'unité de γ est : [γ] = N·m−1.
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On note que nous avons dé�ni γ d'une manière phénoménologique - on dit que F est
proportionnel à BC, le coe�cient de proportionnalité étant γ s'il y a 1 interface liquide-
air ou 2 γ s'il y a 2 interfaces. La dé�nition 1.6 relie le travail δW à γ.

Le tableau 1.2 donne quelques valeurs de γ.

Liquide γ [N·m−1]

Eau 7 · 10−2

Verre fondu 10−1

Métaux liquides 10−2 − 1.5

Table 1.2 � Quelques valeurs de tension super�cielle

La tension super�cielle est liée à l'interface. Dans un liquide, les forces exercées sur une
molécule par les autres sont équilibrées. Par contre, la présence d'une interface ne permet
plus l'équilibre de ces forces, d'où l'origine de la tension super�cielle.

Revenons à l'équation (1.6). Elle montre qu'à cause de la tension super�cielle, une aug-
mentation de la surface ABCD nécessite un travail δW . Nous pouvons intuitivement en
déduire que la forme, par exemple, des bulles de savon minimise l'énergie correspondant
à la tension super�cielle, en tenant compte des contraintes extérieures.

Une bulle d'eau savonneuse est sphérique, car la sphère a une surface minimale (minimi-
sation du travail de la tension super�cielle) pour un volume donné (contrainte).

Une autre expérience met en évidence la tension super�cielle. Prenons un pinceau. Sec,
les poils sont bien séparés. Mouillé, les poils sont rassemblés. Le �lm liquide entre les
poils minimise sa surface et rassemble, par ce processus, les poils.
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1.3.2 Equation de Laplace

Le but est de calculer la di�érence de pression entre l'intérieur et l'extérieur d'une sphère
séparant un �uide 1 (p.ex. une bulle d'air) immergé dans un �uide 2 (p.ex. de l'eau)
(�gure 1.6). Soit R0 le rayon de la bulle, ∆p = p1 − p2. Le but du calcul est de trouver
une expression pour ∆p.

Figure 1.6 � Sphère séparant deux �uides

Notons que dans ce problème nous avons seulement une interface entre les �uides 1 et 2.

Raisonnement mathématique

Sous les conditions données (rayon R0 de la bulle et di�érence de pression ∆p = p1 − p2

données), la bulle est dans une situation d'équilibre. Du point de vue énergétique, la bulle
est dans un état d'énergie minimale (cf Cours de mécanique). Mathématiquement, nous
exprimons ceci en disant que la dérivée de l'énergie du système est nulle pour la valeur
R0, rayon de la bulle. Calculons d'abord dW , variation de l'énergie du système lorsque
nous essayons de changer le rayon de la bulle de R0 à R0 + dR :

dW = dWS + dWP

où

• dWS = variation du l'énergie due à la tension super�cielle,
• dWP = variation de l'énergie due à la pression.

Nous avons donc
dW

dR

∣∣∣∣
R=R0

= 0
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Et donc
dW = 0 pour R = R0

dWS = d[4πγR2]

(pas de facteur 2 car nous avons seulement 1 interface)

dWS = 8πγRdR

dWP = −∆pdV = −(p1 − p2)d

[
4

3
πR3

]
= −(p1 − p2)4πR2dR

Si le volume augmente (dR > 0) la pression fait du travail, d'où le signe moins.
Pour R = R0, nous avons dW = 0.

8πγR0 = (p1 − p2)4πR2
0

∆p = p1 − p2 =
2γ

R0
(1.7)

La formule (1.7) est connue sous le nom de loi de Laplace.

Il existe dans le �uide 1 une surpression p1 :

p1 = p2 +
2γ

R

Le terme 2γ/R a bien la dimension d'une pression : N·m−2.

Pour 1 bulle de savon p. ex., il y a 2 interfaces p1 = p2 + 4γ
R . Si la surface a 2 rayons de

courbure R1 et R2, la loi de Laplace est

∆p = γ

[
1

R1
+

1

R2

]

Ceci est montré lors d'une expérience du cours.



Chapitre 2

Dynamique des �uides

2.1 Introduction

Après avoir dé�ni les quantités �uides, nous décrirons les équations qui régissent les
fuides en mouvement ainsi que leurs propriétés physiques. Notre étude portera surtout
sur des �uides non visqueux. Nous décrirons, comme conséquence des équations �uides,
l'équation de Bernoulli, qui est valable pour un �uide parfait incompressible. Finalement,
nous montrerons que les �uides réels sont des �uides visqueux.

2.2 Les quantités �uides

Considérons dans le �uide un élément in�nitésimal dV repéré par le vecteur position r.
La densité du �uide dans dV est ρ(r). Si le �uide est en mouvement, l'élément de �uide
dans dV a une vitesse �uide u.

Figure 2.1 � Elément de �uide dV repéré par le vecteur r

Faisons immédiatement une remarque sur la vitesse �uide u : u est la vitesse de l'élément

19
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de �uide dV . Nous savons d'autre part que le �uide est composé d'atomes ou de molécules
qui sont agités de mouvements aléatoires (cf. Cours de Thermodynamique de Physique
Générale II). La vitesse v des atomes ou des molécules n'est pas la vitesse �uide u !
Finalement, dans l'élément de �uide, il y a une pression p(r).

2.2.1 Description lagrangienne du �uide

Dans cette description, nous suivons le mouvement de l'élément de �uide dV , décrit par
son vecteur position rf (t).

Figure 2.2 � Mouvement de l'élément de �uide dV

Les notions de vitesse et d'accélération sont alors déduites d'une manière simple. Nous
pouvons aussi utiliser la notion de trajectoire.

Nous pouvons représenter la description lagrangienne comme celle vue par un bouchon
emporté par l'eau d'une rivière en mouvement : le bouchon "visualise" l'élément de �uide.

Calculons la variation d'une quantité, par exemple ρ, dans la description lagrangienne.
Au temps t = t1, l'élément �uide est en r1 et ρ vaut ρ1. En t = t2, ρ vaut ρ2 et doit être
mesuré en r2.

δρ = ρ2 − ρ1 =
∂ρ

∂t
δt+

∂ρ

∂x
δx+

∂ρ

∂y
δy +

∂ρ

∂z
δz

Le terme ∂ρ
∂t δt décrit la variation de ρ due à sa dépendance explicite dans le temps.
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Les termes
(
∂ρ
∂xδx+ ∂ρ

∂y δy + ∂ρ
∂z δz

)
sont liés au fait que l'élément �uide a bougé de r1

à r2.

Pour de petits δt et δr = r2 − r1, nous avons donc

δt = dt

δx = dx, δy = dy, δz = dz

et donc

dρ =
∂ρ

∂t
dt+

∂ρ

∂x
dx+

∂ρ

∂y
dy +

∂ρ

∂z
dz

C'est la di�érentielle totate de ρ en t.

De plus

dx

dt
= ux,

dy

dt
= uy,

dz

dt
= uz

d'où

dρ

dt
=
∂ρ

∂t
+ ux

∂ρ

∂x
+ uy

∂ρ

∂y
+ uz

∂ρ

∂z

dρ

dt
=
∂ρ

∂t
+ (u · ∇)ρ

d
dt = ∂

∂t + (u · ∇) est appelée dérivée convective. Elle nous permet de calculer la
variation d'une quantité (par exemple ρ) en suivant l'élément de �uide.

L'accélération a d'un élément de �uide est alors

a =
du

dt
=
∂u

∂t
+ (u · ∇)u

2.2.2 Description eulérienne

Imaginons maintenant que, dans un �uide en mouvement, nous avons un réseau de sondes
de mesure, comme des appareils de mesure de ρ, de vitesse �uide u, avec une résolution
temporelle t. Nous pouvons donc en principe avoir une mesure de ρ(r, t) et u(r, t) résolue
dans l'espace r et dans le temps t.

Contrairement à ce qui se passe dans la description lagrangienne, la densité ρ, la vitesse
�uide u, et les autres quantités physiques observées au même endroit r mais à deux temps
t di�érents correspondent à des éléments �uides di�érents.
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2.3 Equations �uides

Nous nous proposons de trouver les équations qui gouvernent les quantités physiques qui
décrivent un �uide en mouvement. Ces quantités sont, a priori :

• la densité ρ(r, t)
• la vitesse �uide u(r, t)
• la pression �uide p(r, t)

Ce �uide peut être soumis à des forces extérieures F(r, t). Il s'agit de trouver un système
d'équations di�érentielles liant ces quantités.

2.3.1 Equation de continuité

Soit un volume V �xe dans le �uide, c'est donc une description eulérienne. Nous sup-
posons qu'il n'y a pas de réaction nucléaire qui change la masse du �uide (cf. Dynamique
relativiste, Cours Physique Générale II). La variation de la masse due à la variation de
la densité est donc égale au �ux de masse ρu à travers la surface S entourant le volume
V .

Figure 2.3 � Volume V �xe. Le vecteur unitaire n est normal à la surface dS et dirigé
vers l'extérieur.

La variation de la masse M incluse dans V est

M(t) =

∫
V
d3rρ(r, t)

dM

dt
=

d

dt

∫
V
d3rρ(r, t) =

∫
V
d3r

∂ρ(r, t)

∂t
(2.1)
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L'introduction de la dérivée d
dt dans l'intégrale est possible, car V est �xe.

Le changement de masse dM
dt est égal au �ux de masse ρu à travers la surface :

dM

dt
= −

∫
S
d2rρu · n = −

∫
S
dS · (ρu) (2.2)

La normale n à la surface S est dirigée vers l'extérieur. Le signe moins se conçoit aisément :
pour que dM/dt soit positif, il faut qu'il y ait un �ux de masse qui rentre dans V : si
n est dirigé vers l'extérieur de V , le �ux de masse ρu · n est alors négatif, d'où le signe
moins. Nous rappelons le théorème de la divergence :∫

S
dS · (ρu) =

∫
V
d3r∇ · (ρu) (2.3)

En combinant les équations (2.1) à (2.3), nous obtenons∫
V
d3r

[
∂ρ

∂t
+∇ · (ρu)

]
= 0 (2.4)

Cette équation est satisfaite quel que soit le volume V considéré. Il faut donc que l'inté-
grant soit nul :

∂ρ

∂t
+∇ · (ρu) = 0 (2.5)

L'équation (2.5) est appelée équation de continuité. En coordonnées cartésiennes, elle
s'écrit simplement

∂ρ

∂t
+

∂

∂x
[ρux] +

∂

∂y
[ρuy] +

∂

∂z
[ρuz] = 0

Si le problème est unidimensionnel (�uide uniforme dans les directions x et y, et vitesse
�uide selon z), l'équation de continuité se simpli�e :

∂ρ

∂t
+

∂

∂z
(ρuz) = 0

Validité de l'équation de continuité

Nous sommes partis de la conservation de la masse totale dans le volume V . Cette
hypothèse est valide s'il n'y a pas de réaction nucléaire qui annihile ou crée la masse.
Par contre, si dans le volume V nous avons des réactions chimiques et que nous nous
intéressons à une composante du milieu, la conservation de la masse d'une composante
n'est pas vraie, et il faut considérer des termes de source.
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Non linéarité de l'équation de continuité

Reprenons l'équation de continuité

∂ρ

∂t
+∇ · (ρu) = 0

Rappelons que les quantités ρ et u sont les quantités physiques qui décrivent le �uide et
que nous désirons calculer. Nous remarquons immédiatement qu'il y a un terme "produit
de ρ par u". L'équation de continuité est donc non linéaire.

Nous cherchons tout d'abord à exprimer l'équation de continuité avec la dérivée convec-
tive, dont l'expression est

d

dt
=

∂

∂t
+ (u · ∇)

L'opérateur (u · ∇) en coordonnées cartésiennes est

(u · ∇) =

(
ux

∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z

)

(u · ∇) agissant sur un champ scalaire ρ(r) donne

(u · ∇)ρ = ux
∂ρ

∂x
+ uy

∂ρ

∂y
+ uz

∂ρ

∂z

(u · ∇) agissant sur un champ vectoriel A donne un autre champ vectoriel B dont les
composantes Bi sont données par

B = (u · ∇)A

Bi = (u · ∇)Ai

Ai étant les composantes de A.

Nous avons vu l'expression de la dérivée convective de ρ lors de la description lagrangi-
enne :

dρ

dt
=
∂ρ

∂t
+ (u · ∇)ρ

Développons l'équation de continuité :

∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
+ (u · ∇)ρ+ ρ(∇ · u)

D'où l'expression équivalente dans la description lagrangienne

dρ

dt
+ ρ(∇ · u) = 0 (2.6)
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Fluide incompressible

Considérons l'équation (2.6). Un �uide est incompressible si ρ ne change pas au cours du
temps, plus précisément si la dérivée convective dρ/dt est nulle.

dρ

dt
= 0

A partir de l'équation (2.6), nous déduisons immédiatement que l'équation pour un �uide
incompressible est

∇ · u = 0 (2.7)

L'équation (2.7) est connue sous le nom d'équation d'état 1 d'un �uide incompressible.
Elle décrit en terme mathématique une propriété caractéristique de "l'état" du �uide (ici
l'incompressibilité).

Tube de courant et conservation du �ux

Rappelons la dé�nition d'une ligne de courant : c'est une ligne qui est tangente en tout
point à la vitesse u(r). Les lignes de courant ne se coupent pas (justi�ez ce point vous-
même). Un tube de courant est obtenu en prenant un faisceau de lignes de courant entouré
par une ligne C. Plus loin dans le �uide, le tube de courant est dé�ni par C' (voir �gure
2.4).

Figure 2.4 � Tube de courant

1. Nous introduirons plus tard la notion d'équation d'état d'une manière générale.
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Considérons un écoulement stationnaire, c'est-à-dire qui ne dépend pas explicitement du
temps (∂/∂t = 0). Par l'équation de continuité, tout le �ux qui entre à travers la surface S
entourée par C doit sortir à travers la surface S' entourée par C' (essayez de démontrer ce
point en utilisant le théorème de la divergence (2.3) sur le volume d'un tube de courant).

2.3.2 Equation de bilan pour la densité de quantité de mouvement

Nous dé�nissons la densité de quantité de mouvement par ρ(r, t)u(r, t), produit du champ
scalaire de la densité ρ et du champ vectoriel de la vitesse �uide u. ρu est un champ
vectoriel décrivant la densité de quantité de mouvement. Pour simpli�er les calculs, nous
nous limiterons au cas d'une �uide parfait. Un �uide est dit parfait si les e�ets dus à la
viscosité 2 sont négligeables.

Considérons un volume V qui suit le �uide (description lagrangienne). Attention : cette
hypothèse est di�érente de celle faite pour la dérivation de l'équation de continuité où V
est considéré comme �xe. La quantité de mouvement dans V est P :

P =

∫
V
d3rρu

L'application de l'équation de Newton donne

dP

dt
= Forces sur le �uide enfermé dans le volume V

Les forces qui s'exercent sur le �uide sont obtenues par intégration des densités de forces.
Ce sont :

• la force de gravité (cas des �uides sur Terre)∫
V
d3rρg

• d'autres forces extérieures Fext, avec une densité fext

Fext =

∫
V
d3rfext

• les forces de surface liée à la pression p, supposée isotrope

Fsurface = −
∫
S
d2rnp

où n est le vecteur unitaire normal à la surface S, et dirigé vers l'extérieur. S est la
surface entourant V .

2. La dé�nition de la viscosité sera faite dans la section 2.4. Pour le moment, nous faisons appel à
votre expérience quotidienne pour sa dé�nition : le miel est plus visqueux que l'eau.
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L'équation de Newton est alors :

d

dt

∫
V
d3rρu =

∫
V
d3rρg +

∫
V
d3rfext −

∫
S
d2rnp

Calculons d'abord le membre de gauche. Pour simpli�er les calculs, commençons par
calculer la composante i de la quantité de mouvement

d

dt

∫
V
d3rρui

La dérivée d
dt comprend deux termes :

• le premier dû à la variation temporelle de (ρui), soit∫
V
d3r

∂

∂t
(ρui) =

∫
V
d3r

(
ui
∂

∂t
ρ+ ρ

∂

∂t
ui

)
• le second est lié au fait que V s'est déplacé entre t et t + dt et "englobe" des autres
valeurs de ρui (�gure 2.5).

Figure 2.5 � Volume V en mouvement

La variation due au déplacement du volume V est donnée par∫
S
d2r(n · u)ρui

C'est en fait le �ux de (ρui) à travers S. Utilisons le théorème de la divergence (cf.
Notations du cours) pour transformer l'intégrale de surface en intégrale de volume.∫

S
d2r(n · u)ρui =

∫
V
d3r∇ · (ρuiu)

Développons la divergence :

∇ · (ρuiu) = ui∇ · (ρu) + ρ(u · ∇)ui
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Récrivons maintenant

d

dt

∫
V
d3rρui =

∫
V
d3rui

∂

∂t
ρ+ ρ

∂

∂t
ui + ui∇ · (ρu) + ρ(u · ∇)ui

=

∫
V
d3rρ

[
∂

∂t
ui + (u · ∇)ui

]
+

∫
V
d3rui

[
∂

∂t
ρ+∇ · (ρu)

]

La deuxième intégrale est nulle, car l'intégrant n'est autre que l'équation de continuité
multipliée par ui.

∂

∂t
ρ+∇ · (ρu) = 0⇒ ui

[
∂

∂t
ρ+∇ · (ρu)

]
= 0

Donc
d

dt

∫
V
d3rρui =

∫
V
d3rρ

[
∂

∂t
ui + (u · ∇)ui

]
valable pour chaque composante i de u. On peut maintenant récrire cette égalité scalaire
comme égalité vectorielle :

d

dt

∫
V
d3rρu =

∫
V
d3rρ

[
∂

∂t
u+ (u · ∇)u

]
C'est le membre de gauche de l'équation de Newton.

Le membre de droite comprend trois sommes dont deux sont des intégrales de volume, et
la troisième une intégrale de surface que nous transformons par le théorème du gradient
(cf. Notations du cours) :

−
∫
S
d2rpn = −

∫
S
pdS = −

∫
V
d3r∇p

En combinant tous les résultats, nous obtenons

∫
V
d3r

{
ρ

[
∂u

∂t
+ (u · ∇)u

]}
=

∫
V
d3rfext −

∫
V
d3r∇p

Notons que le terme ρg peut être compris dans fext. Cette équation étant valable quel
que soit V , nous avons donc

ρ

[
∂u

∂t
+ (u · ∇)u

]
= fext −∇p (2.8)

L'équation (2.8) est appelée équation d'Euler. C'est une équation vectorielle. Elle cor-
respond donc à 3 équations scalaires pour les 3 composantes. En utilisant les coordonnées
cartésiennes, nous avons donc :
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ρ

[
∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

]
= fext,x −

∂p

∂x

ρ

[
∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

+ uz
∂uy
∂z

]
= fext,y −

∂p

∂y

ρ

[
∂uz
∂t

+ ux
∂uz
∂x

+ uy
∂uz
∂y

+ uz
∂uz
∂z

]
= fext,z −

∂p

∂z

Quelques remarques sur l'équation d'Euler

Validité

Strictement parlant, l'équation d'Euler n'est valable que si la viscosité est nulle (cf.
paragraphe 2.4 pour la dé�nition de la viscosité). C'est le cas de deux liquides : l'hélium
4He liquide à une température inférieure à 2.172 K, et l'hélium 3He à une température
inférieure à 10−3 K. Un tel liquide peut couler à travers des pores sous une di�érence de
pression nulle. On les appelle "super�uides".

En pratique, nous pouvons utiliser l'équation d'Euler lorsque les e�ets de viscosité sont
négligeables. En fait, l'équation d'Euler est une forme particulière de l'équation de Navier-
Stokes pour un �uide incompressible avec viscosité. Par rapport à l'équation d'Euler, le
membre de droite de l'équation de Navier-Stokes comprend un terme supplémentaire qui
tient compte de la viscosité. Sans démonstration, nous écrivons l'équation de Navier-
Stokes :

ρ

[
∂u

∂t
+ (u · ∇)u

]
= fext −∇p+ η∇2u (2.9)

où η est la viscosité dynamique et l'opérateur ∇2 (appelé laplacien aussi noté ∆) est
donné en coordonnées cartésiennes par

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Notons que l'équation de Navier-Stokes se ramène à l'équation d'Euler pour η = 0,
c'est-à-dire pour un �uide non visqueux.

Non linéarité

Tout comme l'équation de continuité, l'équation d'Euler (ainsi que l'équation de Navier-
Stokes) est non linéaire. Le membre de gauche fait intervenir les produits ρ∂u∂t et ρ(u·∇)u.
C'est cette non linéarité qui rend extrêmement compliquée la résolution des équations
décrivant le �uide.
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C'est en fait la non linéarité des équations (2.5) et (2.8) (ou (2.9)) qui rend leur résolution
di�cile. Euler l'a déjà mentionné en écrivant : "S'il ne nous est pas permis de pénétrer à
une connaissance complète sur le mouvement des �uides, ce n'est pas à la mécanique et
à l'insu�sance des principes connus du mouvement qu'il faut attribuer la cause, mais à
l'analyse même qui nous abandonne ici." (cité dans R. Dugas, Histoire de la Mécanique,
éd. J. Gabay). Notez aussi que Euler a également dérivé l'équation de continuité !

2.3.3 Les 2 équations de continuité et d'Euler sont-elles su�santes
pour décrire le �uide ?

Nous voulons décrire un phénomène physique qui implique m quantités scalaires et n
quantités vectorielles. Un modèle théorique doit alors dériver m équations scalaires et n
équations vectorielles, soit au total (m+3n) équations. Appliquons cette règle au cas des
équations �uides.

Rappelons tout d'abord quelles sont les quantités dont nous avons besoin pour décrire le
�uide 3. Ce sont le champ scalaire ρ(r, t) et le champ vectoriel u(r, t). Nous avons dérivé
deux équations :

• l'équation de continuité (2.5) qui est une équation scalaire

∂ρ

∂t
+∇ · (ρu) = 0

• l'équation d'Euler (2.8) (dans son domaine de validité, sinon l'équation de Navier-
Stokes si les e�ets de viscosité sont importants) qui est une équation vectorielle

ρ

[
∂u

∂t
+ (u · ∇)u

]
= fext −∇p

Notons d'abord que fext est donnée. Par exemple dans un champ de gravité g, fext = ρg
et dépend explicitement de ρ.

Il reste la pression p qu'il nous faut exprimer : il nous manque une équation pour la
décrire.

L'expression de la pression p en fonction des autres quantités du �uide fait appel à une
autre physique que la physique des �uides. Par exemple, si nous considérons comme �uide
un gaz parfait, l'équation d'état des gaz parfaits, avec kB la constante de Boltzmann
(kB = 1.38 · 10−23 J/K),

pV = NkBT

permet d'exprimer p en fonction de ρ. En e�et, N désignant le nombre de molécules, et
appelant m la masse d'une molécule, nous avons

pm =
Nm

V
kBT = ρkBT

3. Nous considérons des �uides "simples" qui ne contiennent pas de charges électriques.
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Cette équation d'état n'a pas été obtenue à partir de la physique des �uides, mais par la
physique statistique des gaz parfaits (cf. Thermodynamique, Cours de Physique Générale
II).

2.3.4 Equation de bilan d'énergie cinétique

Pour simpli�er les calculs, nous ne considérerons que des �uides incompressibles et par-
faits. Cette hypothèse nous permet d'utiliser la relation d'incompressibilité ∇ · u = 0
(équation 2.7), et de négliger toutes les forces de viscosité.

Considérons la densité d'énergie cinétique dé�nie par

ecin =
ρu2

2

Nous considérons la description eulérienne et nous calculons ∂
∂t

(
ρu2

2

)
en utilisant :

• l'équation de continuité

∂

∂t
ρ+∇ · (ρu) =

∂

∂t
ρ+ uj

∂ρ

∂xj
+ ρ

∂uj
∂xj

= 0

• l'équation d'Euler

ρ

[
∂ui
∂t

+ uj
∂ui
∂xj

]
= − ∂p

∂xi
+ fi, i = 1, 2, 3

Pour alléger la notation, nous substituons f ext par f .

Dans l'expression des équations de continuité et d'Euler, nous avons utilisé la convention
de la sommation sur les indices répétés. Ainsi :

uj
∂ρ

∂xj
=

3∑
j=1

uj
∂ρ

∂xj

Notons aussi que lorsque nous utilisons la convention sur les indices répétés, le nom de
ces indices est sans importance :

uj
∂ρ

∂xj
=

3∑
j=1

uj
∂ρ

∂xj
=

3∑
k=1

uk
∂ρ

∂xk
= uk

∂ρ

∂xk

Calculons
∂

∂t

(
ρu2

2

)
=
u2

2

∂ρ

∂t
+ ρui

∂ui
∂t
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Nous exprimons ∂ρ
∂t par l'équation de continuité, et ρ∂ui∂t par l'équation d'Euler :

∂

∂t

(
ρu2

2

)
= −u

2

2
∇ · (ρu)− ui

∂p

∂xi
+ fiui − ρuiuj

∂ui
∂xj

Développons certains termes (cf. Notations du cours) :

u2

2
∇ · (ρu) =

u2

2

uj ∂ρ
∂xj

+ρ∇ · u︸ ︷︷ ︸
=0


Le dernier terme est nul, car le �uide est incompressible (∇ · u = 0).

u2

2
∇ · (ρu) + ujρui

∂ui
∂xj

=

3∑
i=1

u2
i

2
uj

∂ρ

∂xj
+ ujρui

∂ui
∂xj

= uj
∂

∂xj

(
ρu2

2

)
Nous aboutissons donc à

∂

∂t

(
ρu2

2

)
= −uj

∂

∂xj

[
ρu2

2
+ p

]
+ fjuj = −u · ∇

(
ρu2

2
+ p

)
+ u · f

Rappelons la relation vectorielle (cf. Notations du cours)

∇ · (ug) = g(∇ · u) + u · (∇g)

où u est un champ vectoriel et g un champ scalaire. Si u est la vitesse �uide d'un �uide
incompressible, alors ∇ · u = 0 et

∇ · (ug) = u · (∇g)

Donc
∂

∂t

(
ρu2

2

)
= −∇ ·

[
u

(
ρu2

2
+ p

)]
+ u · f (2.10)

L'équation (2.10) donne le bilan de l'énergie cinétique pour un �uide parfait incompress-
ible.

Relation avec la mécanique

Nous avons dérivé l'équation (2.10) d'une manière mathématique. Pour avoir une inter-
prétation physique, intégrons les deux membres par rapport à un volume V entouré par
une surface S. V est �xe dans l'espace.
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∂

∂t

∫
V
d3r

ρu2

2
= −

∫
V
d3r∇ ·

[
u

(
ρu2

2

)]
−
∫
V
d3r∇ · (up) +

∫
V
d3ru · f

Le membre de gauche donne la variation de l'énergie cinétique dans V . Les divers termes
de droite expriment :
• 1er terme : en utilisant le théorème de la divergence :

−
∫
V
d3r∇ ·

[
u

(
ρu2

2

)]
= −

∫
S
d2r(n · u)

ρu2

2

C'est le �ux d'énergie cinétique transportée à travers la surface S.

• 2e terme :

−
∫
V
d3r∇ · (up) = −

∫
S
d2r(u · n)p

C'est la puissance liée à la pression exercée sur la surface S. Cette pression est exercée
normalement à la surface S.

• 3e terme : c'est la puissance des forces externes Fext dont la densité est f .

Les 2e et 3e termes sont donc bien connus, grâce à la mécanique classique qui nous
apprend que la variation temporelle de l'énergie cinétique est égale à la puissance créée
(ou absorbée) par les forces. Le 1er terme tient compte simplement des �ux convectifs de
l'énergie cinétique en dehors du volume V à travers la surface S.

Nous pouvons aussi récrire l'équation (2.10). Développons :

∇ ·
(
u
ρu2

2

)
=
ρu2

2
∇ · u+ u · ∇

(
ρu2

2

)
Le premier terme du membre de droite est nul pour un �uide incompressible (∇·u = 0).

∇ ·
(
u
ρu2

2

)
= (u · ∇)

(
ρu2

2

)
L'équation (2.10) devient alors

∂

∂t

(
ρu2

2

)
+ (u · ∇)

(
ρu2

2

)
= −∇ · (up) + f · u

Nous retrouvons dans le membre de gauche la dérivée convective de l'énergie cinétique.

d

dt

(
ρu2

2

)
= f · u−∇ · (up) = f · u− u · ∇p− p∇ · u︸ ︷︷ ︸

=0

d

dt

(
ρu2

2

)
= f · u− u · ∇p = u · (f −∇p) (2.11)
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La dérivée convective de la densité d'énergie cinétique est égale à la densité du travail
accompli par f (terme f · u) et à celle du travail accompli par la densité de force −∇p
liée à la pression .

Remarquons que pour obtenir l'équation de continuité, nous avons fait appel au principe
de conservation de la masse, et pour l'équation d'Euler à celui de la variation de l'impul-
sion. Par contre, pour obtenir l'équation de bilan de l'énergie cinétique, nous n'avons dû
faire appel à aucune loi de physique : la dérivation fut simplement un exercice de math-
ématiques ! En e�et, le résultat (2.10) n'est rien de plus que la conservation de l'énergie
mécanique, qui elle-même dérive de l'équation de Newton !

2.3.5 Relation de Bernoulli

La relation de Bernoulli est valable pour un �uide incompressible parfait en écoulement
stationnaire. Cette dernière propriété signi�e simplement que ∂

∂t est nul.

Nous supposons de plus que la densité de force f dérive d'une densité de potentiel ϕ.

f = −∇ϕ

En mécanique, la force qui correspond à f est dite conservative.

Reprenons l'équation (2.10). L'écoulement étant stationnaire, le membre de gauche ( ∂∂t
ρu2

2 )
est nul :

∇ ·
[
u

(
ρu2

2
+ p

)]
= −u · ∇ϕ

Or, pour un �uide incompressible (∇ · u = 0),

∇ · (uϕ) = ϕ(∇ · u) + u · (∇ϕ) = u · ∇ϕ

Donc

∇ ·
[
u

(
ρu2

2
+ p+ ϕ

)]
= 0

Nous pouvons récrire

∇ ·
[
u

(
ρu2

2
+ p+ ϕ

)]
= u · ∇

(
ρu2

2
+ p+ ϕ

)
= 0

car ∇ · u = 0.
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Dans un écoulement stationnaire, cette expression est la dérivée convective de

d

dt

[
ρu2

2
+ p+ ϕ

]
=

∂

∂t

[
ρu2

2
+ p+ ϕ

]
︸ ︷︷ ︸
=0 (écoulement stat.)

+(u · ∇)

[
ρu2

2
+ p+ ϕ

]
= 0

d

dt

[
ρu2

2
+ p+ ϕ

]
= 0 (2.12)

La dérivée convective est la dérivée lorsque l'on suit un petit élément de �uide qui bouge.
C'est donc la dérivée le long d'une ligne de courant. L'équation (2.12) indique que la

quantité
[
ρu2

2 + p+ ϕ
]
est conservée le long d'une ligne qui suit un élément de �uide

(ligne de courant). La conservation de

ρu2

2
+ p+ ϕ = cte le long d'une ligne de courant (2.13)

est connue sous le nom de relation de Bernoulli (Daniel Bernoulli).

Si la force f est la force de gravitation, alors ϕ = ρgy où y est la hauteur. La relation de
Bernoulli devient

1

2
ρu2 + p+ ρgy = cte (2.14)

le long d'une ligne de courant.

Exemples d'application

Soit la situation décrite par la �gure 2.6 :

Figure 2.6 � Ecoulement d'un �uide
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Calculons les quantités u2 et p2. Les deux équations à utiliser sont

• la conservation du �ux

S1u1 = S2u2 ⇔ u2 =
S1

S2
u1

• la relation de Bernoulli

p1 +
ρu2

1

2
+ ρgh1 = p2 +

ρu2
2

2
+ ρgh2

p2 = p1 +
ρ

2

[
u2

1 − u2
2

]
+ ρg (h1 − h2) = p1 +

ρu2
1

2

[
1− S2

1

S2
2

]
+ ρg (h1 − h2)

Soit un réservoir avec un trou S2 à une profondeur h par rapport à la surface libre
(�gure 2.7). Calculons la vitesse de sortie u2 de l'eau en S2. Notons d'abord que la
pression à la surface du réservoir est patm, de même que celle en S2.

Figure 2.7 � Réservoir qui se vide

De nouveau, nous avons :
• la conservation du �ux

S1u1 = S2u2 ⇔ u1 =
S2

S1
u2

• la relation de Bernoulli

patm +
1

2
ρu2

1 + ρgh = patm +
1

2
ρu2

2

u2
2

2

[
1− S2

2

S2
1

]
= gh

u2 =

√√√√ 2gh

1− S2
2

S2
1

Nous voyons donc qu'une horloge à eau (mesure de la quantité d'eau recueillie en fonction
du temps) n'est pas précise, car le niveau d'eau baisse, donc le débit u2 varie au fur et à
mesure que le réservoir se vide.
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2.3.6 Récapitulation

Nous avons dérivé
• l'équation de continuité qui exprime la conservation de la masse :

∂ρ

∂t
+∇ · (ρu) = 0

• l'équation d'Euler pour un �uide parfait :

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ f

Un �uide est dit incompressible lorsque ∇ · u = 0.

Dans la réalité, nous avons souvent à traiter le cas d'écoulement d'un �uide dans des
tuyaux solides. Il y a donc une interface liquide-solide. Quelle est la condition aux limites
d'une telle interface ?

Nous supposerons que le liquide ne pénètre pas dans le solide. Soit n le vecteur normal
à l'interface liquide-solide. La condition de non-pénétration est alors :

usolide · n = uliquide · n = 0 à l'interface

ou en d'autres termes : la composante normale de usolide et la composante normale de
uliquide sont nulles à l'interface.

Pour un �uide parfait (viscosité nulle), la composante parallèle à la surface peut être
di�érente de 0. L'introduction de la viscosité change cette contrainte sur la composante
parallèle.

2.4 Viscosité, écoulement d'un �uide visqueux

Jusqu'à maintenant, nous avons considéré des �uides parfaits. Dans la réalité, il existe
des forces dues à la viscosité.

2.4.1 Evidence de la viscosité

L'expérience quotidienne nous montre plusieurs évidences de la viscosité :

• L'eau coule "plus facilement" que le miel.
• A l'entrée d'un long tuyau, il faut une certaine pression pour obtenir un débit. Si l'on
mesure la pression à l'entrée et à la sortie du tuyau, on trouve un di�érence de pression
appelée perte de charge.
• L'expérience de la �gure 2.8 montre que la relation de Bernoulli n'est pas véri�ée.

Bien que le tuyau horizontal soit de section constante, les hauteurs de liquide dans les
tubes 1, 2 et 3 (qui mesurent les pressions en ces endroits) sont di�érentes et vont en
décroissant ; la pression chute.
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Figure 2.8 � Relation de Bernoulli non véri�ée

2.4.2 Dé�nition de la viscosité

Nous considérons l'expérience suivante (appelée �écoulement de Couette�) :

Figure 2.9 � Fluide entre deux plaques

Nous tirons la plaque supérieure avec une force Fext. Cette plaque, qui bouge avec une
vitesse us impose une vitesse u0 à la couche de �uide qui touche la plaque. Expéri-
mentalement, le �uide a alors un écoulement stationnaire caractérisé par un gradient de
vitesse.

∆u

∆z
=
u0

h

La vitesse �uide vaut u0 à z = h et 0 à z = 0 (plaque inférieure).

Ce gradient de vitesse est lié à la force Fext par

∆u

∆z
=

1

η

Fext
S

Fext/S est la force tangentielle par unité de surface. η est le coe�cient de viscosité
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dynamique (ou simplement viscosité) 4.

[η] =
[Fext]

[S]

[h]

[u0]
=

N

m2

m · s
m

=
N · s
m2

=
N

m2
· s

Dans le système SI, l'unité de η est Pa·s (Pascal · s) ou anciennement Poiseuille.

Pour un liquide, η est de l'ordre de 10−3 Nsm−2 à 10−2 Nsm−2, alors que pour un gaz,
il vaut 10−5 Nsm−2. Pour un glacier, η atteint 1013 Nsm−2.

Nous supposons que le coe�cient de viscosité η est indépendant de la vitesse u. Les
�uides pour lesquels cette propriété est valable sont appelés �uides newtoniens.

2.4.3 Ecoulement d'un �uide visqueux dans un tuyau (écoulement de
Poiseuille)

Considérons un tuyau cylindrique de rayon R, s'écoulant dans la direction z > 0 :

Figure 2.10 � Tuyau

Considérons un cylindre de �uide de rayon r entre z et z+∆z. Sur ce cylindre s'exercent
les forces
• [p− (p−∆p)]πr2 = ∆pπr2

• Fvisc = −2πr∆zη dudr
L'écoulement étant stationnaire, ces deux forces s'équilibrent.

∆pπr2 = −2πr∆zη
du

dr

du

dr
= −1

2

∆p

∆z

1

η
r

4. La quantité η/ρ est appelée viscosité cinématique.
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En intégrant avec la condition u(R) = 0, nous trouvons le pro�l parabolique des vitesses :

u(r) =
1

4η

∆p

∆z
(R2 − r2)

Le débit volumétrique D du tuyau est alors

D =

∫ R

0
u(r)2πrdr =

2π

4η

∆p

∆z

∫ R

0
r(R2 − r2)dr

=
π

2η

∆p

∆z

[
r2R2

2
− 1

4
r4

]R
0

D =
π

8η

∆p

∆z
R4 ([D] = m3/s)

Cette formule est appelée loi de Poiseuille. La "perte de charge" ∆p par unité de
longueur ∆z est alors

∆p

∆z
=

8η

π

1

R4
D

Remarque

Nous notons que, dans le cas des deux écoulements de Couette et de Poiseuille, la vitesse
�uide pour l'élément de �uide qui est en contact avec la paroi a la même vitesse que la
paroi. Dans l'écoulement de Couette, le �uide en contact avec la surface supérieure a la
vitesse u = u0 = vitesse de la plaque. La vitesse �uide est nulle à r = R, paroi du tuyau.

2.4.4 Tenseur de contrainte dans un �uide visqueux

Considérons un élément de surface dS dans un �uide. La contrainte est la force par unité
de surface causée par la fraction de �uide d'un coté de la surface sur celle de l'autre côté.
A l'équilibre, la contrainte est due à la pression et est perpendiculaire à dS.

Lorsque le �uide est visqueux et en mouvement, il existe des contraintes tangentielles à
dS.

Prenons par exemple dS normal à n // Oy. La contrainte σyy est la contrainte appliquée
parallèlement à Oy sur la surface dS normale à Oy.

La contrainte σxy (σzy) est la contrainte appliquée parallèlement à Ox (Oz) sur la surface
dS normale à Oy.

Plus généralement, σij est la contrainte appliquée parallèlement à l'axe Oi sur la surface
dS normale à Oj.
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Figure 2.11 � Contraintes sur une surface

Les σij forment donc un tableau 3x3 appelé tenseur 5 des contraintes du �uide con-
sidéré.

σij =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz


Les termes σxx, σyy et σzz représentent le terme de pression. Pour un �uide isotrope, ils
valent −p. De plus, on peut montrer 6 que le tenseur σij est symétrique.

σij = σ′ij − pδij

où δij est le symbole de Kronecker et σ
′
ij = σ′ji.

Pour un �uide visqueux incompressible, nous avons

σ′ij = η
∂ui
∂xj

= σ′ji

C'est la relation entre la contrainte σ′ij et la déformation ∂ui
∂xj

induite dans le �uide.

5. Pour une introduction aux tenseurs, voir L. Brillouin �Les tenseurs en mécanique et en élasticité�
6. Le couple exercé par σ′ij et σ′ji doit être nul pour éviter une accélération angulaire in�nie sur un

élément in�nitésimal de �uide.
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Nous terminons par la donnée sans démonstration de l'équation de Navier-Stokes pour
un �uide visqueux incompressible :

ρ
∂u

∂t
+ ρ(u · ∇)u = f −∇p+ η∆u

où le Laplacien ∆ a comme expression en coordonnées cartésiennes

∇2 = ∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Nous remarquons que si η = 0 (pas de viscosité), nous retrouvons l'équation d'Euler.
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2.5 Appendice - Invariance galiléenne

L'équation d'Euler s'écrit

∂u

∂t
+ (u · ∇)u = −∇p

Que se passe-t-il lors d'une transformation galiléenne ?

t′ = t

r' = r+ vt

Prenons pour simpli�er v = (v, 0, 0)

∂

∂x′
=

∂

∂t

∂t

∂x′
+

∂

∂x

∂x

∂x′

∂

∂x′
=

∂

∂x

d'où

∇′ = ∇

D'autre part

∂

∂t′
=

∂

∂t

∂t

∂t′
+
∂r

∂t′
· ∇

=
∂

∂t
(−v · ∇)

car r = r′ − vt et ∂r
∂t′ est pris à r

′ �xe.

Donc

∂u′

∂r′
=

∂

∂t
(v + u)− (v · ∇)(u+ v)

∂u'

∂t′
=

∂

∂t
u− (v · ∇)u
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De plus

(u′ · ∇)u′ = ((u+ v) · ∇)(u+ v)

= (u · ∇)u+ (v · ∇)u

Donc

∂u′

∂t′
+ (u · ∇′)u′ = ∂

∂t
u+ (u · ∇)u

et

∂u′

∂t
+ (u′ · ∇′)u′ = −∇′p

L'opérateur di�érentiel

∂

∂t
+ (u · ∇)

est invariant sous une transformation de Galilée.



Chapitre 3

Phénomènes ondulatoires

Introduction

Ce chapitre est consacré aux ondes. Nous commençons par dé�nir les ondes en général
(3.1), les ondes planes (3.2) puis en�n les phénomènes d'interférences (3.3).

3.1 Dé�nition

Nous rencontrons la notion de phénomène ondulatoire ou d'onde dans notre expérience
de chaque jour. Citons par exemple :

• onde à la surface d'un lac : ce sont par exemple les vagues, le sillage derrière un navire ;
• onde sonore : ce sont les sons de notre voix, des instruments de musique ;
• ondes électromagnétiques : elles feront l'objet d'un chapitre ultérieur de ce cours.

Comment pouvons-nous caractériser ces ondes ? Elles correspondent toutes à la pertur-
bation d'un certain nombre de quantités physiques, et cette perturbation varie et se

propage 1 dans l'espace et dans le temps.

Pour décrire un phénomène ondulatoire, nous devons donc dé�nir les quantités qui sont
perturbées et trouver la description mathématique de leur variation spatio-temporelle.
Pour cette dernière partie, nous verrons quelles sont les méthodes mathématiques qui
existent.

3.1.1 Onde longitudinale et onde transverse

Expérimentalement, nous constatons que l'onde a une "direction" de propagation. Par
exemple, si nous avons une corde tendue et que nous la secouons, la perturbation se
propage depuis l'endroit où nous la secouons vers l'autre extrémité (�gure 3.1).

1. Les ondes dites stationnaires sont la superposition d'ondes propageantes.

45
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Dans cet exemple, la perturbation de la corde est perpendiculaire à la direction de prop-
agation : nous avons donc ici ce qu'on appelle une onde transverse.

Figure 3.1 � Perturbation d'une corde

Prenons un autre exemple, celui d'un long ressort. Nous le comprimons sur une certaine
longueur (�gure 3.2).

Figure 3.2 � Compression d'un ressort

Dans ce cas, la compression du ressort (qui est la perturbation) est parallèle à la direction
de propagation. C'est ce qu'on appelle une onde longitudinale.
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3.1.2 Onde propageante, onde stationnaire

Dans les deux cas précédents, la perturbation se propage spatialement au fur et à mesure
que le temps s'écoule. Ce sont des ondes propageantes (�gure 3.3).

Figure 3.3 � Ondes propageantes

Remarque : Notez qu'un maximum au temps t = t0 se trouvant à la position x = x0

dans l'espace se retrouve à un instant t = t0 + ∆t à la position x0 + ∆x. Il en est de
même pour tout autre point de l'onde. La courbe au temps t > t0 peut être déduite de
celle en t = t0 par une translation ∆x = ∆t · u où u a la dimension d'une vitesse. On
voit que l'amplitude de l'onde est alors une fonction f(x− ut).

Considérons maintenant une corde �xe à ses deux extrémités. Nous pouvons créer une
perturbation du type dessiné sur la �gure 3.4, avec des n÷uds et des ventres. Ce sont
des ondes stationnaires.

Figure 3.4 � Onde stationnaire (photographie à un instant donné). Les noeuds et les
ventres ne changent pas de position au cours du temps.
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3.2 Ondes planes

3.2.1 Dé�nition

Du point de vue mathématique, pour décrire la variation spatio-temporelle liée à une
onde, il nous faut utiliser une fonction f(r, t). Toutes les quantités physiques liées à
l'onde peuvent donc être mises sous la forme

Af(r, t)

où A est l'amplitude correspondant à la quantité physique considérée. A peut être un
scalaire où un vecteur, selon la quantité physique que nous considérons.

Une fonction f(r, t) souvent utilisée est

f(r, t) = cos(ωt− k · r) (3.1)

ω est la pulsation, ou fréquence. L'importance de ce genre de fonctions est liée à la notion
de la décomposition en série de Fourier (cf. votre cours de Mathématiques). L'unité de ω
est [rad·s−1]. Nous utilisons souvent ν = ω

2π avec [ν] = Hertz ≡ Hz ≡ 1/s. k est le vecteur
d'onde. Il est dirigé selon la direction de propagation de l'onde. La période T vaut 2π

ω et
la longueur d'onde λ est égale à 2π

k . Une quantité physique associée à l'onde est donc

A(r, t) = Ã cos(ωt− k · r+ ϕ) (3.2)

où Ã est l'amplitude et ϕ un déphasage.

Une onde stationnaire peut être considérée comme la superposition de deux ondes propageantes
sinusoïdales. En e�et, considérons deux ondes se propageant selon z, mais dans deux di-
rections opposées.

A1 = Ã cos(ωt− kz)

A2 = Ã cos(ωt+ kz)

La superposition de ces deux ondes a la forme

A = A1 +A2 = Ã [cos(ωt− kz) + cos(ωt+ kz)]

A(z, t) = 2Ã cos kz cosωt

Pour tout temps t, kz = nπ (n = 0 ou un entier positif ou négatif) est un maximum de
|A| (ou ventre) et kz = (n+ 1

2)π est un n÷ud car A = 0. kz = nπ; kz = (n+ 1/2)π
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3.2.2 Notation complexe

Au lieu d'utiliser les fonctions sinus ou cosinus, il est avantageux d'utiliser les fonctions
complexes :

f(r, t) = exp{i(ωt− k · r)}

L'expression (3.2) pour A(r, t) devient

A(r, t) = Ã exp{iϕ} exp{i(ωt− k · r)} (3.3)

En utilisant la convention que nous prenons la partie réelle de la fonction complexe pour
décrire la quantité physique :

A(r, t)
∣∣∣physique = Re

[
Ã exp{iϕ} exp{i(ωt− k · r)}

]
Selon la remarque faite sous 3.1.2, la fonction f(t, r) se réduit donc à une fonction du
type f(ut± r).

Pour simpli�er la notation, au lieu de prendre un nombre réel pour Ã, nous utiliserons
le nombre complexe Ã exp{iϕ}.

A(r, t) = Re
[
Ã exp{i(ωt− k · r)}

]
Pourquoi est-il important de considérer le déphasage ϕ (ou d'une manière équivalente
une amplitude Ã complexe) ? Nous avons mentionné que, dans une onde, plusieurs quan-
tités physiques peuvent être concernées. Entre ces diverses quantités, il peut exister un
déphasage. Par exemple, entre la vitesse et l'accélération, il y a un déphasage de π

2 .

Surface équiphase

A un temps t = t0 donné, la surface équiphase d'une onde dé�nie par exp{i(ωt− k · r)}
correspond à

k · r = ωt0

est un plan. Pour le voir, choisissons un système de coordonnées où k est parallèle à ez.
L'équation de la surface équiphase est

kz = ωt0

C'est donc un plan. Pour cette raison, une onde dont la dépendance spatio-temporelle
est exp{i(ωt− k · r)} est appelée onde plane.
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Relation de dispersion

La question qui se pose est la suivante : dans un milieu donné, pour une onde donnée
(c'est-à-dire correspondant à un phénomène physique donné), à une fréquence ω donnée,
toutes les valeurs de k sont-elles permises ? Ou bien, existe-t-il une relation entre ω et
k ?

Lorsque nous étudierons spéci�quement la physique des ondes, nous montrerons que
l'existence d'une onde donnée (correspondant à un phénomène physique donné) nécessite
une relation entre ω et k :

ω = ω(k) (3.4)

Une telle relation (3.4) est appelée relation de dispersion. Pour un vecteur d'onde
k donné, il correspond une fréquence donnée lorsque nous considérons un phénomène
physique donné.

Exemple

Vous avez vu (et nous le reverrons) que pour les ondes électromagnétiques qui se propa-
gent dans le vide,

ω = kc (3.5)

où c est la vitesse de la lumière dans le vide. Vous exprimez souvent cette relation sous
la forme

λν = c

où λ = 2π
k est la longueur d'onde et ν = ω

2π la fréquence.

Vitesse de phase

Revenons à la dé�nition d'un plan équiphase (k est orienté selon ez).

ωt− kz = cte

ω(k)t− kz = cte

Un tel plan équiphase se déplace à une vitesse

vϕ =
ω(k)

k

vϕ est appelée vitesse de phase.
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La vitesse de phase est la vitesse de propagation des surfaces équiphases. C'est une
quantité purement mathématique. Elle peut être plus grande que la vitesse de la lumière
sans que cela ne viole un des principes de la relativité, celui qui dit que la vitesse d'aucun
phénomène ne dépasse la vitesse de la lumière.

Vitesse de groupe

Une onde plane dont la dépendance spatio-temporelle est cos(ωt − k · r) existe depuis
t → −∞ et remplit tout l'espace in�ni. En fait, elle n'apporte aucune "information"
supplémentaire. Il su�t de substituer l'espace "vide" par un espace dans lequel cette
onde existe. Vous pouvez vous en convaincre en imaginant que vous vivez dans un monde
où il y a toujours eu une vibration sonore de même amplitude et de même fréquence : au
lieu d'être habitués au silence, vous seriez habitués à avoir ce son comme bruit de fond,
et si ceci provoque une gêne, l'évolution se chargera de favoriser ceux qui soit ne sont
pas gênés soit développent une ouïe qui �ltre ce bruit. Et ce bruit de fond (cette onde)
ne vous apporterait aucune information.

Pour que le son vous apporte une information, il faut qu'il soit modulé. Pour cela, con-
sidérons la superposition de deux ondes planes de fréquences ω1 et ω2.

ω1 = ω + ∆ω

ω2 = ω −∆ω

Nous supposons aussi que la relation de dispersion 2 k = k(ω) est connue. A ω1 et ω2

correspondent donc k1 = k(ω1) et k2 = k(ω2).

k1 = k(ω + ∆ω) = k(ω) + ∆k

k2 = k(ω −∆ω) = k(ω)−∆k

La superposition 3 des deux ondes donne :

S = cos(ω1t− k1z) + cos(ω2t− k2z)

S = 2 cos(ωt− kz) cos(∆ωt−∆kz)

S est donc une onde porteuse à la fréquence ω modulée par la fréquence ∆ω. L'amplitude
de S est modulée par cos(∆ωt −∆kz) et donne lieu à des paquets d'onde (ou groupe 4

d'onde). La vitesse du paquet d'onde est la vitesse de groupe vg.

vg =
∆ω

∆k

2. Nous supposons que nous pouvons tirer k = k(ω) à partir de la relation de dispersion ω = ω(k).
3. Nous avons supposé que les amplitudes des deux ondes étaient égales à 1 et que l'amplitude de

l'onde résultante est la somme algébrique des deux ondes (superposition linéaire).
4. On n'emploie pas le terme de groupe d'onde. Mais la vitesse des paquets est appelée vitesse de

groupe.
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Pour des petites fréquences de modulation ∆ω → dω, la vitesse de groupe vg est

vg =
dω

dk

c'est-à-dire la dérivée de ω = ω(k) par rapport à k. A trois dimensions vg = dω
dk

.

3.2.3 Résumé

Une onde est une perturbation de quantités physiques qui varient et se propagent dans
le temps et dans l'espace. Pour la dé�nir :

• nous devons dé�nir les quantités physiques qui varient dans l'onde,
• nous devons, si nous considérons que la variation spatio-temporelle de l'onde est du
type cos(ωt− k · r), avec ω la pulsation (ou fréquence) et k le vecteur d'onde, obtenir
la relation de dispersion ω = ω(k).

Une onde dont la dépendance spatio-temporelle est cos(ωt−k ·r) est appelée onde plane.
Les surfaces équiphases sont des plans.

La vitesse de phase est dé�nie par

vϕ =
ω

k

La vitesse de phase est la vitesse de propagation des plans équiphases. C'est une quantité
mathématique, dont la valeur peut être supérieure à la vitesse de la lumière.

La vitesse de groupe est la vitesse de propagation des paquets d'onde.

vg =
dω

dk
ou vg =

dω

dk

La vitesse de groupe est inférieure ou égale à c.

Des dé�nitions de vϕ et vg, nous notons qu'elles sont égales si la relation de dispersion
est linéaire :

ω = kv

Par contre, si la relation de dispersion n'est pas linéaire, la vitesse de phase est di�érente
de la vitesse de groupe. Un milieu pour lequel la relation de dispersion n'est pas linéaire
est dit dispersif, car des ondes à di�érentes fréquences ont des propagations di�érentes.

Exemple : onde transverse d'une corde tendue

Considérons une corde tendue, et imposons-lui une perturbation.

Soit µ la masse par unité de longueur de la corde, et T la tension de la corde.

[µ] = kg ·m−1
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Figure 3.5 � Perturbation sur une corde tendue

[T ] = N = kg ·m · s−2

Nous observons expérimentalement que, pour ∆t = (t1−t0), la perturbation s'est déplacée
de ∆z (�gure 3.5). En toute rigueur, la vitesse ∆z

∆t est la vitesse de groupe, car c'est la
vitesse d'une perturbation formée d'un paquet d'onde.

vg =
∆z

∆t

Avec une analyse dimensionnelle, nous pouvons "construire" une vitesse à partir de µ
et T :

v =

√
T

µ

car

[v] =

√
kg ·m
s2

· m
kg

=

√
m2

s2
=

m

s

Expérimentalement, il peut être vérifé que

vg =

√
T

µ

Nous déduisons que la relation de dispersion est

ω = k

√
T

µ

Si nous excitons la corde avec une onde sinusoïdale, l'amplitude de la perturbation est
donnée par

y = ym sin(ωt− kz)
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avec ym l'amplitude maximale.

Calculons l'énergie cinétique associée à la perturbation. Chaque élément de corde de
masse dm à la position z a une vitesse v = dy

dt = ymω cos(ωt − kz) et son énergie
cinétique est

dEcin = y2
mω

2 cos2(ωt− kz)dm/2

dEcin = µy2
mω

2 cos2(ωt− kz)dz/2

en utilisant dm = µdz.

En prenant la variation dEcin
dt , nous obtenons :

dEcin
dt

=
dz

dt
µy2

mω
2 cos2(ωt− kz)× 1

2

dEcin
dt

= vgµy
2
mω

2 cos2(ωt− kz)× 1

2

La variation de l'énergie cinétique est transportée à la vitesse vg.

3.3 Phénomène d'interférence

Les phénomènes d'interférence entre deux ondes progressives ont une grande importance
dans la physique. Soit le dispoditif expérimental suivant (�gure 3.6) : on considère deux
sources S1 et S2 générant chacune une onde plane à la fréquence ω et avec un vecteur
d'onde k. Les deux sources sont séparées par une distance d. L'écran est à l'in�ni.

Figure 3.6 � Dispositif expérimental

Soit θ l'angle entre le vecteur d'onde k et l'axe Ox. Nous appelons A1 et A2 les ondes
émises par S1 et S2.

A1 = Ã cos(ωt− k · r1)
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A2 = Ã cos(ωt− k · r2)

En un point P(r) donné dans la direction de k, nous supposerons que l'amplitude de
l'onde résultante est la superposition des ondes A1 et A2. Notez que ceci n'est valable
que si le phénomène est linéaire. L'amplitude de A est donc :

A = A1 +A2 = Ã [cos(ωt− k · r1) + cos(ωt− k · r2)]

En nous référant à la �gure 3.6, nous constatons que le trajet venant de S2 présente un
parcours supplémentaire S2H.

k · r2 = k · r1 + kS2H

Or S2H = S1S2 sin θ = d sin θ.

k · r2 = k · r1 + kd sin θ

Donc

A = Ã [cos(ωt− k · r1) + cos(ωt− k · r1 − kd sin θ)]

= 2Ã cos

(
1

2
kd sin θ

)
cos

(
ωt− k · r1 −

1

2
kd sin θ

)
(3.6)

Le terme cos(ωt− k · r1 − 1
2kd sin θ) décrit une onde. L'amplitude de cette onde est

2Ã cos

(
1

2
kd sin θ

)
= 2Ã cos

[
πd

λ
sin θ

]

λ est la longueur d'onde (k = 2π/λ). Pour une valeur donnée de d/λ, la fonction
cos(πd sin θ

λ ) présente des maxima (cosinus = ±1) et des minima (cosinus = 0) en fonction
de sin θ.

• Maxima
πd

λ
sin θ = nπ

• Minima
πd

λ
sin θ =

(
n+

1

2

)
π

Naturellement, nous devons limiter la valeur de n telle que | sin θ| ≤ 1.

Lorsque l'on se déplace sur l'écran selon la direction y, la direction de k varie, c'est-à-dire
que l'angle θ change. On passe successivement par un maximum, puis un minimum, et
ainsi de suite. Si on réalise cette expérience avec de la lumière, on obtient un succession
de raies brillantes et de raies sombres. C'est ce qu'on appelle des �gures d'interférence.
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Remarque

Pour obtenir des �gures d'interférence, les ingrédients nécessaires sont :

• deux sources émettant un phénomène ondulatoire à la même fréquence ω,
• la phase entre les deux ondes émises est constante dans le temps. Ceci veut dire qu'on
peut avoir

A1 = Ã cos(ωt− k · r1)

A2 = Ã cos(ωt− k · r2 + ϕ)

avec ϕ = constante

• un milieu qui permet aux deux ondes de se propager linéairement : en tout point,
l'onde résultante est l'addition des deux ondes émises par les deux sources.

Nous reprendrons cette discussion au chapitre 9.5.7.

3.4 E�et Doppler

Considérons une onde sonore (voir chapitre 4) dont la relation de dispersion est ω
k = cS .

En employant la fréquence f (Hz) et la longueur d'onde λ (m), cette relation est

fλ = cS

Essayons de décrire le phénomène en considérant la source de l'onde (soit S) et un observa-
teur P. En prenant une source ponctuelle, les fronts d'onde (p.ex. les surfaces d'amplitude
maximale à un moment donné) sont des cercles dans le cas bi-dimensionnel.
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L'observateur P voit p.ex. les maxima dé�ler à la vitesse cS . La fréquence correspondante
est

f =
cS
λ

Supposons que l'observateur P se déplace vers S avec une vitesse uP . Il voit alors les
maxima des fronts d'onde dé�ler vers lui à la vitesse v′ = cS + uP . La fréquence qu'il
observe est

f ′ =
v′

λ
=
cS + uP

λ
=
cS
λ

+
uP
λ

= f +
uP
λ

Lorsque l'observateur P s'approche de la source S avec une vitesse uP (uP > 0), il observe
une fréquence f ′ > f

f ′ =
cS + uP

λ
=

(
cS + uP
cS

)
·
(cS
λ

)
f ′ =

cS + uP
cS

f (3.7)

avec uP > 0 lorsque P s'approche de S

Pour un observateur P qui s'éloigne de S avec une vitesse |uP |, par un raisonnement
analogue on obtient

f ′ =
cS − |uP |

cS
f (3.8)

On peut écrire 3.7 et 3.8 sous la forme


f ′ = cS+uP

cS
f

avec uP > 0 si l'observateur s'approche de S
avec uP < 0 si l'observateur s'éloigne de S

(3.9)

Que se passe-t-il si on a le cas de la source S qui s'approche ou s'éloigne de P immobile ?
Traitons d'abord le cas de S qui s'approche de P avec une vitesse uS(uS > 0).
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La source est en S1 au temps t1. Une période T de l'onde après (t2 = t1 + T ), la source
est en S2. De même pour t3 = t2 + T , la source est en S3. Les fronts d'onde successifs
émis par S en t1, t2, t3 sont séparés par λ′ le long de l'axe S1S2S3.

λ′ = λ− uST = λ− uS
f

car T = 1/f

L'observateur P mesure p.ex. des maxima qui arrivent vers lui à la vitesse cS mais ces
maxima sont séparés de λ′. La fréquence f ′ qu'il mesure est alors

f ′ =
cS
λ′

=
cS

λ− uS/f

f ′ =
cS

cS − uS
f (3.10)

avec uS > 0

f ′ est donc supérieur à f .

Le cas où la source S s'éloigne de P est indiqué sur la �gure suivante.

On voit que
λ′ = λ+ uS/f avec uS > 0

et (3.10) devient

f ′ =
cS

cS + uS
f (3.11)

avec uS > 0
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Les deux relations (3.10) et (3.11) peuvent être écrites comme suit :


f ′ = cS

cS−uS f

avec uS > 0 lorsque la source S s'approche de l'observateur P
avec uS < 0 lorsque la source S s'éloigne de l'observateur P

(3.12)

Que se passe-t-il lorsque uS dépasse cS ? Clairement, f ′ ne peut devenir négatif. Refaisons
le dessin des fronts d'onde émis par S en divers temps t1, t1 +T, t1 + 2T, t1 + 3T, t1 + 4T .

Tous les cercles admettent une tangente commune qui forme un angle θ avec l'axe S1Sn.
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L'angle θ est appelé angle de Mach et vaut

sin θ =
cS
uS

(3.13)

Le rapport uS/cS est le nombre de Mach. A trois dimensions, lorsque uS > cS , les fronts
d'onde forment un cône de demi-angle θ, qu'on appelle onde de choc produit par une
source se propageant à un nombre de Mach M > 1. C'est le fameux boum sonore des
avions supersoniques.

Figure 3.7 � L'onde de choc derrière un FA18 Hornet supersonique. (Source :
http ://wallpapers.windowsace.com/pics/-/1/-18-hornet-jet-planes-sonic-boom-
supersonic-desktop-2100x1500-wallpaper-d-a-ibackgroundz.co)

Finalement, lorsque et la source S et l'observateur P sont en mouvement, la combinaison
de (3.9) et (3.12) donne

f ′ =
cS + uP
cS − uS

f (3.14)

avec la convention de signe pour uP et uS
- positif si la source ou l'observateur se meut vers l'autre
- négatif si la source ou l'observateur s'éloigne de l'autre

La formule (3.14) donne le déplacement Doppler de la fréquence dû au mouvement de la
source et de l'observateur.
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Nous avons démontré la formule (3.14) en prenant l'exemple des ondes sonores. Mais le
raisonnement que nous avons fait ne fait pas intervenir la physique de l'onde sonore, mais
seulement la notion générale de front d'onde. Nous en concluons que les formules (3.9),
(3.12) et (3.14) sont générales pour toutes les ondes.

En particulier, la lumière est une onde (cf. chapitre 9). Si on observe la lumière émise des
galaxies lointaines, il y a ce que l'on appelle le décalage vers le rouge des spectres, c'est
à dire une fréquence f ′ observée sur la terre plus faible. Selon l'équation (3.12), uS < 0
et donc les galaxies s'éloignent de nous.

Figure 3.8 � Décalage vers le rouge du spectre d'une supernova. (Source :
http ://www.passmyexams.co.uk/GCSE/physics/the-expanding-universe-red-shift.html)
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Chapitre 4

Résolution des équations �uides :

modes normaux

Introduction

Dans le chapitre 3, nous avons développé les notions de base sur les ondes. Le chapitre 4
est consacré à l'étude des ondes dans des milieux spéci�ques, les milieux �uides, dont
nous avons développé les équations dans le chapitre 2. A cause de la complexité des
équations �uides, leur résolution dans un cadre général est impossible à notre niveau.
Nous commencerons par étudier les ondes planes dans un milieu �uide in�ni, puis nous
développerons la théorie des ondes dans un milieu de taille �nie.

4.1 Dérivation de la relation de dispersion

Rappelons les équations de base d'un �uide parfait in�ni :

• Equation de continuité
∂ρ

∂t
+∇ · (ρu) = 0

• Equation d'Euler

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ f

Supposons que f = 0. A ce système d'équations nous devons rajouter une équation d'état
que nous spéci�erons plus tard. Cette équation donne une autre équation reliant p,u et
ρ.

Les quantités physiques que nous devons déterminer sont ρ, u et p. Nous avons remarqué
que les équations �uides sont non linéaires, ce qui rend leur résolution di�cile.

63
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Une méthode utile pour obtenir des résultats physiques est la linéarisation. Nous sup-
posons tout d'abord que nous partons d'un état d'équilibre avec ρ0, u0 et p0. Cet équili-
bre peut être uniforme (ρ0, u0 et p0 sont constants sur tout l'espace) ou non uniforme
(ρ0 = ρ0(r), u0 = u0(r), p0 = p0(r)). L'équilibre ne dépend pas du temps.

Nous perturbons alors l'équilibre :

ρ(r, t) = ρ0 + ρ1

u(r, t) = u0 + u1

p(r, t) = p0 + p1

en supposant que ρ1 � ρ0, u1 � u0 et p1 � p0. Cette hypothèse nous permet de négliger
les termes du type ρ1u1, u1u1, p1ρ1, car ils sont du deuxième ordre.

Développons le calcul pour le cas simple : un �uide uniforme au repos à l'équilibre.

• Fluide uniforme :

ρ0 = constant sur tout l'espace

u0 = constant sur tout l'espace

p0 = constant sur tout l'espace

• Fluide au repos à l'équilibre : u0 = 0.

A l'équilibre, les équations �uides sont automatiquement satisfaites. Pour les quantités
perturbées (nous ne gardons que les termes du premier ordre), nous avons donc :

∂ρ1

∂t
+ ρ0(∇ · u1) = 0

ρ0
∂u1

∂t
= −∇p1

Nous constatons deux faits :

• nous avons linéarisé les équations �uides ;
• il nous manque une équation pour exprimer la pression. Cette équation ne provient pas
de la théorie des �uides mais fait appel à d'autres phénomènes de physique. Prenons
l'équation des gaz parfaits

p0m = ρ0kBT et p1m = ρ1kBT

Nous nous retrouvons avec un système d'équations aux dérivées partielles pour ρ1, u1 et
p1.
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

∂ρ1

∂t
+ ρ0(∇ · u1) = 0

ρ0
∂u1

∂t
= −∇p1

p1 =
kBT

m
ρ1

Pour résoudre ce système, nous faisons une décomposition en onde plane. Nous prenons
des ondes planes exp{i(ωt−k · r)} car nous savons qu'une perturbation quelconque peut
être décomposée en série de Fourier.

ρ1(r, t) = ρ̃1 exp{i(ωt− k · r)}

u1(r, t) = ũ1 exp{i(ωt− k · r)}

p1(r, t) = p̃1 exp{i(ωt− k · r)}

où ω est la pulsation et k le vecteur d'onde. Notons que les amplitudes ρ̃1, ũ1 et p̃1

peuvent être complexes dans la notation utilisée.

L'insertion de cet ansatz donne immédiatement



iωρ̃1 − ik · ũ1ρ0 = 0

iωρ0ũ1 = ikp̃1

p̃1 =
kBT

m
ρ̃1

Prenons le cas simple unidimensionnel avec ũ1 ‖ k (ondes longitudinales) et la direction
de k selon ez.



iωρ̃1 −iρ0kũ1 = 0

iωρ0ũ1 −ikp̃1 = 0

kBT

m
ρ̃1 −p̃1 = 0

(4.1)

C'est un système de trois équations à trois inconnues (ρ̃1, ũ1, p̃1) homogène sans second
membre. Pour éviter la solution triviale ρ̃1 = ũ1 = p̃1 = 0, le déterminant des coe�cients
doit être nul.
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∣∣∣∣∣∣∣∣∣∣∣

iω −ikρ0 0

0 iωρ0 −ik

kBT

m
0 −1

∣∣∣∣∣∣∣∣∣∣∣
= 0

−i2ω2ρ0 + i2k2ρ0
kBT

m
= 0

ω2 = k2kBT

m

ω = k

√
kBT

m
= kcs (4.2)

cs =

√
kBT

m

La relation (4.2) est appelée relation de dispersion des ondes acoustiques dans le

�uide. cs est la vitesse du son dans le �uide.

4.1.1 Interprétation physique

Récapitulons notre démarche.

1) Point de départ : nous avons considéré les équations �uides ainsi qu'une équation
d'état.

2) Linéarisation : nous avons constaté que les équations �uides sont non linéaires, c'est-
à-dire qu'il existe des termes du type ρu ou (u · ∇)u qui rendent la résolution des
équations très di�cile.
Nous avons donc linéarisé les équations en supposant tout d'abord qu'il y a un équili-
bre (quantités notées avec l'indice 0), et qu'ensuite les perturbations de cet équilibre
(quantités notées avec l'indice 1) sont faibles. Les produits des quantités perturbées
sont négligeables (nous gardons seulement les termes du premier ordre).

3) Nous considérons des perturbations dont la dépendance spatio-temporelle est

exp{i(ωt− k · r)}

4) Cet ansatz nous permet de trouver une relation entre la pulsation ω et le vecteur
d'onde k.

Dans ce cas, nous pouvons exprimer les quantités perturbées en fonction de l'une d'entre
elles. Par exemple, dans le cas de l'onde sonore, nous pouvons exprimer la pression p̃1 et
la vitesse �uide ũ1 en fonction de la densité ρ̃1 :

p̃1

p0
=
ρ̃1

ρ0
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ũ1 =
ω

k

(
ρ̃1

ρ0

)
Notons que ũ1 est proportionnel à (ρ̃1/ρ0) tout comme (p̃1/p0). Vous vous êtes posés la
question : comme u0 = 0 comment juger de la petitesse de ũ1 ? La formule qui donne ũ1

vous montre que ũ1 a le même facteur de petitesse
(
ρ̃1
ρ0

)
que la �uctuation de densité.

Donc ũ1 � ω
k = cs.

Nous notons que les facteurs qui apparaissent dans les expressions de p̃1 et ũ1 sont des
nombres réels. Il n'y a donc pas de déphasage entre les perturbations de densité, de
vitesse �uide et de pression.

Du point de vue physique, l'onde sonore est une perturbation de densité et de pression
qui se propage à la vitesse du son. C'était notre hypothèse k//u1 : l'onde sonore est une
onde longitudinale.

4.1.2 Que se passe-t-il si le �uide s'écoule ?

Supposons maintenant qu'à l'équilibre u0 ne soit pas nul, mais constant :

u0 = uoez

De nouveau, il est simple de véri�er que ρ0 = cte, p0 = cte et u0 = cte satisfont les
équations de continuité et d'Euler.

La linéarisation des équations �uides donne :

∂ρ1

∂t
+ ρ0(∇ · u1) + (u0 · ∇)ρ1 = 0

ρ0

[
∂u1

∂t
+ (u0 · ∇)u1)

]
= −∇p1

p1 =
kBT

m
ρ1

En utilisant la même technique que précédemment, nous trouvons

iωρ̃1 − iku0ρ̃1 − ikρ0ũ1 = 0

iωρ0ũ1 − iku0ρ0ũ1 = ikp̃1

p̃1 =
kBT

m
ρ̃1
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et donc



i(ω − ku0)ρ̃1 −ikρ0ũ1 = 0

iρ0(ω − ku0)ũ1 −ikp̃1 = 0

kBT

m
ρ̃1 −p̃1 = 0

(4.3)

Le système d'équations (4.3) est de nouveau un système d'équations linéaires homogènes
sans second membre. Pour éviter la solution triviale ρ̃1 = ũ1 = p̃1 = 0, il faut que le
déterminant des coe�cients soit nul.

∣∣∣∣∣∣∣∣∣∣∣

(ω − ku0) −kρ0 0

0 ρ0(ω − ku0) −k

kBT

m
0 −1

∣∣∣∣∣∣∣∣∣∣∣
= 0

(ω − ku0)2 = k2kBT

m

ω = ±k
√
kBT

m
+ ku0

Le terme supplémentaire ku0 est le terme Doppler.

4.1.3 Importance de l'équation d'état

Dans l'exemple précédant, nous avons choisi comme équation d'état

p1m = ρ1kBT

Que se passe-t-il si nous choisissons l'équation d'état des �uides incompressibles∇·u = 0 ?

∇ · u = ∇ · u1 = 0

Mathématiquement

∇ · u1 = 0⇔ kũ1 = 0

soit

ũ1 = 0
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Nous avons donc

ρ̃1 =
k

ω
ũ1ρ0 = 0

p̃1 =
kBT

m
ρ̃1 = 0

Toutes les quantités physiques perturbées sont nulles. Il n'y a pas d'onde acoustique dans
un �uide incompressible !

Ce résultat peut vous laisser perplexe. En e�et, vous savez que l'eau est une �uide incom-
pressible et que les vagues sur le lac existent. Il n'y a cependant pas de contradiction car
les ondes acoustiques sont des ondes longitudinales et les vagues sont des ondes trans-
verses (Voir 3.1.1). Vous cherchez alors sur le web et vous voyez qu'il existe des ondes
sonores dans l'eau et vous vous dites que quelque chose ne tourne pas rond ! En fait on
suppose une certaine compressibilitéde l'eau.

4.1.4 E�et Doppler pour les ondes acoustiques

Selon la relation de dispersion (4.2) les ondes acoustiques ont une vitesse de phase et de
groupe

ω

k
=
dω

dk
=

√
kBT

m

Considérons maintenant la situation expérimentale suivante. Considérons une voiture de
pompier avec une sirène. Vous êtes un observateur immobile au bord de la route. La
sirène de la voiture a une fréquence f = ω/2Π. Nous constatons que la fréquence du
son perçu par l'observateur est di�érente lorsque la voiture de pompier s'approche de
vous : la fréquence perçue est supérieure à f . Par contre, lorsque la voiture s'éloigne de
l'observateur, la fréquence f ′′ perçue est inférieure à f . C'est l'e�et Doppler.

Dans le raisonnement que nous avons fait, la physique liée à l'onde n'entre pas en jeu.
Nous verrons que la lumière est une onde. Donc l'e�et Doppler doit aussi se passer lorsque
la source s'éloigne de l'observateur. Plus précisément, si la source lumineuse s'éloigne de
nous, la lumière qu'elle émet est décalée vers les basses fréquences. Du point de vue
spectrale, les basses fréquences par rapport au spectre visible sont vers le rouge. Les
spectres émis par la source qui s'éloigne de nous sont décalés par le rouge.
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4.2 Onde dans un �uide de taille �nie

4.2.1 Relation de dispersion

Jusqu'à maintenant, nous avons vu des ondes longitudinales (u ‖ k) dans un �uide. Les
vagues que nous voyons sur l'eau sont des ondes transverses. Nous allons dériver une
relation de dispersion pour ces ondes dans une situation simpli�ée.

Le modèle est :
• Fluide incompressible : ∇ · u = 0
• Densité ρ = constante
• Faible perturbation de vitesse u1, ce qui permet de négliger le terme ρ(u · ∇)u dans
l'équation d'Euler.

Cette dernière devient simplement

ρ
∂u

∂t
= −∇p− ρg

La géométrie est donnée sur la �gure 4.1 :

Figure 4.1 � Onde transverse dans un �uide

Pour simpli�er la notation, nous omettons l'indice 1 pour les quantités perturbées. Nous
supposons qu'il n'y a aucune dépendance selon x pour toutes les quantités.

La dépendance en z et en t est de la forme exp{i(ωt−kz)} et celle en y est à déterminer.
Le but de l'exercice est de trouver la dépendance selon y et la relation de dispersion.
Nous allons séparer le calcul en plusieurs étapes.

Des équations �uides, seules l'équation d'Euler et la condition d'incompressibilité sont
nécessaires, car nous avons supposé ρ = cte. De plus, nous avons deux conditions aux
limites : une à l'interface entre le �uide et l'atmosphère, et l'autre au fond de l'eau.
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A) Utilisation de l'équation d'Euler

Nous supposerons que u peut s'écrire sous la forme

u = ∇Φ

C'est une classe spéciale d'écoulement appelée écoulement potentiel. Le problème est
de trouver Φ = Φ(y, z, t) en se souvenant que la dépendance temporelle et selon z est
exp{i(ωt− kz)}.

L'équation d'Euler se ramène à, avec ρ = cte :

ρ
∂u

∂t
= −∇p− ρg

ρ
∂

∂t
∇Φ = ∇

(
∂Φ

∂t
ρ

)
= −∇p−∇(ρgy)

∇
[
∂Φ

∂t
+
p

ρ
+ gy

]
= 0

Donc
∂Φ

∂t
+
p

ρ
+ gy = constante

C'est une équation pour la variation temporelle de Φ.

B) Dé�nition des conditions aux limites

Nous supposerons que les longueurs d'onde sont grandes, pour ne pas avoir à considérer
la formule de Laplace due à la capillarité pour calculer la pression à la surface y0(z, t).

p = p0 en y = y0(z, t)

La vitesse uy(y = 0, t) = 0 car la vitesse �uide à la surface ne peut pas avoir de com-
posante selon y.

uy =
∂Φ

∂y
= 0 en y = 0

En y = y0, uy est égale à la vitesse de la surface y0 :

∂Φ

∂y

∣∣∣∣
y=y0

=
∂y0

∂t

Reprenons donc l'équation d'Euler. Nous la dérivons par rapport au temps, et l'évaluons
en y0.

0 =
∂2Φ

∂t2
+ g

∂y

∂t

∣∣∣∣
y=y0

=
∂2Φ

∂t2
+ g

∂Φ

∂y

∣∣∣∣
y=y0
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car en y = y0

∂y

∂t

∣∣∣∣
y=y0

= uy|y=y0
=
∂Φ

∂y

∣∣∣∣
y=y0

Nous avons donc
∂2Φ

∂t2
+ g

∂Φ

∂y

∣∣∣∣
y=y0

= 0 (4.4)

C) Equation di�érentielle pour la variation spatiale de u

La seule équation qu'il nous reste est l'équation d'état décrivant l'incompressibilité.

∇ · u = 0⇔ ∇ · (∇Φ) = 0

Comme ∇Φ =
(

0, ∂Φ
∂y ,

∂Φ
∂z

)
,

∇ · (∇Φ) =
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0

C'est une équation de Laplace.

Nous résolvons cette équation par séparation des variables avec l'ansatz :

Φ(y, z, t) = f(y) exp{i(ωt− kz)}

Avec cet ansatz, l'équation de Laplace devient

∂2f

∂y2
− fk2 = 0

soit f = A cosh(ky) +B sinh(ky).

En utilisant la condition à la limite y = 0 pour uy, uy(y = 0) = 0, nous obtenons

f = A cosh(ky)

Φ(y, z, t) = A cosh(ky) exp{i(ωt− kz)}

D) Obtention de la relation de dispersion

Nous utilisons l'équation (4.4).

∂2Φ

∂t2
+ g

∂Φ

∂y

∣∣∣∣
y=y0

= 0
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Soit
A
[
−ω2 cosh(ky0) exp{i(ωt− kz)}+ gk sinh(ky0) exp{i(ωt− kz)}

]
= 0

ω2 = gk tanh(ky0)

Si nous supposons que l'amplitude de la vague est faible devant la profondeur h, nous
pouvons prendre y0 ≈ h.

ω2 = gk tanh(kh) (4.5)

L'équation (4.5) est la relation de dispersion d'une onde transverse dans une couche de
�uide d'épaisseur h.

4.2.2 Discussion

A) Domaine de validité

Il faut distinguer deux domaines de validité :
• celui lié à l'amplitude des ondes,
• celui lié à la longueur d'onde.

a) Amplitude des ondes

De nouveau, nous avons supposé que l'amplitude des ondes est faible pour pouvoir nég-
liger le terme (u · ∇)u dans l'équation d'Euler.

b) Longueur d'onde

La relation (4.5) a été dérivée en supposant qu'à l'interface y = y0, la pression est égale
à la pression atmosphérique.

Nous savons que l'interface air-liquide a un rayon de courbureR proportionnel à
(
∂2y
∂x2

)−1
. 1

La loi de Laplace 2 donne alors

p = patm +
γ

R

γ est la tension super�cielle. L'e�et de la tension de surface devient important lorsque
la longueur d'onde devient comparable à la longueur capillaire lc =

√
γ/ρg du �uide. La

relation de dispersion devient alors

ω2 =

(
gk +

γk3

ρ

)
tanh(kh) (4.6)

1. La dérivée seconde d'une fonction donne l'inverse de rayon de courbure.
2. C'est la généralisation de la loi de Laplace avec une surface à deux rayons de courbure R1 et R2

avec R2 =∞
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B) Discussion sur la relation de dispersion (4.6)

a) Eau profonde

Si kh� 1, tanh(kh) ≈ 1

kh� 1⇔ Longueur d'onde � Profondeur h

Récrivons alors la relation de dispersion (4.6) :

ω2 = kg

(
1 +

γk2

ρg

)
= kg

[
1 + k2l2c

]
(4.7)

Nous distinguons deux cas :

• k2l2c � 1⇔ k � lc ⇔ λ� lc

Pour des longueurs d'onde beaucoup plus grandes que lc, la relation de dispersion (4.7)
des ondes en eau profonde est

ω2 = kg

La vitesse de phase ω/k vaut
√
g/k et la vitesse de groupe vg = dω

dk − 1/2
√
g/k. Sur la

mer, c'est la relation de dispersion de la houle 3.

• Dans l'autre limite (λ� lc, lc ∼ 3 mm pour l'eau), la relation de dispersion (4.7) des
ondes capillaires en eau profonde est

ω2 = k3gl2c ⇔ ω = k3/2lc
√
g

La vitesse de phase vaut ω/k = lc
√
gk =

√
kγ/ρ. La vitesse de groupe est vg = dω

dk =

3/2
√
kγ/ρ.

b) Eau peu profonde

Si kh� 1, c'est-à-dire si la profondeur h est beaucoup plus petite que la longueur d'onde
et si klc � 1, la relation de dispersion (4.6) devient

ω2 = kg · kh = k2gh⇒ ω = k
√
gh

La vitesse de phase ω/k est égale à
√
gh. C'est la profondeur h de l'eau qui gouverne la

vitesse de phase.

C'est ce phénomène qui explique le déferlement 4 des vagues. En e�et, pour la crête de la
vague d'amplitude A, la profondeur vaut h+A et la vitesse de phase correspondante est

3. Houle (dé�nition du Larousse) : mouvement ondulatoire qui agite la mer sans faire déferler les
vagues.

4. Déferler (dé�nition du Larousse) : se dit des vagues qui se brisent en écume en roulant sur elles-
mêmes.
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√
g(h+A). Pour le creux, la profondeur est h−A et la vitesse de phase est

√
g(h−A).

La crête se déplace plus vite que le creux, ce qui explique le déferlement.

Si nous développons tanh(kh) à l'ordre suivant tout en considérant que klc � 1, nous
obtenons

ω = k
√
gh

(
1− k2h2

6

)
(4.8)

La vitesse de phase diminue lorsque k augmente.

Figure 4.2 � Relation de dispersion ω = k
√
gh
(

1− k2h2

6

)

c) Variation de la relation de dispersion

La relation de dispersion est donnée par

ω2 =

[
gk +

γk3

ρ

]
tanh(kh)

ω2 = kg
[
1 + k2l2c

]
tanh(kh)

ω =
√
kg [1 + k2l2c ] tanh(kh)

Sur les graphiques suivants, nous avons calculé ω en fonction de k pour des profondeurs
h = 0.03 m, h = 0.3 m et h = 3 m, avec g = 9.81 m·s−2 et lc = 0.003 m. La �gure 4.3
représente les relations de dispersion, et les �gures 4.4 et 4.5 les vitesses de phase ω/k.
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Figure 4.3 � Relations de dispersion pour h = 0.03 m, h = 0.3 m et h = 3 m

Figure 4.4 � Vitesses de phases pour h = 0.03 m, h = 0.3 m et h = 3 m
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Figure 4.5 � Vitesses de phases pour h = 0.03 m, h = 0.3 m et h = 3 m

d) Ondes non linéaires : solitons, équation de Korteweg-de Vries

En eau peu profonde, la relation de dispersion est

ω = k
√
gh

(
1− k2h2

6

)
(4.9)

Pour de faibles valeurs de k, la relation de dispersion est linéaire. Pour de plus grandes
valeurs de k, elle dévie de la droite ω = k

√
gh selon −k3.

Notons que d'autres phénomènes ont également une relation de dispersion du type
ω = kcs(1− k2a2). Par exemple dans un plasma non magnétisé, une onde appelée onde
acoustique ionique possède une relation de dispersion de ce type.

Que se passe-t-il lorsque l'amplitude de l'onde est su�samment grande pour que les e�ets
non linéaires ne puissent pas être négligés ? Un tel phénomène est décrit par Scott Russell,
et nous reproduisons ici sa description.
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I believe I shall best introduce this phenomenon by describing the circumstances of my own

�rst acquaintance with it. I was observing the motion of a boat which was rapidly drawn

along a narrow channel by a pair of horses, when the boat suddenly stopped - not so the

mass of water in the channel which it had put in motion ; it accumulated round the prow

of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward

with great velocity, assuming the form of a large solitary elevation, a rounded, smooth

and well-de�ned heap of water, which continued its course along the channel apparently

without change of form or diminution of speed. I followed it on horseback, and overtook

it still rolling on at a rate of some eight or nine miles an hour, preserving its original

�gure some thirty feet long and a foot to a foot and a half in height. Its height gradually

diminished, and after a chase of one or two miles I lost it in the windings of the channel.

Such, in the month of August 1834, was my �rst chance interview with that singular and

beautiful phenomenon which I have called the Wave of Translation, a name which it now

very generally bears ; which I have since found to be an important element in almost every

case of �uid resistance, and ascertained to be the type of that great moving elevation of

the sea, which, with the regularity of a planet, ascends our rivers and rolls along our

shores. 5

Sans rentrer dans le détail des calculs, notons que :

• l'e�et de la non linéarité est de générer des harmoniques. En e�et, lorsque nous mul-
tiplions par exemple deux termes du type cos(ωt − kz), nous générons un terme de
fréquence 2ω et de vecteur d'onde 2k. Tant que la relation de dispersion est linéaire, le
mode caractérisé par (2ω, 2k) peut être excité : c'est encore un mode normal du milieu.
• la dispersion (c'est-à-dire le fait que la relation de dispersion ne soit plus linéaire) fait
que les harmoniques supérieures (nω, nk), avec n entier, ne se trouvent plus sur la
relation de dispersion, et ne peuvent plus être excités.

Figure 4.6 � Relation de dispersion ω = k
√
gh
(

1− k2h2

6

)

5. J. Scott Russell, Report on Waves, 1842.
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L'e�et de la non linéarité est de raidir le front de la dispersion en générant des grandes
longueurs d'onde. Cependant, ce raidissement est arrêté pour les e�ets de dispersion.
On peut montrer qu'une perturbation non linéaire dans un tel milieu est décrit par une
équation non linéaire appelée équation de Korteweg-de Vries :

∂u

∂t
− 6

∂u

∂x
+
∂3u

∂x3
= 0

Cette équation admet comme solution des perturbations appelées solitons :

u(x, t) = −1

2
a2sech2

(
1

2
a(x− x0 − a2t)

)
où sech(x) = 1

cosh(x) est la sécante hyperbolique.

Dans le cas des solitons observés par Scott Russell, leur vitesse de propagation v (mesurée
par Scott Russell) est supérieure à la vitesse de phase ω/k.

v =
√
g(h+A) >

√
gh =

ω

k

où A est l'amplitude de la perturbation.

Un propriété extrêmement intéressante et surprenante des solitons est leur conservation
après une collision, comme le montre les résultats expérimentaux de la �gure suivante,
obtenus avec des solitons dans un plasma :
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Figure 4.7 � Solitons dans un plasma (Réf : Solitons in Action, Ed. K. Lonngren and
A. Scott, Academic Press, 1978, p. 162)



Chapitre 5

Electrostatique

Introduction

Nous allons entreprendre l'étude du grand chapitre de l'électromagnétisme. Les thèmes
seront :

• l'électrostatique : étude des phénomènes électriques stationnaires,
• le magnétisme statique : étude des champs magnétiques crées par un courant,
• l'électromagnétisme : étude des phénomènes avec des champs électriques et magné-
tiques variables dans le temps et dans l'espace. Nous y développerons la théorie des
équations de Maxwell.

Ce chapitre introduit des notions fondamentales de l'électrostatique. Nous commencerons
par la dé�nition de la charge électrique (5.1). La loi de Coulomb (5.2) donne l'expression
de la force entre deux charges électriques. Les charges électriques créent en tout point de
l'espace un champ électrique (5.3). Le reste du chapitre est consacré à des techniques de
calcul du champ électrique (5.4), du potentiel électrique (5.5) et de solutions de quelques
problèmes d'électrostatique (5.6).

5.1 Charges électriques

5.1.1 Charge électrique

De nombreuses expériences montrent l'existence des charges électriques positives et néga-
tives. Les expériences les plus classiques consistent à frotter des corps avec un autre corps.
L'exemple le plus classique est de frotter avec une fourrure (p.ex. une peau de lapin) une
tige (p.ex. une tige de verre). La tige de verre devient chargée. Par convention on dit que
ce sont des charges négatives. Il en est de même si on frotte de l'ambre avec la fourrure

81
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de lapin. 1 Par contre, si l'on frotte la tige de verre avec une peau de chat, la tige de verre
devient chargée avec des charges positives 2.
Les objets dans la vie courante sont souvent neutres, car les charges électriques positives
et négatives s'annulent. Ce n'est que dans certains cas qu'il y a un excès de charge d'une
des espèces. Le corps contenant cet excès de charge est dit chargé. Cette di�érence de
charge est toutefois très faible devant les charges existant dans le corps.

L'unité de charge électrique q est le coulomb :

[q] = Coulomb ≡ C

Notons que dans le système SI, le coulomb dérive de l'ampère A. Un ampère est dé�ni
de la manière suivante :

• Deux conducteurs rectilignes, parallèles, in�nis, de section négligeable, séparés de 1 m
et portant un courant de 1 A subissent une force de 2 · 10−7 N·m−1 par mètre de
conducteur. (Voir le chapitre sur la magnétostatique.)
• 1 coulomb est la quantité de charge transportée par un courant de 1 A pendant 1
seconde.

1C = 1A× 1s

Dans le système SI, toutes les unités électriques et magnétiques dérivent de l'ampère A.

Comme pour la masse, nous pouvons dé�nir la densité de charge de la manière suivante.
Soit un petit volume ∆V qui contient une charge ∆q. On dé�nit la densité de charge
comme

ρel(r) = lim
∆V→0

∆q

∆V

où r est l'endroit où se trouve ∆V . Là où il n'y a pas risque de confusion entre la densité
de masse et la densité de charge, nous noterons la densité de charge ρ (sans l'indice el).

On dé�nit de même une densité de charge de surface σ par

σel(r) = lim
∆S→0

∆q

∆S

où ∆q = charge sur la surface ∆S et r = lieu où se trouve ∆S.

5.1.2 Conducteur, isolant, semi-conducteur

Les charges électriques peuvent bouger librement dans certains corps appelés conduc-
teurs. Les conducteurs sont par exemple les métaux, le corps humain, l'eau du robinet.

1. Note historique : le terme grec "elektron" qui a donné électron, électricité..., signi�e ambre. Les
propriétés électroniques de l'ambre étaient connues au temps de Platon.

2. Le type de charge dépend donc des matériaux utilisés lors de l'expérience !
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Corps Nature ρ [Ω·m]

Cuivre Conducteur 1.7 · 10−8

Mercure Conducteur 96 · 10−8

Germanium Semi-conducteur 0.6

Silicium Semi-conducteur 2.3 · 103

Verre Isolant 1011 − 1014

Mica Isolant 1413 − 1017

Supraconducteur 0

Table 5.1 � Quelques résistivités ρ typiques. Ne pas confondre la résistivité électrique
dans ce tableau avec la densité de charge dé�nie sous 5.1.1.

D'autres corps ne peuvent pas transporter l'électricité. Ils sont appelés isolants. Finale-
ment, il existe des corps dont la propriété de conduction électrique est intermédiaire entre
les conducteurs et les isolants : ce sont les semi-conducteurs.

La propriété de conduire l'électricité est mesurée par la résistivité électrique ρ. L'unité 3

de ρ est Ωm. Le tableau 5.1 donne l'ordre de grandeur de la résistivité de quelques corps.

Dans ce chapitre on admettra que :

� un isolant ne conduit pas du tout l'électricité (c'est-à-dire ρ→∞)
� un conducteur a une résistivité ρ = 0 Ω ·m : c'est l'hypothèse du "conducteur parfait"

5.1.3 Quanti�cation de la charge

La célèbre expérience de Millikan a montré qu'il existe une charge élémentaire dont la
valeur est 1.602176565 · 10−19 C (avec une précision de 2.2 · 10−8) 4.C'est la valeur de
la charge de l'électron. Le coulomb est donc une très grande unité comparée à la charge
de l'électron ! Il faut environ 1019 électrons pour faire 1 C ! L'électron a donc une charge
égale à - 1.602176462 . 10−19 C. Le proton a une charge positive égale à 1.602176565 .
10−19 C, soit une charge égale et opposée à celle de l'électron.

5.1.4 Densité de charge

Bien qu'en principe les charges soient quanti�ées, nous serons amenés à dé�nir une densité
de charge ρel comme la quantité de charge par unité de volume.

ρel = lim
V→0

ρ

V

[ρel] = C ·m−3

3. Ω = Ohm = l'unité de résistance. Ω· m = Ohm · mètre
4. Référence : physics.nist.gov
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Nous notons ρel pour éviter la confusion avec la densité de masse ρ. Lorsqu'il n'y a aucune
confusion possible, nous écrivons aussi ρ pour ρel.

5.1.5 Conservation de la charge

Dans toutes les expériences, la quantité de charge totale est conservée. Par exemple,
dans une réaction de désintégration de type α (dans le jargon, le terme α est utilisé pour
désigner le noyau d'He), l'238U se désintègre en 234Th :

238U→234 Th +4 He

En ce qui concerne la charge électrique, le noyau d'U possède 92 protons, sa charge est
donc de 92×1.6 ·10−19 C. Celui de Th en possède 90 et sa charge vaut 90×1.6 ·10−19 C,
et celui d'He en possède 2 et sa charge est donc 2× 1.6 · 10−19 C. Il y a donc égalité des
charges avant et après la désintégration 5.

La masse du noyau d'U vaut 238 et la somme de celles des produits �ls, le Th et l'He,
vaut aussi 238.

La même règle de conservation s'applique lors de la création de particules. Considérons
la création de paires d'électron et de positon par un photon γ :

γ → e− + e+

Le photon γ n'a pas de charge. Le membre de droite a aussi une charge nulle, car la
charge du positon e+ est égale et opposée à celle de l'électron.

La conservation de la charge est une des lois fondamentales de la physique.

5.2 Loi de Coulomb

Faisons l'expérience suivante. Frottons une tige de verre avec une peau de lapin et une
autre tige de verre avec une peau de chat. En rapprochant les deux tiges de verre on
constate qu'elles s'attirent. Comme nous savons que les tiges de verre sont chargées
respectivement positivement et négativement, cette expérience montre que les charges
positives et négatives s'attirent. Par contre, deux tiges de verre frottées avec une peau de
lapin se repoussent. Les charges négatives se repoussent. De même, deux tiges de verre
frottées avec une peau de chat se repoussent. les charges positives se repoussent. Notre
expérience montre que :

• des charges de même signe se repoussent,
• des charges de signes opposés s'attirent.

5. Je suppose que vous connaissez la structure d'un atome.
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5.2.1 Loi de Coulomb

Soit deux charges q1 et q2. La force de Coulomb F entre ces deux charges vaut

F =
1

4πε0

q1q2

r2

où r est la distance entre q1 et q2 et ε0 = 8.85 · 10−12 F·m−1 la permittivité du vide 6.
F est le farad, du nom du physicien Faraday. Dans le système SI, le farad a la dimension

Farad = F = [F] =
A2 · s4

kg ·m2

La direction et le sens de F sont donnés par :
• F est dirigée selon la ligne qui relie q1 et q2.
• F est attractive si q1 et q2 sont de signes opposés (q1q2 < 0) et répulsive si q1q2 > 0.
Si on dénote par r le vecteur partant de q1 et allant vers q2, la force de Coulomb F12

exercée par q2 sur q1 est

F12 = − 1

4πε0

q1q2

r3
r

Figure 5.1 � Force de Coulomb

Nous pouvons mettre F12 sous une forme plus générale. Soit r1 la position de q1 et r2

celle de q2 (voir �gure 5.2)

Nous avons r = (r2 − r1) et

F12 = − 1

4πε0

q1q2

r3
r =

1

4πε0

q1q2

‖r2 − r1‖3
(r1 − r2)

Notez la similitude entre la force de Coulomb et la force de la gravitation universelle de
Newton. Les deux lois ont une dépendance en 1

r2
. La seule di�érence est que la force de

la gravitation universelle est toujours attractive, alors que la force de Coulomb peut être
attractive ou répulsive selon le signe de q1q2.

La force F1 exercée par la charge 2 sur la charge 1 est égale à l'opposé de la force F2

exercée par la charge 1 sur la charge 2 : c'est la loi de l'action et de la réaction.

6. Nous pouvons voir directement que l'unité de ε0 est :
kg·m
s2 = A2·s2

m2
1

[ε0]
et donc [ε0] = A2·s4

kg·m3
.
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Figure 5.2 � Force de Coulomb, forme générale

Figure 5.3 � F1 égale à l'opposé de F2

5.2.2 Additivité des forces de Coulomb

Soit une charge q entourée de n charges qi. Avec ri le vecteur partant de q et allant vers
qi, la force de Coulomb F1 exercée par les n charges qi sur la charge q est

F1 =
n∑
i=1

F1i =
n∑
i=1

1

4πε0

q1qi

‖r1 − ri‖3
(r1 − ri)

5.3 Champ électrique

5.3.1 Dé�nition

Soit une charge positive q0 située en P. Si nous plaçons cette charge q0 dans une région
de l'espace et que nous mesurons une force F qui s'exerce sur cette charge, nous disons
qu'il existe un champ électrique E donné par

E =
F

q0
, q0 > 0

L'unité de champ E est

[E] =
N

C
=

kg ·m
s2 · C

=
kgm

s2
· 1

As
=

Volt

m
≡ V

m

Le volt V est donc

V =
kg ·m2

s2 · C
=

kgm2

s2
· 1

As
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Grâce à nos connaissances sur la force de Coulomb, nous pouvons immédiatement dé�nir
le champ électrique d'une charge q placée en O :

E =
1

4πε0

|q|
r2

où r est la distance entre la charge q et le point où le champ est mesuré. E pointe vers q
si q est négative, et pointe à l'opposé de q si q est positive :

E =
1

4πε0

qr

r3

où r est le vecteur OP.

L'additivité de la force de Coulomb permet de dé�nir le champ électrique dû à un ensem-
ble de n charges comme étant la somme vectorielle des champs électriques dus à chaque
charge.

5.3.2 Champ électrique dû à une distribution de charge

Pour des distributions de charges di�érentes, nous utiliserons toujours le principe d'addi-
tion. Comme exemple, nous discutons le champ créé par un disque uniformément chargé.
Soit σ la densité de charge par unité de surface. La charge dq par unité de surface est
donc

dq = σdS

Figure 5.4 � Disque uniformément chargé

Nous considérons seulement le calcul du champ E pour des points situés sur l'axe Oz
perpendiculaire au disque et passant par son centre O. Par symétrie de la distribution
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de charge, sur l'axe Oz, la seule composante de E est dirigée selon Oz. Nous avons :

dEz =
1

4πε0

zσ2πrdr

(z2 + r2)3/2

Ez =

∫ R

0
dEz =

σz

4πε0

∫ R

0

2πrdr

(z2 + r2)3/2

=
σz

4ε0

∫ R

0

2rdr

(z2 + r2)3/2
=

σz

4ε0

∫ R2

0

dr′

(z2 + r′)3/2

= −2
σz

4ε0
(z2 + r′)−1/2

∣∣∣∣R2

0

Ez =
σ

2ε0

[
1− z√

z2 +R2

]

5.3.3 Lignes de champ

Soit le champ vectoriel E(r). Les lignes de champ électrique sont des lignes qui sont
tangentes en tout point à E. 7

Figure 5.5 � Lignes de champ

Du point de vue mathématique, si nous connaissons en coordonnées cartésiennes les
composantes Ex, Ey et Ez de E, l'équation des lignes de champ est

dx

Ex
=
dy

Ey
=
dz

Ez

Le long d'une ligne de champ, la norme E du champ électrique n'est pas constante.

7. D'une manière générale, soit un champ vectoriel A. Les lignes de champ correspondant à A sont
les lignes tangentes en tout point à A.
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Pour une charge ponctuelle négative, les lignes de champ sont :

Figure 5.6 � Lignes de champ (charge ponctuelle négative)

Les lignes de champ pour un ensemble d'une charge positive et d'une charge négative
sont :

Figure 5.7 � Lignes de champ entre une charge positive et une charge négative.

5.4 Loi de Gauss, équation de Poisson

5.4.1 Enoncé (sans démonstration)

Soit le champ vectoriel E(r). Considérons une surface fermée S avec l'élément dS = ndS
dirigée vers l'extérieur. La loi de Gauss s'énonce :

ε0

∫
S
E · dS = Charges enfermées dans S = qint (5.1)



90 CHAPITRE 5. ELECTROSTATIQUE

La loi de Gauss dit que :

ε0 × Flux de E à travers S = Valeur de la charge dans le volume V entouré par S

Si nous dé�nissons la densité de charge ρel, la charge qint est

qint =

∫
V
d3rρel

où V est le volume à l'intérieur de S.

L'équation de Gauss devient ∫
S
dS ·E =

1

ε0

∫
V
d3rρel

En transformant l'intégrale de surface en intégrale de volume par le théorème de la
divergence (cf. Notations du cours)∫

S
dS ·E =

∫
V
d3r∇ ·E

le théorème de Gauss devient ∫
V
d3r∇ ·E =

1

ε0

∫
V
d3rρel

Cette égalité étant vraie quel que soit le volume V , nous en déduisons

∇ ·E =
1

ε0
ρel (5.2)

L'équation (5.2) est appelée équation de Poisson. C'est la forme di�érentielle (ou forme
locale) de l'équation de Gauss (5.1) qui est une équation intégrale.

La loi de Poisson (5.2) dit que :

La divergence de E évaluée au point r0 =

= 1
ε0
× Densité de charge électrique au même point r0
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5.4.2 Applications de la loi de Gauss

Nous utiliserons souvent la loi de Gauss pour évaluer le champ électrique E d'une distri-
bution de charge donnée. Pour cela, nous devons faire appel à la symétrie du problème,
ce qui doit être déterminé au cas par cas.

a) Champ électrique dû à une distribution linéique de charge

Soit un �l rectiligne in�ni avec une densité de charge linéique λ :

[λ] = C ·m−1

Nous cherchons à calculer le champ E à une distance r du �l. Nous utilisons la loi de
Gauss. Nous explicitons ici ce que nous pouvons déduire de la géométrie du problème.

A) Indépendance du champ E vis-à-vis de la coordonnée z.
Le �l étant de longueur in�nie et supposé confondu avec Oz, tout point P0(x0, y0, z0)
est équivalent à un autre point P1(x0, y0, z1).

B) Indépendance du champ E vis-à-vis de la coordonnée angulaire θ par symétrie de la
géométrie.
Au lieu de considérer le système de coordonnées cartésiennes, prenons le système de
coordonnées cylindriques (r, θ, z). L'axe Oz est confondu avec le �l. La source du
champ E, c'est-à-dire le �l, et l'espace dans lequel le champ est créé (ici le vide)
étant isotropes, le champ E ne peut pas dépendre de θ, car il n'y a aucune direction
préférentielle.
Nous avons donc E = E(r) seulement.

C) Quelle est la direction de E ?
Pour chaque point P où nous devons calculer le champ E, la contribution in�nitésimale
dE1 due à dl1 a une contribution équivalente dE2 due à dl2. dl2 est le symétrique de
dl1 par rapport à O'. La somme vectorielle dE1 +dE2 ne possède qu'une composante
radiale. Donc E = E(r) ne possède qu'une composante radiale.
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Figure 5.8 � Fil in�ni entouré d'un cylindre

La surface considérée pour l'application de la loi de Gauss est un cylindre coaxial à la
droite chargée ainsi que les deux surfaces qui ferment les deux bouts du cylindre.

Soit r le rayon du cylindre et h sa hauteur. Le rayon r vaut OP. Comme discuté avant,
le champ E doit être radial. Donc, par la loi de Gauss,∫

E · dS = 2πrhE =
1

ε0
(somme des charges dans S) =

1

ε0
λh

E =
1

2πε0

λ

r

E est dirigé vers l'extérieur si la ligne de charge est positive, et dirigé vers l'intérieur si
elle est négative.

b) Champ électrique dû à une distribution de charge uniforme sur une sphère

Soit une sphère de rayon R, de centre O, avec une densité de charge σ uniformément
distribuée sur la surface. σ a donc pour dimension Cm−2.

Calculons le champ électrique à une distance r du centre O de la sphère. Pour e�ectuer
ce calcul, nous utilisons à nouveau à loi de Gauss. La surface S est celle d'une sphère de
rayon r et de centre O.

Pour des raisons de symétrie, le champ E ne peut avoir qu'une composante selon la
direction radiale (essayez de vous en convaincre en considérant la géométrie du problème).

Considérons maintenant l'équation de Gauss. Si r < R, la surface S n'inclut aucune
charge. Le champ électrique E est donc nul.

Si r > R, nous avons ∫
S
E · dS = 4πr2E =

1

ε0
σ4πR2 =

q

ε0
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E =
1

4πε0

q

r2

Résumons les résultats obtenus avec une distribution de charge uniformément répartie
sur une sphère de rayon R :
• le champ électrique E est nul pour r < R,
• le champ électrique E pour r > R causé par cette distribution de charge est celui
produit par une charge équivalente q = 4πR2σ mise au centre O de la sphère.

5.5 Potentiel électrique

5.5.1 Dé�nition du potentiel électrique

Notons qu'à part des constantes, la force de la gravitation et la force de Coulomb ont la
même dépendance spatiale.

Figure 5.9 � Force de gravitation

Fgravitation = G
m1m2

‖r1 − r2‖3
(r2 − r1)

Fgravitation est la force de gravité de la masse m2 sur la masse m1.

Figure 5.10 � Force de Coulomb

FCoulomb =
1

4πε0

|q1q2|
‖r1 − r2‖3

(r2 − r1)
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FCoulomb est la force de Coulomb de la charge q2 sur la charge q1 dans le cas de l'attraction
(voir 5.2.1).

Nous savons que la force due à la gravitation universelle dérive d'un potentiel, c.à.d.
Fgravitation est égal à − (gradient d'un potentiel U) = −∇U :

Fgravitation = −∇Ugravitation

La quantité Fgravitation · dl est donc égale à

Fgravitation · dl = −∂U
∂x

dx− ∂U

∂y
dy − ∂U

∂z
dz

Fgravitation · dl = −dU

Le travail Fgravitation · dl est donc une di�érentielle totale exacte.

Comme la force de Coulomb a la même dépendance fonctionnelle dans l'espace que la
force de gravitation universelle, nous concluons qu'un potentiel lui est également associé.
Plus précisément, nous dé�nissons le potentiel électrique Φelec (ou par simplicité Φ)
comme

E = −∇Φ

Le potentiel Φ d'une charge q située en O mesuré à une distance r de q est

Φ =
1

4πε0

q

r

Le potential Φ est un champ scalaire. Notons que si E est dé�ni d'une manière univoque
par la force exercée sur une charge q0, le potentiel Φ n'est dé�ni qu'à une constante près.
En e�et, si Φ satisfait

−∇Φ = E

la quantité Φ′ = Φ + cte satisfait aussi cette égalité. Un potentiel n'est donc dé�ni

qu'à une constante près.

L'unité de Φ se déduit de l'unité de force et est le volt :

[F ] = [q] · [E] = [Φ] ·m−1 · C

[Φ] = m · [E]

[Φ] = V

car [E]=V/m. Rappelons que

[V] =
kgm2

s2
1

As
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5.5.2 Additivité du potentiel

Le champ électrique en un point dû à plusieurs charges étant la somme des champs
électriques créés par ces charges, le potentiel en un point est alors la somme des potentiels
dus à ces charges.

5.5.3 Exemple de calcul d'un potentiel

a) Potentiel dû à une distribution linéique de charge

Soit un segment de longueur L portant des charges de densité linéique λ constante
([λ]=Cm−1). La géométrie est donnée sur la �gure 5.11.

Figure 5.11 � Distribution linéique de charge

Le potentiel dΦ dû à l'élément dx situé en x est

dΦ =
1

4πε0

λdx

(x2 + d2)1/2

Φ =

∫ x2

x1

λdx

4πε0(x2 + d2)1/2

=
λ

4πε0
ln
[
x+ (x2 + d2)1/2

]∣∣∣x2
x1

Φ =
λ

4πε0
ln

[
x2 + (x2

2 + d2)1/2

x1 + (x2
1 + d2)1/2

]

Nous avons utilisé ∫
dx√
x2 + d2

= ln
[
x+

√
x2 + d2

]
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b) Potentiel dû à un disque uniformément chargé

Nous cherchons le potentiel en un point P situé sur l'axe Oz passant par O et perpen-
diculaire au disque de rayon R.

Figure 5.12 � Disque uniformément chargé

Le potentiel dû aux charges sur une couronne circulaire 2πrdr est

dΦ =
σ2πrdr

4πε0(r2 + z2)1/2

donc

Φ =

∫ R

0

σ2πrdr

4πε0(r2 + z2)1/2

Φ(P) =
σ

2ε0

(√
R2 + z2 − z

)

5.5.4 Surface équipotentielle

Une surface équipotentielle est dé�nie par l'équation

Φ(r) = cte

Considérons maintenant une surface équipotentielle. Décomposons le gradient en deux
composantes :
• le gradient selon une direction tangente à la surface, soit ∇‖
• le gradient perpendiculaire à la surface, soit ∇⊥
La surface étant une surface équipotentielle, ∇‖Φ = 0, c'est-à-dire E‖ = 0.

Par exemple, pour une charge ponctuelle, le potentiel au point P est

Φ(P) =
q

4πε0r
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où r est la distance entre la charge et le point P. Une surface équipotentielle est donc ici
une sphère de rayon r centrée sur la charge.

Un autre exemple est le cas du champ électrique atmosphérique. Dans les conditions
normales (pas de précipitations), il existe au voisinage du sol un champ électrique E
dirigé verticalement de haut en bas, et d'intensité 100 V·m−1. Donc les équipotentielles
sont des plans horizontaux. Deux équipotentielles distantes de 1 m di�èrent de 100 V.
Le corps humain étant conducteur, il déforme les surfaces équipotentielles (�gure 5.13).

Figure 5.13 � Surfaces équipotentielles atmosphériques

Par dé�nition du champ électrique (E = −∇Φ), le champ E en un point P est normal à
la surface équipotentielle passant par ce point. La ligne de champ électrique passant par
P (donc tangente à E en P) est alors normale à la surface équipotentielle passant par P.

5.5.5 Travail et potentiel

Soit une particule chargée. Elle se trouve au point A où le potentiel est Φ(A). Nous
l'amenons au point B où le potentiel est Φ(B). Le travail fourni pour l'amener de A à B
est

W = −
∫ B

A
qE · dl

L'intégrale est évaluée le long de la trajectoire suivie par la particule. Le signe − provient
du fait que W est le travail fourni contre le champ E.

Figure 5.14 � Trajectoires entre A et B
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Nous désirons montrer que

W = −
∫ B

A
qE · dl

est indépendant de la trajectoire, mais dépend seulement des points A et B.

Considérons la quantité

W ′ = −q
[∫ B

A
E · dl+

∫ A

B
E · dl

]

Ecrivons E · dl en utilisant le fait que E = −∇Φ :

E · dl = −∇Φ · dl = −
[
∂Φ

∂x
dx+

∂Φ

∂y
dy +

∂Φ

∂z
dz

]

L'expression
∂Φ

∂x
dx+

∂Φ

∂y
dy +

∂Φ

∂z
dz

est la di�érentielle totale exacte dΦ de Φ :

dΦ =
∂Φ

∂x
dx+

∂Φ

∂y
dy +

∂Φ

∂z
dz

Donc

W ′ =

∫ A

A
dΦ = 0 =

∮
E · dl

Par conséquent

−
∫ B

A
qE · dl

selon le chemin original (�gure 5.14) est aussi égal à l'intégrale −
∫ B

A
qE · dl selon le

deuxième chemin.

Le travail nécessaire pour amener une charge q d'un potentiel Φ(A) à un potentiel Φ(B)
est indépendant de chemin suivi.

W = −
∫ B

A
qE · dl = q [Φ(B)− Φ(A)]

Le deuxième résultat important est que∮
E · dl = 0

L'intégrale de E · dl le long d'un contour fermé est nulle.
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5.6 Quelques problèmes d'électrostatique

Le but de cette partie est de discuter quelques problèmes importants de l'électrostatique.
Elle vous introduit aussi aux techniques de calcul en électrostatique. Considérez-la comme
un petit recueil d'exercices corrigés !

5.6.1 Conducteur chargé

Un conducteur est un corps dans lequel les charges électriques peuvent se mouvoir. Nous
supposerons que ce mouvement n'est pas entravé : il n'y a pas de résistance électrique.

Considérons d'abord un conducteur isolé. Physiquement, nous pouvons l'imaginer comme
un morceau de Cu (conducteur) isolé par un �l isolant :

Figure 5.15 � Conducteur isolé par un �l

Plaçons sur le conducteur un excès de charge q. Nous allons démontrer la propriété
suivante : toute la charge excédentaire placée sur un conducteur isolé se répartit sur
la surface du conducteur. Aucune partie de cette charge excédentaire ne se répartit à
l'intérieur du conducteur.
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Le raisonnement se décompose en plusieurs étapes :
• A l'intérieur du conducteur, le champ électrique doit être égal à 0. Sinon, il mettrait
en mouvement les électrons libres du conducteur 8. Nous aurions ainsi un courant 9

perpétuel, ce qui n'existe pas.
• Considérons alors une surface fermée juste au dessous de la surface S du conducteur.
La loi de Gauss appliquée sur cette surface donne∫

S
E · dS = 0

dans le conducteur (car E = 0), donc sur la surface S. La charge à l'intérieur de la
surface S est donc nulle.
• La charge excédentaire ne pouvant se répartir dans le conducteur est donc sur la
surface.

Direction et valeur du champ électrique à la surface

Quelle est la valeur du champ électrique à la surface du conducteur chargé ?

Montrons que la composante parallèle à la surface ES‖ du champ électrique ES à la surface

est nulle. ES‖ doit être nul, sinon il produirait un courant perpétuel.

ES‖ = 0

Si ES‖ = 0, la surface du conducteur est une équipotentielle (voir la dé�nition d'une
surface équipotentielle).

A la surface du conducteur, le champ électrique ES est donc perpendiculaire à la surface.
Les lignes de champ électrique partent perpendiculairement de la surface.

ES = ES⊥

Pour calculer ES⊥ en un point de la surface, dé�nissons tout d'abord la densité de charge
de surface σ sur une petite surface ∆S autour du point P où nous évaluons ES⊥.

Soit ∆q la quantité de charge sur ∆S :

σ =
∆q

∆S

Nous utiliserons de nouveau la loi de Gauss.

8. Dans un conducteur, ce sont des électrons "libres" qui assurent le transport du courant électrique.
9. Un courant est la manifestation de charges électriques en mouvement.
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Nous formons un petit cylindre dont les deux faces sont parallèles à ∆S, de hauteur h
2

au dessus de la surface et h
2 en dessous. Nous supposons ∆S assez petite pour que ES⊥

soit constant sur ∆S.

L'intégrale de Gauss sur le cylindre donne∫
Cylindre

ES⊥ · dS = ES⊥∆S =
σ∆S

ε0

ES⊥ =
σ

ε0

Si σ est positif, ES⊥ est dirigé vers l'extérieur. Si σ est négatif, ES⊥ est dirigé vers l'intérieur.

5.6.2 In�uence sur des conducteurs non chargés

Le problème suivant illustre plusieurs concepts importants. Soit une coque sphérique
conductrice ayant une certaine épaisseur. Le centre de la coque est en O. En O, nous
plaçons une charge q. Le problème est de connaître la distribution de charge sur les deux
surfaces de la coque.

Figure 5.16 � Coque sphérique conductrice
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Considérons d'abord la surface intérieure Si de la coque. Prenons comme surface pour
appliquer la loi de Gauss une sphère S1 juste à l'extérieur de la surface intérieure, dans
le conducteur :

ε0

∫
S1

E · dS = 0 car E = 0 dans le conducteur

Donc la somme des charges dans S1 doit être nulle.∫
Si

σidS + q = 0

Il apparaît donc une densité de charge σi de signe opposé à q sur l'intérieur de la coque.
Comme q est placé au centre de la sphère, par symétrie, σi est uniforme sur Si.

σi =
−q
Si

A l'intérieur de la coque conductrice, E et les charges sont nuls.

Par contre à la surface extérieure Se, il doit apparaître une densité de charge σe telle que∣∣∣∣∫
Se

σedS

∣∣∣∣ =

∣∣∣∣∫
Si

σidS

∣∣∣∣ = |q|

et le signe des charges sur Se est celui de q. En e�et, s'il apparaît une charge −q sur
la surface Si, comme le conducteur est neutre électriquement, la charge sur Se doit être
égale à +q.

5.6.3 Discontinuité sur une surface

Nous considérons une surface S avec sur cette surface une distribution σ de charges de
surface. Nous nous intéressons au champ E dû à cette distribution de charge spécialement
aux discontinuités de champ E à la surface S.

Pour traiter ce genre de problème, rappelons les deux théorèmes importants :∫
SGauss

E · dS =
charges

ε0∮
E · dl = 0

Par un choix adapté de la surface de Gauss et du contour d'intégration fermé, nous
pouvons avoir une information sur les composantes perpendiculaire et parallèle à S de E.

Pour appliquer la loi de Gauss, nous choisissons un cylindre avec les surfaces circulaires
parallèles (localement) à S. La hauteur du cylindre est in�niment petite. Donc

(Eext −Eint) · n =
σ

ε0
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Le champ électrique perpendiculaire (ou normal) à S est discontinu en traver-

sant la surface.

Pour connaître la variation de la composante parallèle, prenons un circuit fermé formé
d'un rectangle perpendiculaire à S. La largeur du rectangle est in�niment petite. Sa
longueur est tangente à S. La normale au rectangle est tangente à S.

∮
E · dl = Eext‖ −Eint‖ = 0

La composante tangentielle du champ électrique est continue à travers la

surface.

De ces deux résultats, nous notons que le champ E reste borné, même si la composante
normale est discontinue. Du fait que E reste borné, le potentiel Φ est une fonction con-
tinue.

5.6.4 Capacité et condensateur

Un conducteur sur lequel nous ajoutons des charges se mettra à un potentiel Φ. Ce
potentiel est positif si les charges sont positives, et négatif si elles sont négatives.

Si maintenant nous approchons un conducteur chargé d'un autre, ils s'in�uencent l'un
l'autre. En e�et, le champ électrique du premier conducteur va induire des charges à la
surface du deuxième, et inversement.
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Considérons N conducteurs chargés, isolés les uns des autres et placés dans le vide.
Soit Φi le potentiel de chacun de ces conducteurs. Comme le potentiel est linéairement
proportionnel à la charge qj , nous avons

Φi =
∑
j

pijqj

En résolvant ce système d'équations linéaires pour obtenir qi, nous pouvons écrire

qi =
∑
j

CijΦj

Cii est appelé la capacité du conducteur. Cij avec i 6= j sont les coe�cients d'induction.
La dimension de la capacité est le farad, c'est-à-dire A2s4kg−1m−2.

Dans la pratique, ce que nous appelons un condensateur est formé de deux conducteurs
chargés avec des charges égales et opposées. La capacité C est dé�nie comme le rapport
entre la charge |q| et la di�érence de potentiel.

Comme exemple, calculons la capacité d'un condensateur plan et celle d'un condensateur
cylindrique. Nous avons besoin pour cela :

• de la relation entre la charge q et le champ électrique E. C'est la loi de Gauss qui nous
donne cette relation.
• de la relation entre la di�érence de potentiel ΦB −ΦA et le champ E. C'est l'intégrale

ΦB − ΦA = −
∫ B
A E · dl, l'intégrale étant en principe prise le long de n'importe quel

parcours partant d'un conducteur et allant vers l'autre.

Condensateur plan

Considérons un système plan formé de deux plaques conductrices parallèles. Nous sup-
posons que les plaques conductrices sont assez grandes pour que le champ E soit uniforme
à l'intérieur et nul à l'extérieur.

Il y a des charges +q sur une plaque et −q sur l'autre plaque. Pour e�ectuer l'intégrale
de Gauss, nous choisissons la surface S qui entoure la charge +q.∫

S
E · dS =

q

ε0
= ESc

q = ε0ESc

Sc est la surface de chaque plaque du condensateur.

Pour évaluer ΦB −ΦA, nous prenons un segment partant de la plaque chargée négative-
ment vers celle chargée positivement, et perpendiculaire aux plaques :

ΦB − ΦA =

∫ d

0
Edx = Ed
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Figure 5.17 � Condensateur plan

E =
ΦB − ΦA

d

Nous avons donc

q =
ε0Sc
d

(ΦB − ΦA) = C (ΦB − ΦA)

C est la capacité du condensateur. Cette capacité est donc

C =
ε0Sc
d

La capacité C est le facteur de proportionnalité entre q et la di�érence de potentiel
(ΦB − ΦA). C dépend des facteurs géométriques du condensateur. La dimension de la
capacité C est le Farad.

Condensateur cylindrique

Considérons maintenant le cas du condensateur cylindrique formé de deux cylindres coax-
iaux de longueur L.

Soit b le rayon du cylindre intérieur et a celui du cylindre extérieur. Nous supposons
que la hauteur L du cylindre est telle que nous pouvons négliger les e�ets aux bouts du
cylindre. Par symétrie, le champ E est dans la direction radiale.

Soit S la surface utilisée pour l'intégration de Gauss. S = 2πrL.

q = ε0

∫
S
E · dS = ε0E2πrL

E =
q

ε02πLr

ΦB − ΦA =

∫ a

b
Edr =

q

ε02πL

∫ a

b

dr

r
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Figure 5.18 � Condensateur cylindrique

ΦB − ΦA =
q

2πε0L
ln
(a
b

)
La capacité d'un condensateur cylindrique est

C =
2πε0L

ln
(
rayon extérieur
rayon intérieur

)
Energie stockée dans un condensateur et densité d'énergie électrique

Un condensateur sert à stocker de l'énergie. Pour simpli�er la notation, appelons U la
di�érence de potentiel entre les deux plaques du condensateur. La charge q est alors CU .

Supposons qu'à un moment donné, la charge sur le condensateur soit q′. La d�érence de
potentiel est U ′ = q′

C . Si nous rajoutons une charge dq
′, la travail additionnel dW est

dW = U ′dq′ =
q′

C
dq′

Le travail total pour charger le condensateur à la charge q est

W =
1

C

∫ q

0
q′dq′ =

q2

2C
=

1

2
CU2

Prenons maintenant un condensateur plan de surface SC et de largeur d.

W =
1

2
Cu2 =

1

2

ε0SC
d

E2d2 =
1

2
ε0E

2SCd

W =
1

2
ε0E

2V

où V est le volume du condensateur. La quantité eE = 1
2ε0E

2 est la densité d'énergie
électrique.
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5.6.5 Capacité avec un diélectrique

Au début du XIXe siècle, Faraday avait constaté que, si des substances isolantes (appelées
diélectriques) sont placées dans l'espace vide entre les surfaces conductrices d'un con-
densateur, la capacité du condensateur augmente par rapport à sa valeur dans l'air.
Alors

Cdiel = εrCair

si le diélectrique remplit tout le condensateur. εr est une constante liée au matériau, et
est sans dimension. On l'appelle constante diélectrique relative. εr est plus grand
que 1.

Interprétation physique de cette observation

Si nous utilisons une batterie dont la di�érence de potentiel est U pour charger le con-
densateur, alors

• sans le diélectrique, la charge q sur un conducteur est

q = CairU

• avec le diélectrique, la charge est q′ :

q′ = CdielU > q

car Cdiel > Cair.

Si nous chargeons le condensateur à la charge q sans le diélectrique, la tension U à ses
bornes est

U = Uair =
q

Cair

Déconnectons la batterie, et introduisons dans le condensateur un matériau diélectrique

de constante diélectrique εr. La charge q est la même car le condensateur n'est connecté
à aucune batterie !. Alors :

Udiel =
Uair
εr

< Uair

De même, le champ électrique dans le diélectrique est

E =
E0

εr

Dans ce cas, que se passe-t-il avec l'énergie ? Lorsque le condensateur n'a pas de diélec-
trique, il a stocké

Wair =
1

2
CairU

2
air =

q2

2Cair
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Comme la batterie est déconnectée, l'introduction du diélectrique ne peut pas modi�er q.

Wdiel =
q2

2Cairεr
< Wair

Où est donc passé (Wair −Wdiel) ? L'expérimentateur qui tient le diélectrique sent que
le condensateur attire le diélectrique et lui transfère cette énergie.

Une image simple de ce qui se passe dans le diélectrique peut être décrite ainsi :

• En l'absence de champ E, il n'y a pas de charge nette en tout point du diélectrique.
• Lorsque le diélectrique est dans le champ E0, il y a une séparation de charge dans le
diélectrique (�gure 5.19).
• A la surface du diélectrique, nous avons une densité de charge de surface, ce qui crée
le champ Ep opposé à E0 (�gure 5.20).
• La résultante Etot = E0 + Ep a une amplitude inférieure à E0, ce dernier étant le
champ dans le condensateur en l'absence du diélectrique.

Figure 5.19 � Séparation de charge

Figure 5.20 � Champ E dans un condensateur avec diélectrique

Dé�nition de la constante diélectrique d'un diélectrique

La capacité d'un condensateur avec de l'air s'écrit d'une manière générale

Cair = ε0f(dimensions du condensateur)
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où f a la dimension d'une longueur, car [Cair] = Farad et [ε0] = Farad·m−1

Si le condensateur est rempli de diélectrique, nous avons

Cdiel = ε0εrf(dimensions du condensateur)

ε0εr a la même dimension que ε0. On appelle ε0εr la constante diélectrique du milieu
diélectrique concerné. εr vaut 1.006 pour l'air, entre 2 et 4 pour les isolants usuels, 4 à 6
pour le verre, 80 pour l'eau.

Loi de Gauss en présence de diélectrique

Considérons un condensateur rempli d'air (�gure 5.21, dessin de gauche). Nous y intro-
duisons un diélectrique (�gure 5.21, dessin de droite). Nous avons donc les charges +q et
−q sur les plaques conductrices du condensateur, et les charges induites −q′ et +q′ à la
surface du diélectrique.

Figure 5.21 � Condensateur avec un diélectrique

Appliquons la loi de Gauss sur la surface S.

ε0

∫
S
E · dS = somme des charges

E est le champ électrique dans le diélectrique (dans l'exemple précédent de la �gure 5.20,
il s'agit de Etot). Soit S0 la surface du condensateur.

ε0ES0 = q − q′

E =
q − q′

ε0S0

E est aussi le champ dans le diélectrique Ediel.

Nous avons ici un problème : nous ne savons pas calculer q′. Nous pouvons résoudre ce
problème en nous rappelant que, par rapport au condensateur sans le diélectrique, nous
avons

Ediel =
E0

εr
=

q

ε0εrS0
= E
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Nous en tirons
q − q′

ε0
=

q

ε0εr

et donc

ε0εr

∫
S
EdS = q

Notez que le membre de droite est la charge q sur les plaques conductrices du condensa-
teur, et non pas la di�érence q − q′.

Dans la littérature (que nous n'adopterons pas), les charges q sont appelées charges
libres car elles sont libres de bouger lorsque nous changeons le potentiel de la plaque
conductrice. Par contre, les charges induites sur la surface du diélectrique sont liées, car
elles ne peuvent pas bouger de la surface.

5.6.6 Equation de Laplace, équation de Poisson

Rappelons la forme di�érentielle de l'équation de Gauss :

∇ ·E =
ρel
ε0

Cette équation est appelée équation de Poisson. Avec la dé�nition du potentiel Φ, l'équa-
tion de Poisson devient

∇ · (∇Φ) = −ρel
ε0

∇2Φ = −ρel
ε0

L'équation de Poisson signi�e que la divergence de E (ou le laplacien du potentiel) évaluée
en un point r0 dans l'espace est égale à ρel(r0)/ε0 (ou −ρel(r0)/ε0). En particulier, si
ρ(r) est seulement non nul dans une partie de l'espace, dans la partie de l'espace où
ρel(r) = 0, nous avons :

∇ ·E = 0

ou
∇2Φ = 0 (5.3)

L'équation (5.3) est appelée équation de Laplace. Les grands problèmes de l'élec-
trostatique consistent en la résolution de l'équation de Poisson ou de Laplace avec des
conditions aux limites. Nous allons discuter quelques exemples.

Méthode des images

Soit l'espace vide. Nous avons un plan conducteur dont le potentiel est nul (�gure 5.22).

Une charge +q est placée à une distance d du plan. Nous voulons calculer le potentiel
dans la région de l'espace contenant q.
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Figure 5.22 � Plan conducteur en x = 0

Prenons le système de coordonnées indiqué sur la �gure 5.22. Les coordonnées de q sont

rq = (−d, 0, 0)

On nous demande de calculer Φ(P) = Φ(r) avec les conditions suivantes :

• En rq nous avons une charge +q.
• Le plan x = 0 est un conducteur avec Φ(0, y, z) = 0.

Le potentiel Φ(r) de la charge q est donné par

Φ(r) =
q

4πε0 ‖r− rq‖

L'existence de la plaque conductrice en x = 0 change la disribution du potentiel. En fait,
elle nous conduit à imposer

Φ(x = 0, y, z) = 0

Une manière simple de satisfaire cette condition est d'imaginer qu'il y a une charge −q
placée en r−q = (d, 0, 0). En e�et, la superposition des potentiels causés par q et −q est

Φtot =
q

4πε0 ‖r− rq‖
− q

4πε0 ‖r− r−q‖

Nous voyons que Φtot(0, y, z) = 0.

Nous avons résolu le problème en plaçant une charge image qui nous permet de satisfaire
la condition aux limites. Les équipotentielles de Φtot sont tracées sur la �gure 5.23.
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Figure 5.23 � Surfaces équipotentielles de Φtot

Technique de séparation des variables

Nous devons souvent résoudre des problèmes décrits par l'équation de Laplace avec des
conditions aux limites. Posons le problème : cherchez le potentiel dans tout l'espace avec
les conditions aux limites suivantes :

• Sur un parallélépipède rectangle, 5 faces ont un potentiel 0 (toutes les faces sauf celle
en z = c sont à 0).

• La face en z = c a le potentiel Φ0 = cte.
• Il n'y a aucune charge dans l'espace.

L'équation pour Φ est donc l'équation de Laplace :

∇2Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0
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avec les conditions aux limites précédentes.

Nous allons utiliser la technique dite de la séparation des variables. Nous supposons que

Φ(x, y, z) = X(x)Y (y)Z(z)

L'équation de Laplace est alors

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
+

1

Z

∂2Z

∂z2
= 0

Pour que cette équation soit véri�ée quels que soient x, y et z, nous imposons

1

X

∂2X

∂x2
= −α2

1

Y

∂2Y

∂y2
= −β2

1

Z

∂2Z

∂z2
= γ2

α2 + β2 = γ2

Posons α2 > 0 et β2 > 0. X et Y sont des fonctions trigonométriques en sinus et cosinus.
Comme Φ est nul en x = 0, y = 0 et z = 0, nous avons

X selon sin(αx)

Y selon sin(βy)

Z selon sinh(γz) = sinh
(√

α2 + β2z
)

Comme Φ = 0 en x = a et y = b, nous devons imposer

α =
nπ

a
, n entier = 1, 2, . . .

β =
mπ

b
, m entier = 1, 2, . . .

La fonction Φ s'exprime donc comme somme de Φn,m :

Φn,m(x, y, z) = Anm sin
(nπ
a
x
)

sin
(mπ
b
y
)

sinh

[√(nπ
a

)2
+
(mπ
b

)2
z

]

En e�et,
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• Φn,m(x, y, z) satisfait l'équation de Laplace,
• Φn,m(x, y, z) satisfait les conditions aux limites, exceptée celle sur la face z = c,
• l'équation de Laplace est linéaire, la somme des Φn,m est donc aussi solution de l'équa-
tion de Laplace et des conditions aux limites (exceptée celle sur la face z = c).

Donc

Φ(x, y, z) =
∞∑
n=1

∞∑
m=1

Anm sin
(nπ
a
x
)

sin
(mπ
b
y
)

sinh

[√(nπ
a

)2
+
(mπ
b

)2
z

]

Imposons qu'en z = c, Φ(x, y) est prescrit :

Φ0 =
∞∑

n,m=1

Anm sin
(nπ
a
x
)

sin
(mπ
b
y
)

sinh

[√(nπ
a

)2
+
(mπ
b

)2
c

]

Les coe�cients Anm sont les coe�cients de Fourier.

Anm =
4

ab sinh

[
π
√(

n
a

)2
+
(
m
b

)2
c

] ∫ a

0
dx

∫ b

0
dyΦ0 sin

(nπ
a
x
)

sin
(mπ
b
y
)

5.7 Résumé des notions importantes

Charge électrique q

Il existe des charges positives et négatives. L'unité de charge est le coulomb C. Il existe
une charge élémentaire, celle que porte un électron, qui vaut 1.6 · 10−19 C.

• Les charges (avec leur signe) sont additives.
• Force entre deux charges q1 et q2 : loi de Coulomb.

Champ électrique E(r)

Dans l'espace, on dit qu'il y a un champ électrique E(r) en un point r si une charge q
placée en r subit une force F = qE. L'unité de champ électrique est le volt/m ≡ V/m.

Loi de Gauss, équation de Poisson

Soit une surface S fermée et entourant une volume V .∫
S
E · dS =

1

ε0

∫
V
ρeld

3r = somme des charges dans V
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où ρel(r) est la densité volumique de charge.

Par le théorème de la divergence, nous trouvons l'équation de Poisson, qui est une loi
locale :

∇ ·E =
ρel
ε0

Potentiel électrique

Le champ E, en électrostatique, dérive d'un potentiel électrique Φ(r) :

E(r) = −∇Φ

∮
E · dl = 0

Le travail pour faire passer une charge q du potentiel ΦA au potentiel ΦB est q(ΦB−ΦA)
et est indépendant du chemin suivi. L'unité de potentiel électrique est le volt V.

Expression de l'équation de Poisson avec Φ

−∇2Φ =
ρel
ε0

Expression du laplacien ∇2 en coordonnées cartésiennes :

∇2 ≡ ∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Champ E à l'interface

La composante tangentielle du champ électrique E est continue à l'interface.

La composante normale du champ E est discontinue :

[E2 −E1] · n =
σ

ε0

σ = densité de charge de surface.
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Figure 5.24 � Condensateur

Condensateur

Un condensateur est un système formé de deux conducteurs portant une charge égale et
de signe opposé.

ΦB − ΦA = U

q = CU

C est la capacité du condensateur et q la charge sur une des plaques du condensateur.
Un condensateur chargé avec un potentiel U emmagasine une énergie W = 1

2CU
2.

Unités

Grandeur Unité

Charge Coulomb ≡ C = A·s
Potentiel Volt ≡ V = W·A−1

Champ électrique V·m−1

Capacité Farad ≡ F = C·V−1

Charge de l'électron 1.6 · 10−19 C

ε0 8.854 · 10−12 F·m−1

Table 5.2 � Unités dans le système SI

Vous notez que nous utilisons des unités dérivées comme le volt, le farad et très rarement
l'équivalent avec les unités SI. (Voir Annexe sur les unités électrique et magnétique).



Chapitre 6

Circuits électriques

6.1 Introduction

Jusqu'à maintenant, nous avons surtout considéré des problèmes où il y avait des charges
"immobiles". Avant d'aborder la magnétostatique, nous devons introduire la notion de
courant électrique, donc parler des circuits électriques. Nous pouvons bien sûr dire la
chose suivante : le champ électrique E crée une force F sur des charges libres de se mou-
voir. Ce sont ces charges en mouvement qui créent le courant I.

Dé�nissons le courant. Tout d'abord supposons que dans le milieu (que nous appellerons
un "conducteur") il y ait des charges qui peuvent se déplacer sans aucune "friction"
(dans le langage électrique : sans aucune "résistance"). Soit S la section du conducteur,
n le nombre de charge par unité de volume, q la charge électrique de ces charges, et vD
la vitesse de chaque charge. Le courant I est dé�ni par

I = n q vD S

[I] =
1

m3
C
m

s
m2 =

C

s

n est de l'ordre de 8×1028 charges par m3 dans un conducteur et vD de l'ordre 10−3m/s.

L'unité de courant dans le systéme SI est l'ampère, A. Le coulomb C est donc A ·s et est
donc la quantité de charge apportée par un courant de 1A pendant 1s. On voit, d'après
la dé�nition du courant, que la charge q′ derrière la surface S varie car I apporte des
charges. Donc localement on peut dire

I =
dq

dt

.

117
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Nous pouvons aussi dé�nir la densité de courant j par

j = n q vD

ou avec la densité de charge 1 ρel
j = ρel vD

j est donc un champ vectoriel j(r, t).

Une petite remarque amusante. Lorsque vous appuyez sur le bouton d'une sonnerie située
à 103 m , vous savez que la sonnette sonne "immédiatement". Si vous voulez calculer le
temps mis par un électron pour parcourir 1000 m vous trouvez 1 s ! En fait, la propagation
du signal est donné par les ondes électromagnétiques (Chapitre 9). Ce ne sont pas les
mêmes électrons mis en marche par le bouton et ceux qui actionnent la sonnette !

Nous adopterons dans ce chapitre une approche plus technique. Nous dirons que pour
faire bouger les charges, il faut un appareil avec une force électromotrice. De tels
appareils sont par exemple des piles, des accumulateurs, des piles à combustible et au
laboratoire des alimentations. Ils produisent une force électromotrice (fém) entre deux
bornes. Si nous connectons un tel appareil à un circuit (par exemple à une résistance),
du courant circule.

Figure 6.1 � Circuit avec fém

Par convention, le courant circule dans le circuit du pôle positif au pôle négatif. Dans
l'appareil à fém, il circule du pôle négatif au pôle positif. Dans un conducteur, les charges
sont des électrons. Les électrons circulent dans le sens opposé au sens du courant con-
ventionnel I.

6.2 Dé�nition de la fém

Un appareil à fém doit fournir du travail pour faire bouger les charges dans le circuit. La
fém ε est dé�nie comme le travail dW fourni pour une charge dq.

ε =
dW

dq

1. Des fois, lorsqu'il n'y a aucune ambiguité avec la densité de masse ρ, nous noterons ρel = ρ.
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Remarquons que l'unité de ε est le volt. En e�et,

[ε] =
N ·m
A · s

=
kgm2

s2
· 1

As
=

kgm2

As3
= V

La puissance dP correspondante est donc :

dW

dt
=
dW

dq

dq

dt
= ε

dq

dt
= εI

Le produit du courant I par la fém est la puissance.

6.3 Eléments de circuit : résistance et condensateur

6.3.1 Résistance

Une résistance est un élément qui, lors du passage d'un courant I, développe à ses bornes
une di�érence de potentiel proportionnelle à I.

Figure 6.2 � Circuit avec résistance

UA − UB = RI (6.1)

[R] = Ohm ≡ Ω =
V

A

L'équation (6.1) est appelée loi d'Ohm. Le coe�cient de proportionnalité R est la
résistance. R dépend du milieu considéré et des dimensions géomériques du corps.



120 CHAPITRE 6. CIRCUITS ÉLECTRIQUES

Pour un corps de section S et de longueur l, la résistance R est donnée par

R = ρ
l

S

ρ est la résistivité électrique 2 et son unité est :

[ρ] = Ω ·m

L'inverse de la résistivité (1/ρ) est la conductibilité électrique σ. L'unité de σ est
(Ω·m)−1.

Matériau σ = 1/ρ [(Ω·m)−1]

Cu 5.8 · 107

Ag 6.14 · 107

Acier (0.5− 1) · 107

Eau distillée 2 · 10−4

Eau de mer 3− 5

Quartz < 2 · 10−17

Table 6.1 � Quelques conductibilités électriques

La puissance perdue par le passage du courant dans une résistance est

P = I(UA − UB) = RI2

C'est l'e�et Joule. Seuls les supraconducteurs ont une résistivité ρ = 0.

6.3.2 Appareil à fém idéal, appareil à fém réel

Dans un appareil à fém idéal, lorsque le circuit est fermé (c'est-à-dire lorsqu'un courant
I circule), la fém ε mesurée est égale à celle mesurée lorsque I est nul (circuit ouvert).

Dans un appareil à fém réel, la fém ε′ mesurée lorsqu'un courant circule est inférieure à
celle mesurée ε lorsque I vaut 0. Cela est dû à la présence d'une résistance Ri (appelée
résistance interne) à l'intérieur de l'appareil qui provoque une di�érence de potentiel à
ses bornes.

ε′ = ε−RiI

2. Ne confondez pas la résistivité électrique ρ avec la densité de masse ou la densité de charge ! Ni
la conductibilité électrique σ = 1/ρ avec la densité de charge de surface ! Le contexte vous indique la
signi�cation du symbole.
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Figure 6.3 � Appareil à fém idéal

Figure 6.4 � Appareil à fém réel, avec la résistance interne Ri, ε
′ = ε−RiI. ε est la fém

mesurée en circuit ouvert (I = 0). ε′ est la fém mesurée en circuit fermé.

La puissance transférée au circuit externe est

P = ε′I = (ε−RiI)I = εI −RiI2

Dans l'appareil à fém, la puissance RiI
2 est dissipée. Expérimentalement, vous constatez

qu'une pile chau�e lorsque vous la court-circuitez, à cause de la puissance RiI
2 dissipée

dans la pile.

6.3.3 Condensateur

Soit un condensateur de capacité C. Supposons qu'il ne soit pas chargé au moment où
nous le connectons à un appareil à fém idéal. Cet appareil va le charger jusqu'à ce que
la tension aux bornes du condensateur soit égale à ε (appareil à fém idéal).

Figure 6.5 � Circuit avec condensateur
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En pratique, nous ne faisons jamais un circuit avec uniquement un condensateur, mais
plutôt des circuits comme dans 6.3.4.

6.3.4 Circuit RC

Figure 6.6 � Circuit RC

Au temps t = 0, nous fermons l'interrupteur. Avec la loi d'Ohm, et la tension aux bornes
d'un condensateur donnée par q = CU , l'équation du circuit est

ε = RI +
q

C

Or

I =
dq

dt

D'où

ε = R
dq

dt
+
q

C

C'est l'équation di�érentielle pour q(t).

La technique utilisée pour résoudre cette équation est de :

a) Trouver une solution générale de l'équation di�érentielle sans second membre.

R
dq

dt
+
q

C
= 0

b) Trouver une solution particulière de l'équation di�érentielle avec second membre.

R
dq

dt
+
q

C
= ε

c) Trouver les constantes d'intégration à partir des conditions initiales.

Pour la première étape, nous avons

q = q0 exp

{
− t

RC

}
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où q0 est une constante à déterminer avec la condition initiale.

Pour la deuxième étape :
q = εC

est une solution particulière.

Donc

q(t) = q0 exp

{
− t

RC

}
+ εC

A t = 0, q(0) = 0. Donc q0 = −εC.
La solution générale pour q est

q = Cε

[
1− exp

{
− t

RC

}]
L'évolution temporelle du courant I est

I(t) =
dq(t)

dt
=

ε

R
exp

{
− t

RC

}
τ = RC est appelée constante de temps du circuit RC. Après 5 fois la constante de
temps, l'exponentielle e−5 vaut 6.7× 10−3, ce qui pratiquement est nul.

Figure 6.7 � Evolution du courant I

Au début de la charge (t = 0) du condensateur, ce dernier se comporte comme un court-
circuit. Le courant est seulement limité par la résistance R. C'est pour cela que nous
devons mettre une résistance en série avec le condensateur pour limiter le courant.
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6.4 Lois de Kirchho�

Dans la pratique, nous avons des circuits comportant plusieurs éléments en série ou en
parallèle. Pour leur analyse, nous avons plusieurs règles importantes, connues sous le nom
de lois de Kirchho�.

6.4.1 Loi de Kirchho� sur le courant

La somme des courants qui entrent en un point est égale à la somme des courants qui
sortent de ce même point.

Cette loi exprime juste la conservation de la charge au point considéré. (Pourquoi ? Voyez-
vous une analogue avec les circuits hydrauliques ?)

Considérez le circuit suivant :

Quel est le courant I dans la dernière branche, et dans quelle direction est ce courant ?

Ce circuit se ramène à

a) Au point A, nous avons les courants de 2 A et 3 A qui entrent. Un courant de 5 A
doit donc en sortir.

b) Au point C, nous avons les courants de 2 A et 1 A qui sortent. Un courant de 3 A
doit donc y entrer.
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Finalement, au point B, les courants de 5 A (résultat a), 2 A et 4 A entrent, donc en
tout 11 A. Pour le moment, seul un courant de 3 A sort du point B. Selon la règle de
Kirchho�, le courant I doit donc sortir du point B pour que l'on puisse avoir :

3 A + I = 11 A

I = 8 A

Sur le schéma original, I vaut donc 8 A, et est dirigé vers la droite.

Notons que nous pouvons aussi résoudre le problème en prenant la convention suivante :

• les courants qui entrent sont comptés positivement,
• les courants qui sortent sont comptés négativement.

La régle de Kirchho� impose que la somme algébrique des courants soit nulle. Au point
B, nous avons donc :

2 A + 5 A + 4 A − 3 A + I = 0

I = −8 A

Le courant I cherché sort du point B.

6.4.2 Loi de Kirchho� sur la tension

Lorsque l'on suit un circuit sur un tour complet, la somme algébrique des tensions est
nulle.

Soit le circuit

Le courant part de B, passe par C, puis D, et arrive à A. Partons du point A et faisons
le tour du circuit dans le sens des aiguilles d'une montre. Nous avons donc :

VB = ε > 0

VB = VC car le �l n'a pas de résistance

On supposera toujours que les �ls n'ont pas de résistance. S'ils en avaient on devrait en
tenir compte en introduisant des résistances.
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Le point D a un potentiel inférieur à celui en C, et sa valeur arithmétique est RI.

VD = −RI

Finalement, VD = VA.

La loi de Kirchho� pour la tension est donc

ε−RI = 0

ε = RI

Essayons de tourner dans l'autre sens en partant de A. Le point C a un potentiel supérieur
à celui de D, et vaut +RI. Le point A a un potentiel inférieur à celui du B, et a une
valeur absolue de ε (ε > 0).

−ε+RI = 0

ε = RI

Supposons �nalement que nous avons indiqué le courant I dans l'autre sens :

Prenons le circuit partant de A dans le sens des aiguilles d'une montre. Le seul change-
ment causé par notre "erreur" sur le sens de I est que le point D a un potentiel supérieur
à celui de C, et vaut RI.

ε+RI = 0

RI = −ε

Et donc
I = − ε

R

L'interprétation est simplement que la physique nous dit qu'avec notre convention, le
courant est opposé à ce que nous avons supposé. La physique fonctionne toujours !
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6.4.3 Exemples

Essayons d'appliquer maintenant ces deux lois pour un circuit plus compliqué :

Connaissant ε1 et ε2, cherchons les courants dans les trois résistances. Supposons que les
courants ont les directions indiquées sur le schéma. La loi de Kirchho� sur les courants
nous donne au point B :

I1 + I3 = I2

Appliquons la loi de Kirchho� au circuit ADB :

−R1I1 +R3I3 + ε1 = 0

Appliquons �nalement la loi de Kirchho� au circuit BDC :

−R3I3 −R2I2 − ε2 = 0

Nous avons donc : 
I1 −I2 +I3 = 0

−R1I1 +R3I3 = −ε1

R2I2 +R3I3 = −ε2

La résolution de ce système donne I1, I2 et I3.

Notez que la loi de Kirchho� sur la boucle ADC donne :

−R1I1 −R2I2 − ε2 + ε1 = 0

qui n'est autre que la somme des deux équations

−R1I1 +R3I3 + ε1 = 0
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et

−R3I3 −R2I2 − ε2 = 0

Ce n'est donc pas une nouvelle équation.

Comme deuxième exemple, prenons le cas de deux résistances en parallèle :

La loi de Kirchho� sur les courants appliquée au point A donne la relation

I = I1 + I2

De plus, nous avons

R1I1 = R2I2 = ε

Donc

I1 =
ε

R1
, I2 =

ε

R2

Et le courant total est

I = ε

[
1

R1
+

1

R2

]
Vis-à-vis de l'appareil à fém, les deux résistances R1 et R2 peuvent être représentées par
une résistance équivalente Requi donnée par

1

Requi
=

1

R1
+

1

R2

Si nous remplaçons R1 et R2 mises en parallèle par Requi, l'appareil à fém débite le même
courant I.

Rappelons �nalement des résultats que vous avez vus au gymnase :

• Résistance équivalente à plusieurs résistances Rn en série :

Requi =
∑
n

Rn
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• Condensateur équivalent à plusieurs condensateurs Cn en parallèle :

Cequi =
∑
n

Cn

• Condensateur équivalent à plusieurs condensateurs Cn en série :

1

Cequi
=
∑
n

1

Cn

6.5 Résumé

Les points importants de ce chapitre sont les notions

• de force électromotrice fém,
• des deux lois de Kirchho�.

Pour l'étude des circuits eux-mêmes, nous avons montré comment calculer l'équation
d'un circuit RC.

Finalement, nous avons rappelé les valeurs de résistance équivalente et de capacité équiv-
alente pour le cas des résistances et condensateurs en série ou en parallèle.
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6.6 Appendice - Voltmètre et ampèremètre

Un voltmètre est un appareil qui permet de mesurer la di�érence de potentiel entre 2
points, par exemple aux bornes d'une résistance

Un voltmètre est placé en parallèle avec l'élément de circuit. Idéalement, le voltmètre ne
devrait pas perturber le circuit : le courant I qui circule dans la résistance R ne devrait
pas varier lorsque l'on branche le voltmètre. Ceci implique que la résistance interne du
voltmètre soit très grande devant R. Nous dirons qu'un voltmètre idéal a une résistance
interne in�nie.

Un ampèremètre est un appareil qui permet de mesurer le courant qui traverse un circuit.

L'ampèremètre est placé en série dans le circuit. Idéalement, il ne devrait pas y avoir
de chute de tension aux bornes de l'ampèremètre. Un ampèremètre idéal doit avoir une
résistance interne nulle.



Chapitre 7

Magnétostatique

Nous nous proposons d'étudier maintenant les champs magnétiques. Notre expérience de
tous les jours du magnétisme est celle du magnétisme créé par les aimants permanents.
Nous savons que certains pôles des aimants s'attirent, tandis que d'autres se repoussent.
Mais contrairement aux charges électriques, les aimants ont toujours deux pôles. Il n'est
pas possible d'isoler un seul pôle magnétique, c'est-à-dire de charge magnétique
isolée.

7.1 Dé�nition du champ magnétique B

Nous disons qu'il existe dans l'espace un champ magnétique B(r) si une particule de
charge q et de vitesse v subit une force F égale à

F = q(v ∧B) (7.1)

où v∧B est le produit vectoriel de v et B. Dans l'équation (9.24), la force F est la force
de Lorentz. L'unité du champ B est le Tesla :

[B] = T =
N

C

s

m
=

kgm

s2As

s

m
=

kg

As2

Le tableau 7.1 donne quelques valeurs typiques de champs B.

On emploie aussi le gauss comme unité. 1 gauss vaut 10−4 tesla. Le champ magnétique
terrestre vaut 0.5 gauss.

Comment pouvons-nous utiliser cette dé�nition ? Supposons que nous avons une région
dans l'espace où il existe un champ B. Mettons dans cette région un �l de cuivre qui
porte un courant I. Le champ B va donner lieu à une force F comme indiqué sur la
�gure 7.1.

131
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Milieu B [T]

Champ magnétique terrestre 0.5 · 10−4

Champ magnétique d'appareil à imagerie 1

Espace interstellaire 10−10

Surface d'une étoile à neutrons 108

Table 7.1 � Champ B dans divers milieux

Figure 7.1 � Fil portant un courant I dans un champ B. Ce champ pointe hors de la
feuille.

L'origine de cette force F n'est autre que la force de Lorentz agissant sur les électrons qui
portent le courant I dans le �l, et qui possèdent donc une vitesse vD dirigée à l'opposé
de I (la vitesse vD est dirigée à l'opposé du sens conventionnel du courant I). La force
dF agissant sur une longueur dl du �l électrique est donc :

dF = Idl ∧B

Comme pour le champ électrique E, nous pouvons dé�nir les lignes de champ magnétique.
Ce sont des lignes qui sont tangentes en tout point à B.

Figure 7.2 � Lignes de champ magnétique
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7.2 Couple agissant sur une boucle de courant

Soit une boucle rectangulaire ABCD portant un courant I. La boucle peut pivoter autour
de l'axe OO' (�gure 7.3).

Figure 7.3 � Boucle de courant dans un champ magnétique

Nous plaçons les côtés AB et CD perpendiculairement au champ B, qui rentre dans la
feuille (�gure 7.4).

Figure 7.4 � Boucle de courant : AB et CD perpendiculaires à B

Les côtés BC et DA ne sont pas perpendiculaires au champ B. Soit θ l'angle entre la
normale de la boucle et le champ B (�gure 7.5).

Les forces agissant sur les côtés BC et AD sont égales et opposées. Elles valent :

B × I ×BC × sin(90− θ) = B × I ×BC × cos θ

B × I ×BC sin(90°− θ) = B × I ×BC cos(θ)

BC est la longueur du segment BC. Comme ces forces sont colinéaires avec OO', elles
n'exercent aucun couple.
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Figure 7.5 � Boucle de courant : vue de côté

Considérons maintenant les forces agissant sur AB et CD. De nouveau, elles sont égales
et opposées :

FAB = −FCD

FAB = FCD = BIAB

Elles génèrent un couple qui tend à aligner la normale n de la boucle parallélement au
champ B.

7.3 Champ magnétique crée par un conducteur

Montrons d'abord qu'un conducteur parcouru par un courant crée un champ magnétique.
Pour cela, considérons l'expérience suivante : soit un �l portant un courant I. Mettons
près de lui un deuxième �l, parallèle au premier, qui porte un courant i dans le même
sens que I (�gure 7.6). Nous remarquons que les deux �ls s'attirent.

Cette expérience montre que le �l portant le courant I crée un champ magnétique qui
est responsable de la force sur le �l qui porte le courant i. En e�et, il su�t d'interpréter
que le courant i est juste la manifestation des charges électriques qui se meuvent dans
le conducteur. La force d'attraction est due à la force de Lorentz. Notons que si nous
inversons le sens du courant I et maintenons celui de i, la force devient répulsive.

Expérimentalement, nous avons montré que :

• un conducteur portant un courant crée un champ magnétique,
• ce champ magnétique dépend de la direction du courant.
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Figure 7.6 � Deux �ls parcourus par des courants

7.3.1 Loi de Biot et Savart

Pour calculer le champ B en un point P, considérons la situation suivante :

La contribution dB au champ B au point P est donnée (sans démonstration) par

dB =
µ0

4π

Idl ∧ r
r3

(7.2)

où dl est l'élément de longueur le long du conducteur et r le vecteur reliant l'élément dl
au point P. µ0 vaut 4π · 10−7 TmA−1 et est appelée perméabilité du vide 1. En unité
pratique, l'unité de µ0 est appelé Henry/m ou H/m. Notez que (ε0µ0)−1/2 est égal à la
vitesse de la lumière c dans le vide 2.

Le champ B est obtenu par intégration sur toute la longueur du conducteur :

B(P ) =
µ0I

4π

∫
dl ∧ r
r3

(7.3)

L'équation (7.3) est connue sous le nom de loi de Biot et Savart.

1. [µ0] =
[B][r]
[I]

= Tm
A

= kgm
A2s2

= Henry
m

. Le Henry (H) vaut donc kgm2

A2s2
.

2. 1√
ε0µ0

= 1√
4π×10−7×8.8×10−12

= 3× 103m/s
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7.3.2 Exemples

a) Champ créé par un conducteur rectiligne in�ni portant un courant I

Figure 7.7 � Conducteur rectiligne portant un courant I

D'après la �gure 7.7, nous avons :

• dl ∧ r, et donc dB, est perpendiculaire à la feuille ;
• il nous su�t de calculer l'amplitude de dB.

dB =
µ0I

4π

dl sin θ

r2

En notant la position de l'élément dl = dz par z, et la distance du point P à la droite
par R, nous avons :

dB =
µ0I

4π

dz sin θ

(z2 +R2)

Or

sin θ = sin(π − θ) =
R

(z2 +R2)1/2

Et donc

dB =
µ0I

4π

Rdz

(z2 +R2)3/2

B =
µ0IR

4π

∫ ∞
−∞

dz

(z2 +R2)3/2
=
µ0IR

2π

∫ ∞
0

dz

(z2 +R2)3/2
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En utilisant ∫
dx

(x2 + a2)3/2
=

x

a2(x2 + a2)1/2

nous obtenons

B =
µ0I

2πR

z

(z2 +R2)1/2

∣∣∣∣∞
0

=
µ0I

2πR

Le champ magnétique dû à un courant in�ni et rectiligne ne dépend que de la distance
R du point P au conducteur. La direction est perpendiculaire au plan contenant le con-
ducteur et le point P.

Figure 7.8 � Direction du champ B

Les lignes de champ magnétique (Cf 5.3.3 pour la dé�nition des lignes de champ) corre-
spondant sont des cercles situés dans le plan perpendiculaire au conducteur, et centrés à
l'intersection du conducteur et du plan.

Le calcul du champ B produit par un courant rectiligne nous permet de calculer la force
entre deux conducteurs parallèles portant respectivement les courants I et i (�gure 7.9).

Supposons que les deux courants I et i ont le même sens. Le champ B créé par le �l
conducteur 1 est perpendiculaire au plan formé par les deux conducteurs et "sort" de ce
plan.

La force F21 exercée par le conducteur 1 sur le conducteur 2 est :

F21 = i

∫
dl ∧B

où B est le champ crée en dl (sur le conducteur 2) par le conducteur 1. F21 est attractive :
deux conducteurs parcourus par des courants dans la même direction s'attirent.
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D'après la loi de Biot et Savart, B vaut :

B =
µ0I

2πd

Figure 7.9 � Deux conducteurs portant deux courants di�érents

Comme dl et B sont perpendiculaires, F21 a comme amplitude

F21 =
µ0IiL

2πd

où L est la longueur d'intégration sur le conducteur.

b) Champ créé par une boucle de courant circulaire de rayon R le long de

l'axe perpendiculaire à la boucle et passant par son centre

Figure 7.10 � Boucle de courant
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Nous avons

dB =
µ0I

4π

dl ∧ r
r3

Décomposons dB en composantes selon OP (soit dB‖) et perpendiculaire, soit dB⊥. Par
symétrie, l'élément dl diamétralement opposé crée une composante dB′⊥ opposée à dB⊥.
Il ne reste que la composante dB‖.

Calculons dl ∧ r. Notons que dl⊥r (voir �gure 7.10). Donc

dB =
µ0I

4π

dl

r2

dB‖ =
µ0I

4π

dl cosα

r2

cosα = cos
(π

2
− α′

)
= sinα′ =

R

r

dB‖ =
µ0I

4π

Rdl

r3
=

µ0IR

4π(R2 + z2)3/2
dl

B‖ =

∫
dB‖ =

µ0IR

4π(R2 + z2)3/2

∫
dl

Or
∫
dl = 2πR. Donc

B‖ =
µ0IR

2

2(R2 + z2)3/2

Pour de grandes valeurs de z (z � R), B‖ vaut

B‖ =
µ0IR

2

2z3
=
µ0IπR

2

2πz3

B‖ varie comme 1/z3. La quantité µ = IπR2 est appelée moment magnétique dipo-

laire.
B‖ =

µ0

2πz3
µ
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7.4 Loi d'Ampère

7.4.1 Forme intégrale

Soit un contour C fermé qui entoure des conducteurs portant des courants Im (�gure
7.11).

Figure 7.11 � Contour entourant des conducteurs

La loi d'Ampère s'écrit (sans démonstration)∮
C
B · dl = µ0(somme des courants inclus dans C)

L'intégration sur C se fait en suivant la direction marquée sur la �gure 7.11. Dans le cas
de cette �gure : ∮

C
B · dl = µ0(I1 + I2 − I3)

Les courants I4 et I5 ne comptent par car ils sont en dehors de C.

Plusieurs remarques doivent être faites ici :

• Il est nécessaire de préciser le sens dans lequel l'intégration se fait.
• Les courants sont des quantités algébriques. Dans le cas particulier de l'exemple précé-
dent, I1 et I2 sont positifs et I3 est négatif. Comment détermine-t-on le signe des
courants ? Ce signe est lié au sens du parcours le long de C. Dans le cas de notre
exemple, le sens du parcours d'intégration est le sens trigonométrique (système d'axes
Oxyz droit). Les courants I1 et I2 sortent de la feuille et sont dans le même sens que
ez : ils sont donc positifs. I3, rentrant dans la feuille, est négatif.
Une autre manière pour déterminer le signe des courants est d'utiliser la main droite.
Courbez votre main droite avec les quatre doigts selon le sens du parcours d'intégration.
La direction du pouce tendu vers le haut correspond à la direction positive.
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• Comme pour la loi de Gauss en électrostatique, la loi d'Ampère en toute généralité
ne nous permet pas de calculer B. Elle donne simplement la valeur de

∮
B · dl le long

d'un contour d'intégration C fermé.

7.4.2 Forme di�érentielle (ou locale)

Supposons que le conducteur n a une section Sn :

Nous pouvons écrire

In =

∫
Sn

jn · dSn

où jn est la densité de courant 3 dans le conducteur n. Notez aussi que cette formule
dé�nit la notion de densité de courant. Notez aussi que la densité de courant est une
quantité vectorielle.

En reprenant le cas précédent, nous pouvons donc écrire∮
C
B · dl = µ0

[∫
S1

j1 · dS1 +

∫
S2

j2 · dS2 +

∫
S3

j3 · dS3

]
Le fait que I3 est compté négativement se re�ète dans la densité de courant j3 qui est
une quantité vectorielle, qui possède donc une direction.

Naturellement, S1, S2 et S3 sont totalement inclus dans S entourée par C (�gure 7.12).

Avec la convention

jn =


jn dans Sn

0 hors de Sn

nous pouvons récrire∮
C
B · dl = µ0

[∫
S
j1 · dS+

∫
S
j2 · dS+

∫
S
j3 · dS

]
∮
C
B · dl = µ0

∫
S

(∑
n

jn

)
· dS

3. [jn] =
[I]
[S]

= A
m2
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Figure 7.12 � Contour entourant des conducteurs

où la somme sur les jn inclut seulement les courants (ou les parties de courant) dans S.

Rappelons l'identité de Stokes (cf. Notations du cours) :∮
C
B · dl =

∫
S

(∇∧B) · dS

Donc ∫
S

(∇∧B) · dS = µ0

∫
S
j · dS

où nous avons désigné par j la quantité
∑

n jn. Cette égalité devant être satisfaite quelle
que soit la surface S, nous avons :

∇∧B = µ0j (7.4)

C'est la forme locale de la loi d'Ampère. Elle relie la densité de courant j au rotationnel
de B au même point.

7.4.3 Exemples d'utilisation de la loi d'Ampère

Figure 7.13 � Conducteur circulaire
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Soit un conducteur circulaire in�niment long de rayon R (�gure 7.13). Le courant I sort
de la feuille et la densité de courant j est uniforme à travers la section. Nous avons donc

I = πR2||j||

Calculons B au point P dans le conducteur. P se trouve à une distance r (r < R) du
centre du conducteur.

Le conducteur étant in�niment long, le champ B est dans le plan perpendiculaire au
conducteur. La symétrie du problème suggère d'utiliser un contour d'intégration pour la
loi d'Ampère pris comme un cercle de centre O et de rayon r. Le sens d'intégration sera
le sens trigonométrique.

La symétrie du problème indique que B est tangent au cercle de centre O et de rayon r
(essayez de vous en convaincre). Donc :∮

C
B · dl = B2πr

µ0

∫
S
j · dS = µ0jπr

2 =
µ0Iπr

2

πR2
=
µ0Ir

2

R2

B2πr =

∮
C
B · dl = µ0

∫
S
j · dS =

µ0Ir
2

R2

Donc

B =
µ0Ir

2πR2

Le champ à l'intérieur du conducteur augmente linéairement avec le rayon.

Si le point P se trouve à l'extérieur du conducteur (r > R), la même méthode conduit à

2πrB = µ0I

B =
µ0I

2πr

A l'extérieur du conducteur, B décroît en 1
r . A la surface du conducteur les deux expres-

sions donnent la même valeur :

B(r = R) =
µ0I

2πR

Nous avons dit que le champ B est tangent au cercle de centre O et de rayon r. Véri�ons
que ce champ B satisfait à la forme locale de la loi d'Ampère

∇∧B = µ0j
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Dans le conducteur, au point P(x, y),

B =
µ0Ir

2πR2

(
−y

(x2 + y2)1/2
,

x

(x2 + y2)1/2
, 0

)

Avec r2 = x2 + y2, nous avons

B =
µ0I

2πR2
(−y, x, 0) =

µ0j

2
(−y, x, 0)

Calculons ∇∧B :

∇∧B =

∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

Bx By Bz

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

−µ0j

2
y

µ0j

2
x 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= ez

(
µ0j

2
+
µ0j

2

)
= ezµ0j = µ0j

Donc ∇∧B = µ0j.

Pour un point P en dehors du conducteur, nous avons

B =
µ0I

2πr

(
−y

(x2 + y2)1/2
,

x

(x2 + y2)1/2
, 0

)

Avec r = (x2 + y2)1/2, nous avons

B =
µ0I

2π

(
− y

x2 + y2
,

x

x2 + y2
, 0

)
Calculons ∇∧B :

∇∧B =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

−yµ0I

2π(x2 + y2)

xµ0I

2π(x2 + y2)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ez

µ0I

2π

[
∂

∂x

(
x

x2 + y2

)
+

∂

∂y

(
y

x2 + y2

)]
= ez

µ0I

2π

[
x2 + y2 − 2x2

(x2 + y2)2
+
x2 + y2 − 2y2

(x2 + y2)2

]
= 0
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Et donc ∇∧B = 0 pour un point P en dehors du conducteur. Notre résultat est conforme
à la relation

∇∧B = µ0j

avec

j =


j pour r < R

0 pour r > R

Champ d'un solénoïde

Un solénoïde est formé de l'enroulement hélicoïdal d'un conducteur. Un solénoïde idéal

Figure 7.14 � Solénoïde

est un solénoïde in�niment long, et dont les enroulements sont serrés les uns contre les
autres. Le champ à l'intérieur du solénoïde est uniforme et parallèle à l'axe du solénoïde.
Le champ à l'extérieur d'un solénoïde idéal est nul. Calculons maintenant le champ
magnétique à l'intérieur d'un solénoïde idéal. Prenons un parcours d'intégration C (�gure
7.15).

Figure 7.15 � Solénoïde idéal

∮
B · dl = BL = µ0InL

où n est le nombre de tours par unité de longueur et I le courant par tour. Nous avons
donc :

B = µ0nI
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7.5 Valeur du �ux
∫
S B · dS sur une surface S fermée

Expérimentalement, nous véri�ons la loi∫
S
B · dS = 0

sur une surface fermée S. Par le théorème de la divergence,∫
S
B · dS =

∫
V

(∇ ·B)d3r

avec V le volume entouré par S, nous avons∫
V

(∇ ·B)d3r = 0

Cette relation étant valable pour tout volume V , nous devons avoir

∇ ·B = 0

La relation ∫
S
B · dS = 0

indique que le �ux de B à travers toute surface S fermée est nul. Le �ux rentrant est égal
au �ux sortant. Pour mieux illustrer cette notion, prenons un tube fermé par des lignes
de champ magnétique.

Figure 7.16 � Tube fermé par des lignes de champ magnétique

La surface S est prise comme celle formée par les deux faces S1 et S2 normales aux lignes
de champ. La surface latérale est fermée par les lignes de champ qui forment l'extérieur
du tube. ∫

S
B · dS = 0 =

∫
S1

B · dS+

∫
S2

B · dS
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car ∫
S3

B · dS = 0

dû au fait que, sur S3, B⊥dS.

Le �ux rentrant
∣∣∣∫S1

B · dS
∣∣∣ est donc égal en valeur au �ux sortant

∣∣∣∫S2
B · dS

∣∣∣.
Nous avons ici une propriété importante du champ magnétique. Si nous prenons un petit
tube formé de lignes de champ magnétique, le �ux magnétique à travers une surface
perpendiculaire aux lignes de champ est conservé. Si nous imaginons S1 très petit, nous
dirons que toutes les lignes de champ qui rentrent dans S1 ressortent en S2. Les lignes
de champ magnétique ne sont jamais interrompues !

Plus précisément, si vous suivez une ligne de champ magnétique, vous avez deux possi-
bilités :
• soit elle forme une courbe fermée,
• soit elle part de l'in�ni et retourne vers l'in�ni. En fait, dans ce cas, nous pouvons dire
qu'elle se ferme à l'in�ni, ce qui nous ramène au cas précédent.

Une comparaison avec l'électrostatique nous aidera à mieux comprendre cette discussion
sur les lignes de champ.

Electrostatique Magnétostatique

Il existe une charge q Pas de charge magnétique

ε0

∫
S
E · dS = somme des charges dans V entouré par S

∫
S
B · dS = 0

∇ ·E =
ρ

ε0
∇ ·B = 0

Table 7.2 � Comparaison entre électrostatique et magnétostatique
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Prenons le cas de l'électrostatique avec une seule charge q.

Figure 7.17 � Lignes de champ électrique

Les lignes de champ E partent radialement à partir de q. Si nous intégrons sur une sphère
S centrée sur q, le �ux de E à travers la sphère vaut∫

S
E · dS =

q

ε0

ce qui dénote simplement que les lignes de champ partent de q et "rayonnent" à partir
de là.

Si maintenant nous intégrons sur une sphère S′ non centrée sur q, les lignes de champ
qui rentrent dans S′ vont ressortir de S′ de sorte que le �ux soit nul :∫

S′
E · dS = 0

Ce qui di�érencie l'électrostatique de la magnétostatique, c'est que :
• en électrostatique, si nous suivons une ligne de champ, elle sera interrompue quelque
part par une charge (la ligne part ou arrive sur une charge)
• en magnétostatique, une ligne de champ n'est jamais interrompue, et forme soit une
boucle fermée, soit une ligne qui part de l'in�ni et va vers l'in�ni.

Les formes locales
∇ ·E =

ρ

ε0

et
∇ ·B = 0

montrent aussi la même di�érence. En électrostatique nous avons des charges q localisées
en r, nous pouvons donc dé�nir ρ(r).

L'équation ∇ · B = 0 n'exprime que le fait qu'il n'y a pas de charge magnétique au
même sens que la charge électrique. Cette charge magnétique hypothétique, qui n'est pas
montrée expérimentalement, serait le monopôle magnétique.
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Applications

Lignes de champ d'une boucle de courant

Figure 7.18 � Boucle de courant

Nous savons que le champ B le long de l'axe Oz est parallèle à Oz. Par application de la
loi de Biot et Savart, le champ B en un point P situé dans le plan de la boucle est aussi
dirigé le long de Oz.

En utilisant le fait que les lignes de champ sont soit fermées soit vont à l'in�ni, nous
pouvons esquisser les lignes de champ d'une boucle de courant (�gure 7.19).

Figure 7.19 � Lignes de champ d'une boucle de courant

Lignes de champ d'un solénoïde de longueur �nie

Le solénoïde est formé de boucles juxtaposées. Le champ le long de l'axe des boucles est
le long de l'axe du solénoïde : la ligne de champ correspondante est donc aussi dans l'axe
du solénoïde.
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Figure 7.20 � Lignes de champ d'un solénoïde

Toutes les autres lignes de champ passent dans l'intérieur du solénoïde vers l'extérieur en
se refermant. Comme toutes les lignes de champ se referment en passant par l'extérieur,
nous avons ∫

Sint

B · dS =

∫
Sext

B · dS

où Sint est la surface intérieure du solénoïde et perpendiculaire à l'axe du solénoïde, et
Sext la surface (in�nie) à l'extérieur du solénoïde et perpendiculaire à l'axe. Le champ à
l'extérieur du solénoïde est donc beaucoup plus faible qu'à l'intérieur.

7.6 Equation de continuité

Rappelons l'équation d'Ampère sous sa forme locale :

∇∧B = µ0j

Calculons ∇ · (∇∧B) :

∇ · (∇∧B) = µ0∇ · j

Or ∇ · (∇∧A) = 0 (identité vectorielle) 4.

Nous avons donc

∇ · j = 0

4. Vous pouvez vous rappeler de cette identité
• soit en vous mémorisant : la divergence du rotationnel est nulle,
• soit en notant que nous avons formellement (Vecteur ∇)·(Vecteur ∇) ∧A)= 0 (ceci est un �truc�

mnémotechnique).
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qui n'est autre que l'équation de continuité pour la densité de courant électrique dans le
cas statique.

En e�et, la densité de courant j est

j = nevD

où n est le nombre d'électrons porteurs de charge (c'est-à-dire les électrons) par unité de
volume et e la charge d'un électron, vD la vitesse des électrons. En écrivant ρel = ne

j = ρelvD

L'équation de continuité (cf. Dynamique des �uides) est

∂ρel
∂t

+∇ · (ρelvD) =
∂ρel
∂t

+∇ · j = 0

Comme nous considérons des phénomènes stationnaires, ∂
∂t = 0 et donc

∇ · j = 0

7.7 Relation à l'interface entre 2 milieux

(Voir le chapitre 5.6.3 pour le champ électrique.)

Rappelons les 2 équations

∇ ·B = 0

∇ x B = µ0j

Considérons deux milieux séparés par une interface Σ.

L'équation ∇ ·B = 0 montre qu'il n'y a pas de charge magnétique
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Considérons un petit cylindre de hauteur h (h → 0) dont une moitié se trouve dans le
milieu 1 et l'autre dans le milieu 2

∫
S du cylindre

B · dS = 0

Lorsque h tend vers 0, on a donc

B|selon la normale dS dans milieu 1 = B|selon la normale dS dans milieu 2

Il y a donc toujours égalité des composantes normales de B à travers l'interface.

Considérons maintenant le contour C (cf 5.6.3)

Nous ferons tendre h vers 0. Selon ∇ ·B = µ0j, nous avons∮
c
B · dl = µ0

∫
j · dS

Donc B‖1 −B‖2 = µ0jsurface

Il peut y avoir discontinuité de la composante parallèle de B.



Chapitre 8

Phénomènes d'induction magnétique

8.1 Introduction

Lors de l'étude de l'électrostatique et de la magnétostatique, nous avons considéré que
les sources des champs E et B, c'est-à-dire les charges, les courants, et les champs E et
B eux-mêmes, ne dépendent pas du temps. Les lois que nous avons trouvées sont, sous
forme intégrale :

ε0

∫
S
E · dS = Somme des charges dans V entouré par S (fermée)∮

C
E · dl = 0∫

S
B · dS = 0 (S est fermée)∮

C
B · dl = µ0 [Somme des courants traversant la surface entourée par C]

Sous forme locale, ces quatre lois sont :

∇ ·E =
ρ

ε0

∇∧E = 0

∇ ·B = 0

∇∧B = µ0j

où ρ est la densité (volumique) de charge électrique et j la densité de courant.

Que se passe-t-il si nous introduisons maintenant la possibilité que les quantités physiques
en jeu dans ces équations varient dans le temps ? C'est le but des chapitres suivants, qui
vont se terminer avec la présentation des lois de l'électromagnétisme dues à Maxwell.

153
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Ce chapitre sur l'induction discutera des relations entre les champs E et B lorsque le �ux
de B à travers une surface S donnée (surface qui sera dé�nie le moment venu) varie dans
le temps.

8.2 Présentation de quelques phénomènes expérimentaux

Variation du �ux du champ magnétique terrestre à travers une boucle
circulaire

Nous savons que nous sommes immergés dans un champ magnétique terrestre BT qui
peut être considéré comme constant dans l'expérience suivante (�gure 8.1) :

Figure 8.1 � Boucle circulaire dans le champ magnétique terrestre

Faisons tourner la boucle, de rayon R, comme si nous sautions à la corde. Nous avons
successivement les situations suivantes :
1) dS est dans la même direction que BT et de signe opposé.

Φ =

∫
S
BT · dS = −πR2BT

L'unité de Φ est le Weber (Wb) égal à T·m2.
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2) La boucle est parallèle à BT :

∫
S
BT · dS = 0.

3)

∫
S
BT · dS = πR2BT .

4) La boucle est parallèle à BT :

∫
S
BT · dS = 0.

5) Nous revenons à la situation 1) :

∫
S
BT · dS = −πR2BT .

Naturellement, nous passons à travers ces étapes d'une manière continue et la variation
du �ux magnétique Φ est également continue entre −πR2BT et πR2BT .

Qu'observons-nous sur le voltmètre ?

Première observation : le fait de tourner la boucle engendre une di�érence de poten-
tiel aux bornes de la boucle.

Deuxième observation : la di�érence de potentiel mesurée augmente avec la vitesse
de rotation de la boucle.

Notons immédiatement que si nous observons une di�érence de potentiel aux bornes de
la boucle, qui est conductrice, cela veut dire qu'il y a un champ électrique le long du
conducteur et donc qu'il y a un courant qui circule.
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Interprétation de l'expérience

Cette expérience nous montre que lorsque le �ux Φ du champ magnétique à travers une
surface S entourée par un conducteur varie temporellement, il apparaît une di�érence de
potentiel aux bornes de la boucle. Pour utiliser la terminologie que nous avons introduite
dans le chapitre sur les circuits électriques, nous disons que la variation temporelle du
�ux magnétique Φ donne naissance à une force électromotrice ε.

Cette force électromotrice est liée à la variation temporelle du �ux Φ.

Le phénomène que nous venons d'observer est appelé induction. Le courant et la fém
observés sont respectivement le courant induit et la fém induite.

Critique de l'expérience

Cette expérience appelle plusieurs commentaires :

i) Que se passe-t-il si, au lieu d'avoir une surface S entourée par une boucle à un seul
tour, S est entourée par une boucle à n tours serrés les uns contre les autres ? Une
réalisation de cette expérience est assez simple et montre que la force électromotrice εn
produite aux bornes d'une boucle à n tours est égale à n fois la force électromotrice ε1

produite aux bornes d'une boucle identique, mais à un seul tour.

εn = nε1

Le �ux Φn aux bornes d'une boucle à n tours serrés les uns contre les autres est aussi
égal à n fois le �ux à travers la boucle à un tour.

Φn = nΦ1

Donc, du point de vue pratique, si vous avez une boucle avec n tours, le �ux magnétique
est égal à n fois celui à travers une boucle à un seul tour.

ii) Nous avons obtenu que la fém induite ε est proportionnelle à la variation temporelle
du �ux Φ en maintenant B �xe et en changeant l'angle entre dS et B. Ce résultat est-il
aussi valable si l'on garde constant l'angle entre dS et B et que l'on varie temporellement
l'amplitude du champ B ?

iii) Nous ne pouvons pas varier la direction du champ magnétique pour pouvoir véri�er
la relation entre le signe de ε et celui de la variation de Φ. Cette dé�cience ne peut
pas être supprimée, car nous ne pouvons pas changer la direction du champ magnétique
terrestre BT . Il faut concevoir une autre expérience !
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Réponse à la question ii)

Considérons l'expérience suivante :

Le champ B dans le solénoïde S1 est créé par le passage d'un courant i(t) qui varie
sinusoïdalement :

i(t) = I0 cos(ωt)

Le champ B(t) varie de la même manière. La barre de fer doux qui passe dans le solénoïde
S1 et dans la boucle sert seulement à "canaliser" le champ B créé par S1 vers la boucle.

La variation du �ux magnétique Φ dans la boucle est maintenant causée par la variation
du champ B(t), la boucle étant �xe. Nous observons, comme dans les autres expériences,
l'apparition de courant et de fém induits dans la boucle.

Nous pouvons donc dire en toute généralité que le phénomène de l'induction et de l'ap-
parition du courant et de la fém dépend seulement de la variation du �ux magnétique Φ
à travers la surface S entourée par la boucle conductrice.

Réponse à la question iii)

Changeons le dispositif expérimental.

Figure 8.2 � Aimant permanent dans une boucle
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Au lieu d'utiliser le champ magnétique terrestre, utilisons le champ B créé par un aimant
permanent que l'on approche et éloigne de la boucle (�gure 8.2). Le �ux à travers la
surface S varie, car en bougeant l'aimant permanent par rapport à S, le champ B sur la
surface S varie, car le champ B créé par l'aimant n'est pas uniforme dans l'espace.

L'expérience consiste à observer le signe de la fém ε indiquée par le voltmètre lorsque
l'on inverse le sens de l'aimant permanent.

a) b)

Le résultat expérimental est le suivant : pour une même vitesse de déplacement de
l'aimant permanent vers la boucle, l'amplitude de la fém est la même dans les deux
cas, mais le signe de la fém s'inverse.

Interprétation

L'amplitude du champ B à la surface S est la même dans les deux cas, seule sa direction
a changé. Le mouvement de l'aimant étant le même, la variation de Φ dans les deux cas
est égale, mais de signe opposé.

Le signe de la fém ε dépend donc du signe de Φ.

Tâchons d'être plus précis. Considérons le cas a) où nous rapprochons de la boucle le
pôle nord de l'aimant. Le champ B est dirigé de la droite vers la gauche et augmente.
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Dans ce cas, le courant induit I dans la boucle est tel que le champ Bind induit par I
s'oppose à l'augmentation du champ B créé par l'aimant :

Si on éloigne maintenant l'aimant (toujours dans la même con�guration), le champ B

va diminuer. Le courant I induit dans la boucle crée un champ Bind qui s'oppose à la
diminution de B :

Si maintenant le champ B est dirigé de gauche à droite (on inverse les pôles nord et sud
de l'aimant) et que l'aimant est rapproché de la boucle, B va augmenter. On trouve que
le courant induit I crée un champ induit Bind qui tend à contrecarrer l'augmentation de
B. Bind est donc dirigé de droite à gauche :

Finalement, toujours dans la même con�guration, si nous éloignons l'aimant, B diminue
et I va essayer de contrecarrer cette diminution en créant Bind dirigé de gauche à droite :
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8.3 Loi de Lenz et loi de Faraday

8.3.1 Loi de Lenz

Les quatre cas que nous venons de décrire donnent la base expérimentale de la loi de
Lenz :

Le courant induit I dans la boucle crée un champ magnétique induit Bind qui s'oppose
au changement du �ux magnétique qui crée le courant induit.

8.3.2 Loi de Faraday

Soit une boucle conductrice de surface S. Le �ux magnétique Φ à travers cette boucle
est :

Φ =

∫
S
B · dS

Supposons que Φ dépende du temps. La loi de Faraday (8.1) donne la relation entre la
fém induite ε dans la boucle conductrice et Φ :

ε = −dΦ

dt
(8.1)

Si la boucle comporte n tours, alors ε dans la boucle vaut :

ε = −ndΦ

dt
(8.2)

8.3.3 Exemples d'application de la loi de Faraday

Considérons un solénoïde in�niment long (solénoïde idéal) dont le nombre de tours par
unité de longueur est n. Chaque tour porte initialement un courant i0.

A l'intérieur du solénoïde, on place une boucle de rayon r comportant m tours. La boucle
est perpendiculaire à l'axe du solénoïde et son centre est sur l'axe du solénoïde. r est
inférieur au rayon R du solénoïde (�gure 8.3).

Figure 8.3 � Boucle dans un solénoïde idéal



8.3. LOI DE LENZ ET LOI DE FARADAY 161

On réduit le courant i dans le solénoïde de la valeur i0 à 0 A durant un temps ∆t. Quelle
est la fém aux bornes de la boucle ?

Pour résoudre le problème, nous devons utiliser la loi de Faraday

ε = −dΦ

dt

Dans un premier temps, il nous faut calculer Φ en fonction de i.

Le champ dans un solénoïde idéal est parallèle à son axe et uniforme. Sa valeur est :

B = µ0ni

Le �ux Φ à travers la surface S de la boucle vaut

Φ = πr2B = πr2µ0ni

La boucle comportant m tours, le �ux total Φtot = mΦ.

Pour t < 0, i(t) = i0 = cte. Donc

dΦtot

dt
= 0 pour t < 0

et

ε = −dΦtot

dt
= −mdΦ

dt
= 0 pour t < 0

Pour 0 < t < ∆t,

i(t) = i0

(
1− t

∆t

)
donc

Φ(t) = πr2µ0ni0

(
1− t

∆t

)
dΦ

dt
= −πr2µ0n

i0
∆t

Par application de la loi de Faraday :

ε = −dΦtot

dt
= −mdΦ

dt
= mnπr2µ0

i0
∆t

pour 0 < t < ∆t

Finalement, pour t > ∆t, i(t) = 0 et ε = 0.

Notons que le courant induit I dans la boucle crée un champ induit Bind qui s'oppose à
la diminution du �ux Φ.
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Force pour déplacer une boucle dans un champ magnétique

Considérons le cas idéal suivant, qui n'est pas réel. Supposons un champ magnétique
statique B limité dans une région de l'espace, comme indiqué sur la �gure 8.4.

Figure 8.4 � Boucle dans un champ magnétique

Considérons une boucle rectangulaire de largeur l et dont une longueur x est dans le
champ magnétique. On tire la boucle vers la droite. Décrivons ce qui se passe avant cela :
un �ux magnétique Φ passe à travers la boucle :

Φ = Blx

Si on tire la boucle vers la droite avec une vitesse v constante, le �ux Φ diminue car la
longueur x diminue. Selon la loi de Lenz, le courant induit I tendra à contrecarrer la
diminution du �ux Φ : I doit donc augmenter le champ B statique. Le sens du courant
I est indiqué sur la �gure.

Quelle est la fém ε induite dans la boucle ? Selon la loi de Faraday, cette fém vaut :

|ε| = dΦ

dt
=

∣∣∣∣dBlxdt

∣∣∣∣ = Bl

∣∣∣∣dxdt
∣∣∣∣ = Blv

La valeur absolue de la fém est proportionnelle à la vitesse de déplacement v de la boucle.

Montrons que, pour tirer la boucle, nous devons exercer une force. Lorsque nous tirons
la boucle, un courant induit est généré. Nous nous trouvons dans la situation où nous
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avons un conducteur portant un courant I perpendiculaire à un champ magnétique B.
Le conducteur ressent donc une force magnétique

F = I

∫
dl ∧B

Cette force magnétique s'exerce sur trois côtés de la boucle, comme le montre la �gure
8.4.

‖F1‖ = IBl

‖F2‖ = ‖F3‖ = IBx

F2 = −F3

Donc, pour tirer la boucle vers la droite à vitesse constante v, l'expérimentateur doit
exercer une force égale à −F1.

8.4 Champ électrique induit

Jusqu'à maintenant, nous avons considéré des boucles fermées avec des �ls conducteurs.
Nous avons vu que, lorsque le �ux magnétique à travers la boucle change, un courant
induit I circule dans la boucle, c'est-à-dire dans les �ls conducteurs formant la boucle.
Nous savons d'autre part que, dans un conducteur, l'apparition d'un courant est liée à
l'existence d'un champ électrique E.

Ces deux faits (création d'un courant induit I dans le conducteur et nécessité d'avoir un
champ E lorsque nous avons un courant I) nous amènent à un résultat très important
qui relie le champ électrique E à un champ magnétique B(t) variable dans le temps :

Un champ magnétique B(t) variable dans le temps produit un champ électrique E.

Montrons ceci à travers l'exemple suivant. Soit un champ magnétique uniforme dans
l'espace, mais variable dans le temps :

B(t) = −B0(t)ez

Pour �xer les idées, supposons que B0(t) soit du type

B0(t) = B0
t

∆t

c'est-à-dire que B0(t) augmente avec le temps.

Plaçons une boucle conductrice circulaire de rayon R dans le plan Oxy (�gure 8.5).
Comme B0(t) augmente avec le temps, un courant induit I circule dans la boucle. La
direction de I est le sens trigonométrique.
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Figure 8.5 � Boucle dans un champ magnétique �xe dans l'espace et variable dans le
temps. Le champ B(t) est créé par un solénoïde dont l'axe passe par O.

D'autre part, nous savons qu'avec la présence de I il existe un champ électrique E,
nécessaire pour mettre en mouvement les électrons.

Par la pensée, enlevons le conducteur qui forme la boucle, tout en laissant au même
endroit les électrons qui produisent le courant I. Ces électrons en mouvement ressentent
l'action d'une force électrique due à un champ électrique E.

Figure 8.6 � Champ électrique produit par un champ magnétique variable dans le temps

Ce champ électrique E est constant et, par un argument de symétrie, tangent au cercle
de rayon R.

E est dans la direction indiquée sur la �gure 8.6 si B0(t) est une fonction croissante du
temps. Si B0(t) reste constant, E est nul. E inverse sa direction lorsque B0(t) est une
fonction décroissante du temps.
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8.4.1 Loi de Faraday exprimée avec le champ électrique induit E

Soit un champ magnétique B variable dans le temps.

B = B(r, t)

Il existe un champ électrique induit E.

Soit une boucle fermée mathématique C encerclant une surface S. Sur une base expéri-
mentale, et sans démonstration, nous écrivons∮

C
E · dl = −

∫
S

(
d

dt
B

)
· dS (8.3)

Cette loi (8.3) est également connue comme loi de Faraday portant sur le champ électrique
induit E. Elle exprime simplement que la fém (membre de gauche) est égale à (variation
du �ux).

Rappelons à nouveau que le champ électrique induit E n'existe que si B varie dans le
temps. Pour des champs B constants dans le temps, et s'il n'y a pas de champ électro-
statique EES , alors

E = 0

8.4.2 Di�érence entre les champs électriques induit et électrostatique

Il existe plusieurs di�érences entre le champ électrique induit et le champ électrique
électrostatique. Ces di�érences sont indiquées dans le tableau 8.1.

Champ électrostatique Champ électrique induit

Cause Charge électrique − d

dt
Φ

Ligne de champ Part (ou �nit) sur la charge Se ferme sur elle-même

Circulation sur C fermé

∮
C
EES · dl = 0

∮
C
E · dl = −dΦ

dt

Table 8.1 � Di�érences entre champs électriques induit E et électrostatique EES

La discussion sur la topologie des lignes de champ pour le cas du champ électrique induit
E est analogue à celle que nous avons faite pour les lignes de champ magnétique. Comme
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pour le champ magnétique, le champ électrique induit n'est pas généré par des charges.
Toute la discussion pour les lignes de champ magnétique est donc valable pour les lignes
du champ électrique induit.

8.4.3 Forme locale de la loi de Faraday

La forme intégrale de la loi de Faraday est∮
C
E · dl = − d

dt

∫
S
B · dS

où S est la surface entourée par C (contour d'intégration �xe). Comme C est �xe, S l'est
également, et donc

d

dt

∫
S
B · dS =

∫
S

(
d

dt
B

)
· dS

Nous pouvons transformer

∮
C
E · dl à l'aide du théorème de Stokes :

∮
C
E · dl =

∫
S

(∇∧E) · dS

L'équation de Faraday devient donc∫
S

(∇∧E) · dS = −
∫
S

(
d

dt
B

)
· dS (8.4)

L'égalité (8.4) devant être satisfaite pour toute surface S, nous devons avoir :

∇∧E = −∂B
∂t

(8.5)

L'équation (8.5), qui est la forme locale de l'équation de Faraday, permet de relier le
champ électrique E(r, t) et le champ magnétique B(r, t). Cette équation est l'une des
quatre équations de Maxwell qui décrivent l'électromagnétisme.

8.5 Circuit électrique en présence de phénomènes d'induc-

tion

Nous avons remarqué qu'une boucle conductrice présente une fém lorsque le �ux mag-
nétique à travers elle varie dans le temps. Nous allons maintenant essayer de préciser
ces notions du point de vue des circuits électriques. Comme nous l'avons vu lors des
expériences, le cas le plus fréquent que nous avons rencontré est celui du solénoïde.



8.5. CIRCUIT ÉLECTRIQUE EN PRÉSENCE DE PHÉNOMÈNES D'INDUCTION167

Soit un solénoïde idéal ayant n tours par unité de longueur. Le champ créé à l'intérieur
de ce solénoïde est

B = µ0In

où I est le courant par tour du solénoïde. Si S est la section du solénoïde, le �ux à travers
une boucle du solénoïde est

Φ = BS = µ0InS

Si nous considérons une longueur l du solénoïde, le nombre de tours N sur cette longueur
est

N = nl

Le �ux total Φtot sur la longueur l est donc

Φtot = NΦ = µ0n
2IlS

Nous dé�nissons le coe�cient d'induction (ou inductance) L du solénoïde de longueur
l par

L =
NΦ

I
= µ0n

2lS (8.6)

L'unité de L est le Henry :

[L] = Henry ≡ H = Tm2A−1

Rappelons que µ0 a une unité de Hm−1 :

µ0 = 4π · 10−7 Hm−1

8.5.1 Self-induction

Soit un solénoïde (ou bobine) dans un circuit (�gure 8.7). Initialement, il n'y a pas de
courant dans la bobine.

Si I commence à passer, il y aura un phénomène d'induction dans la bobine : en e�et, le
�ux à travers elle est initialement nul, et le courant I crée un champ B et un �ux Φ. Il
y a donc apparition d'une fém induite εind.

εind = −dΦtot

dt

Par l'équation (8.6), Φtot = LI, et donc :

εind = −LdI
dt

La �gure 8.8 donne la fém dans les deux cas d'un courant I croissant (dessin de gauche)
et décroissant (dessin de droite).
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Figure 8.7 � Circuit avec bobine

Figure 8.8 � La fém εind s'oppose à la croissance (ou décroissance) du courant
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Ce phénomène est appelé self-induction. La bobine (ou le solénoïde) est aussi appelé
une "self". Pour dé�nir une self, du point de vue électrique, il nous su�t de connaître le
coe�cient d'induction (ou inductance) L. Par abus de langage on appelle aussi L la self
de la bobine.

Si la bobine est formée d'un �l conducteur résistif, elle possède une résistance R et le
circuit équivalent de la bobine se compose d'une résistance R en série avec la self.

Figure 8.9 � Circuit équivalent d'une self

8.5.2 Etude d'un circuit électrique avec une self

Considérons le circuit de la �gure 8.10. Au temps t = 0, l'interrupteur est fermé et le
courant commence à circuler dans la résistance R et la self d'inductance L.

Figure 8.10 � Circuit avec une self

Lorsque le courant circule, il se développe une fém induite εind. Par application de la loi
de Kirchho� sur les tensions sur le circuit ABC, nous avons :
• en B une tension −RI,
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• en C une tension égale à εind = −LdIdt obtenue par la loi de Faraday,
• en A la fém ε.
Par application de la loi de Kirchho� :

−RI − LdI
dt

+ ε = 0

RI + L
dI

dt
= ε

avec la condition initiale I(t = 0) = 0.

La solution de cette équation di�érentielle est la somme
• de la solution générale de l'équation di�érentielle sans second membre

RI + L
dI

dt
= 0

• et d'une solution particulière de l'équation di�érentielle avec second membre

RI + L
dI

dt
= ε

La solution générale de l'équation di�érentielle sans second membre est

I(t) = I0 exp

{
−Rt
L

}

Comme solution particulière de l'équation avec second membre, nous voyons que

I =
ε

R

la satisfait. L'équation générale est donc

I(t) = I0 exp

{
−Rt
L

}
+
ε

R

avec la condition initiale I(t = 0) = 0. Cette condition nous permet de dé�nir

I0 = − ε
R

I(t) =
ε

R

[
1− exp

{
−Rt
L

}]
Nous notons que le courant I(t) varie exponentiellement avec une constante de temps
égale à L

R . Plus R est petit, plus la constante de temps pour atteindre la valeur asympto-
tique est grande. Si la résistance externe R est supprimée et que la self elle-même est faite
de supraconducteur et n'a donc pas de résistance, la constante de temps L

R est in�nie !
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Figure 8.11 � Circuit équivalent lorsque t→∞

Pour t→∞, I → ε
R . Ce résultat est attendu, car si t→∞, la fonction exponentielle tend

vers 0 et il n'y a plus de variation de I. Les e�ets de self-induction sont alors négligeables,
et le circuit se ramène à celui de la �gure 8.11.

Pour le circuit de la �gure 8.10, la di�érence de potentiel VR aux bornes de la résistance
est

VR = RI = ε

[
1− exp

{
−Rt
L

}]
Pour t→∞, VR est égale à ε.

La di�érence de potentiel VL aux bornes de la self est

VL = −LdI
dt

= L
ε

R

R

L
exp

{
−Rt
L

}
= ε exp

{
−Rt
L

}
Comme nous l'avons mentionné, pour t → ∞, VL tend vers 0, car le courant I ne varie
plus et il n'y a plus d'e�et de self-induction. Ce résultat est consistant avec le fait que
VR tende vers ε pour t→∞.

L'évolution du courant en fonction du temps est représentée dans la �gure 8.12. Les
graphiques de la �gure 8.13 montrent les évolutions de VR et VL en fonction du temps.

8.5.3 Energie magnétique

Rappelons que lorsqu'un courant I traverse la fém ε, cette dernière fournit une puissance
P = Iε. Dans le cas de notre circuit de la �gure 8.10, à chaque instant t nous avons

Iε = RI2 + LI
dI

dt

Nous trouvons deux termes :

• RI2 qui représente la puissance thermique perdue dans la résistance,

• LI dI
dt

qui est la puissance stockée dans la self.
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Figure 8.12 � Evolution du courant dans un circuit avec une self

Figure 8.13 � Evolutions de VR etVL en fonction du temps
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En e�et, si la fém ε fournit une puissance, par conservation de l'énergie, cette puissance
est transférée et stockée dans la self. L'énergie totale stockée dans la self lorsqu'un courant
I0 la traverse est :

Wself =

∫
Iεdt =

∫ I0

0
LIdI =

1

2
LI2

0

Une self traversée par une courant I0 stocke donc une énergie

Wself =
1

2
LI2

0

Récrivons Wself avec la valeur de L pour un solénoïde de longueur l :

Wself =
1

2
µ0n

2lSI2
0 =

(
n2I2

0µ
2
0

)
2µ0

lS

Or le champ B dans le solénoïde (considéré comme idéal) avec un courant I0 vaut :

B = µ0nI0

D'où

Wself =
B2

2µ0
lS

Du point de vue dimensionnel, B2/2µ0 a la dimension de Jm−3, et est donc une densité
d'énergie appelée densité d'énergie magnétique. A un champ magnétique de valeur B
correspond une densité d'énergie uB :

uB =
B2

2µ0
Jm−3

Notez que lors de l'étude de l'hydrodynamique, nous avons remarqué que la pression p a
aussi une dimension de Jm−3 :

[p] =
N

m2
=

Nm

m3
=

J

m3

La quantité B2/µ0 a donc la même dimension qu'une pression p. C'est pour cela que
B2/µ0 est aussi appelée pression magnétique. Vous la sentez lorsque vous rapprochez
deux aimants permanents de même polarité.
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Exemple de calcul de l'énergie magnétique

Considérons un système formé par deux conducteurs cylindriques concentriques, comme
sur la �gure 8.14.

Figure 8.14 � Deux conducteurs cylindriques concentriques

Le conducteur interne porte un courant I pointant vers l'extérieur de la feuille. Le courant
dans le conducteur externe vaut I et pointe dans la feuille. Nous nous proposons de
calculer l'énergie magnétique UB dans la zone entre les deux cylindres sur une longueur
l.

Appliquons la loi d'Ampère sur un cercle C de rayon r :∮
C
B · dl = µ0I

B =
µ0I

2πr

Localement, la densité d'énergie uB est donc

uB =
B2

2µ0
=

µ0I
2

8π2r2

uB dépend donc de r. L'énergie magnétique UB vaut donc :

UB = l

∫ b

a
uB2πrdr =

lµ0I
2

4π

∫ b

a

r

r2
dr =

lµ0I
2

4π
ln

(
b

a

)
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8.5.4 Décharge d'une self

Supposons que nous avons le circuit suivant :

Dans un premier temps, S1 est fermé et S2 ouvert :

Nous sommes donc dans le cas étudié précédemment, et le courant I(t) vaut

I(t) =
ε

R

[
1− exp

{
−Rt
L

}]
Au bout de plusieurs dizaines de temps L/R, I(t) atteint sa valeur asymptotique ε/R.
A cet instant t = t′, nous ouvrons S1 et fermons simultanément S2 :



176 CHAPITRE 8. PHÉNOMÈNES D'INDUCTION MAGNÉTIQUE

L'équation du circuit est simplement :

RI + L
dI

dt
= 0

avec I = ε
R à l'instant t′. Le courant décroît avec la même constante de temps L/R, et

�nit par disparaître. Du point de vue énergétique, la self portait en t′ une énergie

Wself =
1

2
LI2 =

1

2
L
ε2

R2

A la �n de l'expérience, I est nul, donc Wself = 0. L'énergie

1

2
L
ε2

R2

a été dissipée sous forme d'énergie thermique dans la résistance.

8.6 Circuit avec une fém ε = Vo cosωt

Nous considérons maintenant une fém ε qui varie avec le temps. Si ε = ε(t) alors I = I(t).

8.6.1 Circuit avec R

On a
RI(t) = Vo cosωt

I(t) = Vo
R cosωt

Utilisons la notation complexe ε(t) = Vo exp{iωt} (voir 3.2.2)

RI(t) = Vo exp{iωt}
I(t) = Vo

R exp{iωt}

Le courant I(t) est en phase avec la tension ε(t).
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8.6.2 Circuit avec L et R

L'équation du circuit est

−RI(t)− LdI(t)

dt
(t) + ε(t) = 0

ε(t) = RI + L
dI

dt

Nous écrivons

Vo exp{iωt} = RI(t) + L
dI

dt
∀t

Le courant I(t) doit donc avoir la même dépendance exp{iωt}. Nous écrivons

I(t) = Io exp{iωt}

avec Io = nombre complexe. Nous avons pris Vo comme nombre réel. Nous avons donc

Vo exp{iωt} = RIo exp{iωt}+ LIo iω exp{iωt} (8.7)

D'où

Io = Vo
R+iLω = Vo(R−iLω)

R2+L2ω2

= ||Io|| exp{−iϕ}

avec

||Io|| =
Vo

(R2 + L2ω2)1/2
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Donc

I(t) = ||Io|| exp{−iϕ} exp{iωt}

I(t) = ||Io|| exp{i(ωt− ϕ)}

Le courant I(t) est déphasé par ϕ par rapport à la tension.

8.6.3 Circuit R et C

L'équation du circuit est

−RI(t)− q(t)

C
+ ε(t) = 0

ε(t) = RI(t) + q(t)
C

ε(t) = RI(t) + 1
C

∫
I(t)dt

Si ε(t) = Vo exp{iωt} alors I(t) a la même dépendance

I(t) = I ′o exp{iωt} avec I ′o = Nombre complexe
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D'où l'équation du circuit

Vo exp{iωt} = RI ′o exp{iωt}+
1

iCω
I ′o exp{iωt} (8.8)

D'où

I ′o = Vo
R− i

Cω

= Vo
R2+ 1

ω2C2

(
R+ i

Cω

)
= ||I ′o|| exp{iϕ′}

avec ||I ′o|| = Vo(
R2+ 1

ω2C2

)1/2

8.6.4 Notion d'impédance

Reprenons les 3 équations de circuit

RIo exp{iωt} = Vo exp{iωt}

RIo exp{iωt}+ iLωIo exp{iωt} = V0 exp{iωt} Equation 8.7

RIo exp{iωt}+
1

iωc
I ′o exp{iωt} = Vo exp{iωt} Equation 8.8
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Faisons d'abord une analyse dimensionnelle

[R] = Volt
Ampère = V

A = Ω

[L] = Volt
Ampère × s

[Lω] = Volt
Ampère = Ω

[C] = Coulomb
Volt = A·s

V[
1
Cω

]
= Volt·s

A·s = Volt
Ampère = Ω

Les trois quantités R, iωL et 1
iωC ont la même dimension, Volt/Ampère soit Ohm. Elles

di�èrent seulement par le fait que la résistance R est une quantité purement réelle, alors
que (iωL) et [1/(iωC)] sont des quantités purement imaginaires. On appelle impédances
Z des éléments de circuit R, L et C ces quantités :

Elément de circuit Impédance

R ZR = R

L ZL = iωL

C ZC = 1
iωC

Dans le plan complexe Z = x + iy, les impédances sont représentées par les vecteurs
ZL, ZR et ZC .
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Par dé�nition des impédances, si on vous donne un courant I = Ĩ exp{iωt} avec Ĩ =
nombre réel, la relation entre la tension et le courant est

- Pour R VR = RĨ exp{iωt}
- Pour L VL = ZLĨ exp{iωt}
- Pour C VC = ZC Ĩ exp{iωt}

Importance de la notion d'impédance pour un circuit oscillant.

On peut calculer l'impédance équivalente d'un circuit comprenentR,L et C en appliquant
les mêmes règles que pour un circuit avec des résistances.

Soit n impédances Zi en série

Zeq =

n∑
i=1

Zi

Soit n impédances Zi en parallèle

1

Zeq
=

n∑
i=1

1

Zi

Par exemple, calculons l'impédance équivalente du circuit suivant

C'est un circuit ayant ZR, ZL et ZC en série

Zeq = R+ i

(
ωL− 1

ωC

)
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Nous avons

||Zeq|| =

[
R2 + ω2L2

(
1− 1

ω2LC

)2
]1/2

||Zeq|| a un minimum pour

ω =
1√
LC

et ce minimum vaut Zeq)min = R

Dans le plan complexe des impédances nous avons :

Avec ω = 1/
√
LC , |ZL| = |ZC | et Zeq = R

Pour ω →∞ ZC → 0 et ZL →∞ sur l'axe imaginaire

Pour ω → 0 ZC →∞ et ZL → 0 sur l'axe imaginaire
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Dans ces 2 derniers cas Zeq →∞ et le courant est nul. La fréquence ω = 1/
√
LC est la

fréquence de résonance du courant. Si on trace 1/|Zeq| en fonction de ω on a

La phase ϕ de Zeq par rapport à R est de π/2 pour ω → 0 et de π/2 pour ω →∞. ϕ est
0 pour ω = 1/

√
LC.
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Chapitre 9

Equations de Maxwell

9.1 Introduction

De notre étude sur les phénomènes électriques et magnétiques, nous avons obtenu l'ensem-
ble des lois suivantes :

• Equation de Gauss

ε0

∫
S
E · dS = somme des charges dans V =

∫
V
ρeld

3r

• ∫
S
B · dS = 0

Dans ces deux cas, S est une surface fermée qui entoure le volume V . ρel est la densité
de charges électriques.

• Equation de Faraday ∮
C
E · dl = −dΦ

dt∮
C
E · dl = −

∫
S′

dB

dt
· dS

• Equation d'Ampère∮
C
B · dl = µ0

[
somme des courants qui traversent S′

]
= µ0

∫
S′
j · dS

C est une contour fermé entourant la surface S′. j est la densité de courant, et Φ le
�ux magnétique à travers S′.
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Les formes locales de ces quatre équations sont :

∇ ·E =
ρel
ε0

∇ ·B = 0

∇∧E = −∂B
∂t

∇∧B = µ0j

9.2 Critique de l'équation ∇∧B = µ0j

9.2.1 Rappel : Equation de continuité

Faisons un parallèle avec la dynamique des �uides. En supposant que la masse M est
conservée, nous avons abouti à l'équation de continuité

∂ρm
∂t

+∇ · jm = 0

où ρm est la densité de masse et jm = ρmu la densité de �ux de masse.

Pour les phénomènes électriques, nous avons également la conservation de la charge
électrique (en négligeant les phénomènes de recombinaison entre un ion positif et un
électron négatif). Par les mêmes méthodes que pour l'hydrodynamique, nous avons donc

∂ρel
∂t

+∇ · j = 0

où ρel est la densité de charge électrique et j = ρelu la densité de courant électrique.
Il est "normal" que nous ayons cette équation de continuité (identique formellement à
l'équation 2.5) car la charge est conservée.
Nous supposons que ρel = ρel(r, t) et j = j(r, t).

L'équation
∂ρel
∂t

+∇ · j = 0

est l'équation de continuité pour les phénomènes électriques. Cette équation est une
équation locale, satisfaite en tout point r de l'espace et en tout temps t.

9.2.2 Intermède mathématique

Soit un champ vectoriel A(r). Nous pouvons facilement montrer que

∇ · (∇∧A) = 0
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Un moyen mnémotechnique est de se rappeler qu'avec notre notation le rotationnel est
le produit vectoriel entre l'opérateur vectoriel ∇ et le vecteur A, et la divergence d'un
vecteur C est le produit scalaire entre ∇ et C.

Par application de

a · (a ∧ b) = 0

car a ∧ b est perpendiculaire à a, on se rappelle que

∇ · (∇∧A) = 0

9.2.3 Critique de l'équation ∇∧B = µ0j

Ce fut le coup de génie de Maxwell de noter cette critique et de proposer une solution.

Supposons que B = B(r, t) et j = j(r, t). Nous avons donc

∇ · (∇∧B) = 0 = µ0∇ · j

∇ · j(r, t) = 0

Pour des phénomènes variables dans le temps, nous ne pouvons donc pas satisfaire l'équa-
tion de continuité

∂ρel
∂t

+∇ · j = 0

si nous considérons l'équation

∇∧B = µ0j

9.3 La quatrième équation selon Maxwell

Maxwell postule un nouveau terme dans l'équation avec ∇∧B :

∇∧B = µ0j+ ε0µ0
∂E

∂t
= µ0

[
j+ ε0

∂E

∂t

]

La quantité ε0
∂E
∂t a la dimension d'une densité de courant, et est appelée densité de

courant de déplacement 1. Son existence est indépendante d'un milieu, car il est généré
par ∂E

∂t : le courant de déplacement peut même exister dans le vide. j est la densité de
courant de conduction.

Quelle est l'amplitude relative de j et ε0
∂E
∂t ?

1.
[
ε0
∂E
∂t

]
=
(
A2s4

kgm2

)
·
(
kgm2

s2
· 1
Asm

)
· 1
s

= A
m2
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Prenons comme exemple un �l parcouru par un courant alternatif à 50 Hz. Le �l a une
section de 4 mm2 et porte un courant de 4 A.

j =
4 A

4 · 10−6 m2
= 106 Am−2

Prenons E = 1 Vm−1. La période à 50 Hz est 20 ms.

ε0
∂E

∂t
≈ 8.8 · 10−12 AsV−1m−1 · 1 Vm−1

20 · 10−3 s
≈ 4.4 · 10−10 Am−2

Donc

ε0
∂E

∂t
� j

Ceci explique la di�culté d'observer le courant de déplacement par des mesures simples !

Est-ce que l'introduction du courant de déplacement permet de satisfaire l'équation de
continuité ?

Calculons ∇ · (∇∧B) :

∇ · (∇∧B) = 0 = µ0

[
∇ · j+ ε0∇ ·

∂E

∂t

]
Nous pouvons intervertir l'opérateur ∇ et ∂

∂t :

0 = ∇ · j+ ε0∇ ·
∂E

∂t
= ∇ · j+

∂

∂t
(ε0∇ ·E)

En utilisant l'équation de Poisson

ε0∇ ·E = ρel

nous avons

∇ · j+
∂ρel
∂t

= 0

qui n'est autre que l'équation de continuité !

9.4 Les équations de Maxwell

Les quatre équations de Maxwell sont (formes locales) :

∇∧E = −∂B
∂t

(9.1a)

∇∧B = µ0j+ ε0µ0
∂E

∂t
(9.1b)

∇ ·E =
ρel
ε0

(9.1c)

∇ ·B = 0 (9.1d)
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Les formes intégrales correspondantes sont :

Loi de Faraday ∮
C
E · dl = −

∫
S

∂B

∂t
· dS (9.2a)

Loi d'Ampère-Maxwell (Maxwell à cause du courant de déplacement)∮
C
B · dl = µ0

∫
S
j · dS+ ε0µ0

∫
S

∂E

∂t
· dS (9.2b)

Notez que ∫
S

∂E

∂t
· dS =

d

dt

∫
S
E · dS =

d

dt
(Flux de E à travers S)

Loi de Gauss pour le champ E ∫
S
E · dS =

1

ε0

∫
V
ρeldV (9.2c)

Loi de Gauss pour le champ B ∫
S
B · dS = 0 (9.2d)

Notez que formellement par rapport à l'introduction 9.1, les di�érences sont :
• ces équations sont dépendantes du temps,
• la loi d'Ampère est modi�ée par le terme

ε0µ0
d

dt

∫
S
E · dS

introduit par Maxwell.
Notons que pour résoudre ces équations, nous avons besoin de connaître la densité de
charge ρel(r, t) et la densité de courant j(r, t). Il est important de rappeler que le problème
est plus compliqué qu'il n'y paraît, car l'évolution de ρel(r, t) et j(r, t) dépend des champs
E et B à travers les équations du mouvement et la force F exercée sur les charges par E
et B :

F = q [E+ v ∧B]

Nous n'aborderons pas ce chapitre qui appartient à la branche de la physique appelée
électrodynamique.

9.4.1 Les quatre équations de Maxwell sont-elles indépendantes ?

Notez que nous avons deux groupes d'équations :
• deux équations avec l'opérateur rotationnel,
• deux équations avec l'opérateur divergence.
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Montrons que les deux équations avec l'opérateur divergence sont des conditions initiales
des deux équations avec l'opérateur rotationnel.

Calculons

∇ · (∇∧E) = 0 = −∇ · ∂B
∂t

= − ∂

∂t
(∇ ·B)

En intégrant par rapport au temps, nous avons

∇ ·B = constante = Valeur à t = 0

L'équation de Maxwell ∇·B = 0 est simplement la détermination de la constante à 0 au
temps t = 0.

De même :

∇ · (∇∧B) = 0 = µ0

[
∇ · j+ ε0∇ ·

∂E

∂t

]
0 = µ0

[
∇ · j+

∂

∂t
(ε0∇ ·E)

]
Notons qu'une équation du type

ε0∇ ·E = ρel + constante initiale

satisfait cette équation. L'équation de Poisson

ε0∇ ·E = ρel

signi�e simplement que la constante initiale vaut 0.

En résumé, les deux équations en divergence

∇ ·B = 0

∇ ·E =
ρel
ε0

sont des conditions initiales d'équations dérivées des équations en rotationnel.

9.4.2 Les équations de Maxwell à l'état stationnaire

A l'état stationnaire :

∇∧E = 0 (9.3a)

∇∧B = µ0j (9.3b)

∇ ·E = ρel/ε0 (9.3c)

∇ ·B = 0 (9.3d)

Nous notons que seules les équations (9.3b), respectivement (9.3c), nous fournissent une
relation entre B (resp. E) et j (resp. ρel). Ce sont en e�et celles que nous avons utilisées
en magnétostatique et en électrostatique.
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9.5 Les équations de Maxwell et la lumière dans le vide

9.5.1 Intermède mathématique : dé�nition de ∇∧ (∇∧A)

Soit un champ vectoriel A(r). Il est assez simple de montrer que

∇∧ (∇∧A) = ∇(∇ ·A)−∇2A

Rappelons que

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

∇2A =
(
∇2Ax,∇2Ay,∇2Az

)
Donc

∇∧ (∇∧A) =

[
∂

∂x

(
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

)
−∇2Ax,

∂

∂y

(
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

)
−∇2Ay,

∂

∂z

(
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

)
−∇2Az

]

9.5.2 Les équations de Maxwell dans le vide

Dans le vide, ρel = j = 0. Les équations de Maxwell deviennent :

∇∧E = −∂B
∂t

(9.4a)

∇∧B = ε0µ0
∂E

∂t
(9.4b)

∇ ·E = 0 (9.4c)

∇ ·B = 0 (9.4d)

Laissons de côté les deux équations en divergence, au moins pour le moment, pour nous
concentrer sur les deux équations en rotationnel. Nous pouvons considérer que la "source"
de E, resp. B, selon l'équation (9.4a), resp. (9.4b), est −∂B/∂t, resp. µ0ε0∂E/∂t. Prenons
le rotationnel de la première équation :

∇∧ (∇∧E) = −∇ ∧ ∂B
∂t

= − ∂

∂t
(∇∧B)
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En remplaçant ∇∧B par sa valeur selon l'équation (9.4b) :

∇∧ (∇∧E) = −ε0µ0
∂2

∂t2
E

Or ∇∧ (∇∧E) = ∇(∇ ·E)−∇2E, et dans le vide, ∇ ·E = 0.

∇∧ (∇∧E) = −∇2E

Donc

∇2E− ε0µ0
∂2E

∂t2
= 0

Par une démarche analogue avec l'équation (9.4b), nous avons :

∇2B− ε0µ0
∂2B

∂t2
= 0

Dans le vide, les champs E et B satisfont à la même équation di�érentielle :

∇2E− ε0µ0
∂2E

∂t2
= 0 (9.5)

∇2B− ε0µ0
∂2B

∂t2
= 0

Pour résoudre cette équation, prenons l'ansatz d'une dépendance en exp {i(ωt− kz)},
c'est-à-dire en onde plane 2, avec k = (0, 0, k), et en choisissant :

E = [E0 exp {i(ωt− kz)} , 0, 0] = (Ex, 0, 0) (9.6)

B = [0, B0 exp {i(ωt− kz)} , 0] = (0, By, 0) (9.7)

Montrons d'abord que, avec cet ansatz, E et B satisfont bien

∇∧E = −∂B
∂t

si les amplitudes E0 et B0 satisfont E0
B0

= ω
k . En e�et,

∇∧E = [0,−ikE0 exp {i(ωt− kz)} , 0]

−∂B
∂t

= [0,−iωB0 exp {i(ωt− kz)} , 0]

2. Rappelons qu'une onde plane a une dépendance spatio-temporelle du type cos(ωt − kz). Nous
utilisons la notation complexe exp {i(ωt− kz)} pour décrire cos(ωt−kz) (voir le chapitre sur les ondes).
Rappelons que k est le vecteur d'onde et ω la pulsation. [k] =m−1, [ω] =rad·s−1
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∇∧E = −∂B
∂t
⇔ E0

B0
=
ω

k
= vitesse de phase de l'onde

La valeur de la vitesse de phase sera connue lorsque nous aurons dérivé la relation de
dispersion. Notons aussi que[

E

B

]
=

V

mT
=

kgm2

As3
× 1

m
× As2

kg
=

m

s

En substituant E de (9.6) dans (9.5) :

E0

[
∂2

∂z2
exp {i(ωt− kz)} − ε0µ0

∂2

∂t2
exp {i(ωt− kz)}

]
= 0

−E0

[
k2 − ε0µ0ω

2
]

= 0

Pour éviter la solution triviale E0 = 0, il faut que

ω2 =
k2

ε0µ0
= k2c2 (9.8)

où c est la vitesse de phase.
[

1
ε0µ0

]
=

kgm2m
A2s4

A2s2m
kgm2 = m2

s2 et numériquement vaut c2.

Remarquez aussi que (µ0/ε0)1/2 a la dimension d'une résistance et vaut 377 Ω. On ob-
tient cette valeur par E/(B/u0). 377 Ω est appelé "impédance" du vide.

La relation (9.8) indique que la relation de dispersion des ondes est linéaire :

ω =
k

√
ε0µ0

c =
1

√
ε0µ0

Ces ondes sont donc non dispersives. Les quantités perturbées sont les champs élec-
trique E et magnétique B.

E = (E0, 0, 0) exp {i(ωt− kz)}

B = (0, B0, 0) exp {i(ωt− kz)}

k = (0, 0, k)

avec
E0

B0
=
ω

k
=

1
√
ε0µ0

= c
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Dans le vide et avec le système SI, l'amplitude du champ magnétique B0 est donnée par

B0 [T] =
E0

c

[V/m]

[m/s]

avec c = 299 792 458 m/s.

Ces ondes sont appelées ondes électromagnétiques. Les champs E et B sont en phase.
Nous pouvons représenter, à un instant donné, les quantités E, B et k (�gure 9.1).

Figure 9.1 � Onde électromagnétique dans le vide, avec propagation selon z. Nous avons
supposé que E est selon ex et B selon ey.

Les champs E et B étant perpendiculaires à k, l'onde électromagnétique est une

onde transverse.

Nous avons utilisé, pour dériver la relation de dispersion, seulement les équations en
rotationnel. Il est aisé de calculer les expressions des équations en divergence.

∇ ·E =
∂Ez
∂z

= 0 car Ez = 0

∇ ·B =
∂Bz
∂z

= 0 car Bz = 0

Ces deux équations sont donc aussi satisfaites.

Remarquons que la relation de dispersion des ondes électromagnétiques dans le vide
fait intervenir seulement ε0 et µ0, constantes qui interviennent dans d'autres expressions
comme la force de Coulomb entre deux charges (pour ε0) ou la loi de Biot et Savart (pour
µ0). Elles peuvent donc être déterminées en dehors du cadre des ondes électromagnétiques
(cf. 9.5.3.).

9.5.3 Ondes électromagnétiques et lumière

Ce fut le mérite de Maxwell de proclamer que les ondes électromagnétiques qu'il a dérivées
à partir des équations de Maxwell décrivent la lumière !
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Comment a-t-il raisonné ? Il a d'abord remarqué que la vitesse de phase ω/k pouvait être
déterminée à partir des constantes ε0 et µ0 (avec nos notations modernes). A l'époque
(vers 1860), les meilleures mesures (Weber et Kohlrausch) donnaient

ω

k
=

1
√
ε0µ0

= 310 740 000 ms−1

D'autre part, la mesure de la vitesse de la lumière par Fizeau donnait

c = 314 858 000 ms−1

Citons Maxwell :

The velocity of light in air, as determined by M. Fizeau, is 70 843 leagues per second (25
leagues to a degree) which gives

V = 314 858 000 000 millimetres per second (c'est-à-dire c)

= 195 647 miles per second

The velocity of transverse undulations in our hypothetical medium (c'est-à-dire les ondes
électromagnétiques) , calculated from the electro-magnetic experiments of MM. Kohlrausch

and Weber, agrees so exactly with the velocity of light calculated from the optical experi-

ments of M. Fizeau, that we can scarcely avoid the inference that light consists in

the transverse undulations of the same medium which is the cause of electric

and magnetic phenomena.

L'accord entre les deux valeurs
ω

k
=

1
√
ε0µ0

et c est de 1.3%. Notez et admirez la hardiesse du rapprochement : we can scarcely avoid

the inference...

Notez aussi qu'avec cette remarque, Maxwell présente une vue uni�ée de toutes les ra-
diations connues à son époque (c'est-à-dire la lumière), mais aussi de celles découvertes
plus tard dans tout le spectre de fréquence, depuis les fréquences extrêmement basses
(comme les phénomènes à 50 Hz) jusqu'aux rayons X, γ, etc.

Ce fut en 1888 que Hertz généra et détecta les ondes électromagnétiques avec des appareils
de laboratoire, et con�rma la théorie de Maxwell 3.

En guise de conclusion, citons 4 Hertz :

What is Maxwell's theory ? I know no shorter or more de�nite answer than the following :

Maxwell's theory is Maxwell's system of equations.

3. Pour une description de l'expérience de Hertz, voir p. ex. An introduction to Classical Electromag-

netic radiation par G. S. Smith, éd. Cambridge, p. 161.
4. Cité dans D. M. Siegel, Innovation in Maxwell's Electromagnetic Theory.
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Citons également cette remarque conclusive du même ouvrage de Siegel, remarque qui
nous semble très intéressante pour la Section de Mathématiques, et qui est sous-jacente
à tout ce cours de physique :

Ultimately, then, Maxwell's electromagnetic theory comes to play a central role in... the

transition to a twentieth century emphasis on the "system of equations" as the

essence of physical theory.

Notez �nalement que la vitesse de la lumière dans le vide a été choisie comme étalon
(avec la seconde) pour dé�nir le mètre.

Le mètre est la distance parcourue par la lumière dans le vide pendant un
intervalle de temps de 1/299 792 458 s.

Dit autrement, c est 299 792 458 m/s. Les valeurs de µ0 et ε0 sont :

µ0 = 4π · 10−7 H/m

ε0 = 1/c2µ0 = 8.854 187 817 · 10−12 F/m

9.5.4 Polarisation

Dans l'exemple de la section 9.5.2, nous avons arbitrairement choisi la direction du
champ E selon la direction ex par rapport à la direction du vecteur d'onde k qui, lui, est
�xé selon ez. B est alors selon ey (voir �gure 9.2). E, B et k forment un trièdre droit.

Figure 9.2 � E, B et k : trièdre droit

Nous disons dans ce cas que l'onde électromagnétique est linéairement polarisée avec
le champ électrique selon ex :

E = exE0 cos(ωt− kz)

B = eyB0 cos(ωt− kz)
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Nous pouvons aussi choisir E selon ey :

E = eyE0 cos(ωt− kz)

Dans ce cas, B doit être tel que le trièdre (E,B,k) est un trièdre droit. Donc

B = −exB0 cos(ωt− kz)

On dit alors que l'onde est linéairement polarisée avec son vecteur E selon ey.

Notez que, d'une manière générale, la lumière (≡ onde électromagnétique dont la longueur
d'onde λ est dans le domaine d'environ 300-600 nm) n'est pas polarisée.

Vous pouvez aussi avoir le cas où le champ électrique E tourne dans le plan (Oexey)

Figure 9.3 � Champs E et B dans le cas d'une polarisation circulaire.

Le vecteur E(t) à une position Z donné peut décrire

a) un cercle dans le sens trigonométrique
b) un cercle dans le sens des aiguilles d'une montre
c) une ellipse dans le sens trigonométrique
d) une ellipse dans le sens des aiguilles d'une montre

Le cas a) est appelé "Polarisation circulaire gauche", b) "Polarisation circulaire droite",
c) "Polarisation elliptique gauche" et d) "Polarisation elliptique droite".
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Le vecteur champ magétique B est perpendiculaire à E de sorte que (E×B) est parallèle
à k.

Notez que la lumière naturelle n'est pas polarisée. C'est en la passant à travers un "po-
lariseur" qu'elle devient polarisée.

9.5.5 Vecteur de Poynting et transport d'énergie

Considérons les ondes électromagnétiques émises depuis le soleil jusqu'à nous. Notre
expérience nous dit que ces ondes transportent de l'énergie. Les exemples scienti�ques
sont les e�ets photovoltaïques, le chau�age, et moins scienti�quement le bronzage !

La puissance transportée par unité de surface par une onde électromagnétique est donnée
par le vecteur de Poynting S :

S =
E ∧B
µ0

(9.9)

Du point de vue dimensionnel,

[S] =
VTA

mTm
=

VA

m2

=
kgm2A

As3m2
=

kgm2

s2
1

sm2

=
Nm

s
× 1

Surface

[S] =
Puissance

Surface

S est un �ux de puissance lié aux champs E et B.

Pour une onde électromagnétique plane avec k = (0, 0, k), le vecteur de Poynting S est
dirigé selon k, E selon ex et B selon ey.

Quelle est la signi�cation du vecteur de Poynting ? Calculons l'intégrale suivante :

d

dt

∫
V

[
ε0E

2

2
+
B2

2µ0

]
dV

où V est un volume �xe. ε0E
2/2 et B2/2µ0 ont la dimension d'une densité d'énergie et

sont respectivement les densités d'énergie électrique et magnétique.

d

dt

∫
V

[
ε0E

2

2
+
B2

2µ0

]
dV =

∫
V

[
ε0E ·

∂E

∂t
+
B

µ0
· ∂B
∂t

]
dV

Rappelons que, dans le vide (j = 0),

∇∧E = −∂B
∂t
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∇∧B = ε0µ0
∂E

∂t

d

dt

∫
V

[
ε0E

2

2
+
B2

2µ0

]
dV =

∫
V

[
E

µ0
· (∇∧B)− B

µ0
· (∇∧E)

]
dV (9.10)

Rappelons l'identité

∇ · (A ∧B) = B · (∇∧A)−A · (∇∧B)

Le membre de droite de l'équation (9.10) est donc

−
∫
V
∇ ·
(
E ∧B
µ0

)
dV

et l'équation (9.10) devient

d

dt

∫
V

[
ε0E

2

2
+
B2

2µ0

]
dV = −

∫
V
∇ ·
(
E ∧B
µ0

)
dV (9.11)

ε0E2

2 et B2

2µ0
sont les densités d'énergie électrique et magnétique vues dans les chapitres

5.6.4 et 8.5.3.

Soit S la surface qui entoure V . Le théorème de la divergence nous permet de transformer
le membre de droite de (9.11) en

−
∫
S

E ∧B
µ0

· dS

On a donc l'équation

d

dt

∫
V

[
ε0E

2

2
+
B2

2µ0

]
dV = −

∫
S

E ∧B
µ0

· dS (9.12)

La variation temporelle de la somme des énergies électrique et magnétique dans un vol-
ume V est égale à l'opposé du �ux du vecteur de Poynting à travers la surface S qui
entoure le volume V . Le signe − est lié à la direction de dS qui pointe vers l'extérieur.
L'équation 9.12 décrit en fait la conservation de l'énergie électromagnétique∫

V

[
ε0E

2

2
+
B2

2µ0

]
dV

.
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9.5.6 Vecteur de Poynting dans quelques cas particuliers

a) Conducteur coaxial

Considérons un conducteur coaxial de géométrie cylindrique (�gure 9.4).

Figure 9.4 � Conducteur coaxial

Le champ E est radial, B est azimutal 5 et S = E∧B
µ0

est selon ez.

b) Conducteur à 2 �ls

Considérons le cas des deux �ls électriques dans la distribution de puissance électrique
classique (�gure 9.5).

Figure 9.5 � Deux �ls parallèles

Là encore, la puissance électrique est portée par le vecteur de Poynting dans la région
entre les deux �ls. En dehors de cette région, les champs E et B sont faibles et on peut
négliger le vecteur de Poynting.

Ce dernier exemple nous montre que l'on peut aborder les phénomènes électromagné-
tiques de deux points de vue :

• du point de vue des circuits électriques : la puissance dissipée dans R est amenée à
travers le courant I et la fém ε,
• du point de vue de Maxwell : la puissance est amenée par le champ électromagnétique

(E,B) et est décrite par le vecteur de Poynting S = E∧B
µ0

.

5. B est azimutal selon la loi d'Ampère car le courant dans le conducteur central est selon ez.
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Cette deuxième approche nous permet de résoudre le petit problème suivant. La vitesse
des électrons dans le �l de Cu est de l'ordre de 2 mm/h. Mais dès que vous avez appuyé
sur l'interrupteur, la lumière s'allume. En fait, l'énergie est transportée par les champs
électromagnétiques (E,B), qui se propagent à la vitesse c.

9.5.7 Retour sur les phénomènes d'interférence

Nous avons vu au Chapitre 3.3 le phénomène d'interférence. Si la lumière est une onde
de lumière, pourquoi l'expérience suivante ne nous donne pas des �gures d'interférence ?

Fixons-nous les idées. Prenons une source lumineuse à une longueur d'onde λ = 500 nm.
L'oeil est sensible au domaine de longueur d'onde entre 500 nm et 700 nm. La fréquence
ν qui lui est associée est donnée par

ν = c/λ = 6× 1014 Hz ou

ω = 2πν = 3.77× 1015 radian/s

Notons que nous avons deux sources lumineuses en S1 et S2 à la même longueur d'onde
λ. Les champs électriques émis sont donc

E1 = Ẽ cos(ωt− k r1)

E2 = Ẽ cos(ωt− k · r2 + ϕ)

où ϕ est un déphasage arbitraire entre les sources S1 et S2.
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Donc sur l'écran, en appliquant (3.6) du chapitre 3.3

E = 2Ẽ cos(
1

2
kd sin θ − ϕ

2
) cos(ωt− k · r1 −

1

2
kd sin θ +

ϕ

2
)

La seule di�érence formelle avec la formule (3.6) est que l'amplitude 2Ẽ cos(1
2kd sin θ)

est remplacée par 2Ẽ cos(1
2kd sin θ − ϕ

2 ).

A ce stade, nous devons faire plusieurs remarques, liées à la physique des phénomès en
cours :

1. le déphasage ϕ varie avec le temps : ϕ = ϕ(t) entre [0 et 2 π]. Cette variation est
beaucoup plus rapide que la période 2π/ω. La condition

1

2
kd sin θ − ϕ(t)

2
= n

π

2

devient
1

2
kd sin θ = n

π

2
+ ϕ(t)

2. l'oeil (tout comme tout autre appareil) est sensible au vecteur de Poynting S×|E|2
et intègre le signal sur une intervalle de temps Tint >> 2π/ω.

En conséquence, à cause de la remarque 1), on ne peut pas voir les �gures d'interférence :
la condition décrite sous 1. n'est satisfaite que pour un temps t donné dans l'intervalle
0 < t < Tint. Les zones de maximum et de minimum bougent tout le temps !

Pour voir les �gures d'interférence, on doit faire l'arrangement suivant (expérience de
Young)
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Les champs en S1 et S2 ont tous les deux le même déphasage ϕ(t) en tout temps. La
propriété que deux sources lumineuses, même exactement à la même fréquence ν, sont
déphasées par ϕ(t) est appelée non cohérence. La phase d'une source non cohérente à un
point �xe change d'une manière aléatoire. Seule la lumière d'un laser est cohérente.

A cette étape, nous avons encore

I × 4|E0|2 cos2

(
kd sin θ

2

)
et l'on a toujours des interférences !

9.6 Interprétation des di�érents termes dans les équations

de Maxwell

9.6.1 Introduction du problème

Si les équations de Maxwell sont particulièrement simples dans le vide (ρ = 0, j = 0),
nous devons bien comprendre la signi�cation de ρel et j lorsque nous nous trouvons dans
la matière. Prenons les deux équations où nous avons ρ et j :

∇ ·E =
ρel
ε0

(Equation de Poisson)

∇∧B = µ0j+ ε0µ0
∂E

∂t

Dans un milieu porteur de charge, en chaque point, il existe une densité de charge ρ et
une densité de courant j. La densité de charge ρel a deux contributions : la densité de
charge ρint produite par les charges du milieu et une densité de charge ρext introduite par
l'expérimentateur. Les charges du milieu sont sensibles aux champs E et B donnés par
les équations de Maxwell, donc ρint dépend de E et B. Par contre, ρext est introduite par
l'expérimentateur et est donc contrôlée par un appareillage externe au milieu et insensible
à E ou B.

De même, nous devons distinguer jint, causé par le mouvement des charges ρint et donc
in�uencé par E et B, de jext, créé par un appareillage externe au milieu et insensible à
E et B.

Nous avons donc comme équations de Maxwell

∇∧E = −∂B
∂t

∇∧B = µ0 (jint + jext) + ε0µ0
∂E

∂t
∇ ·B = 0

ε0∇ ·E = (ρint + ρext)
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9.6.2 Interprétation physique de ρext et jext

Reprenons le cas souvent évoqué du système WiFi dans la salle de classe et identi�ons
les ρint, jint, ρext et jext. On assimile l'air au vide en ce qui concerne les propriétés
électromagnétiques :

ρint = jint = 0

Nous notons au fond de la salle l'antenne WiFi. Dans cette antenne, il circule un courant
oscillant caractérisé par une densité de courant jext dans la région de l'espace où se trouve
l'antenne.

jext

{
6= 0 là où se trouve l'antenne
= 0 ailleurs

Du point de vue mathématique, nous avons les équations de Maxwell suivantes :

∇∧E = −∂B
∂t

∇∧B = ε0µ0
∂E

∂t
+ µ0jext

∇ ·B = 0

∇ ·E = 0

avec

jext =

{
jext(r, t) dans la région de l'antenne
= 0 ailleurs

jext est la source qui crée les ondes électromagnétiques dans la région de l'antenne : elle
�xe l'amplitude et la fréquence de l'onde dans cette région. Cette onde se propage depuis
cette région dans tout le reste de la salle, pour être éventuellement captée par l'antenne
de votre ordinateur.
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9.6.3 Equations de Maxwell dans un milieu diélectrique

Nous considérons d'abord un milieu où ρext = jext = 0 et où il y a simplement ρint et
jint. La densité de charge ρint et la densité de courant jint dépendent de E et B à travers
la force de Lorentz :

F = q [E+ v ∧B]

Dans la pratique, calculer la relation entre ρint et jint et E et B n'est pas simple. Sché-
matiquement, nous avons le schéma suivant :

La partie la plus complexe du problème est de calculer la relation ρint = ρint(E,B) et
jint = jint(E,B). Diverses méthodes existent, comme les théories �uides ou les théories
cinétiques. Nous ne les discuterons pas ici.

Comme nous ne savons pas décrire ρint et jint en fonction de E et B, nous faisons une
approche plus phénoménologique. Une telle approche a déjà été discutée lorsque nous
avons montré l'in�uence d'un diélectrique sur la capacité d'un condensateur. Rappelons
qu'un condensateur rempli d'un diélectrique a une capacité donnée par

Cdiel = εCvide

où Cdiel est la capacité du condensateur rempli de diélectrique, Cvide la capacité du
condensateur sans le diélectrique et ε la constante diélectrique relative caractéristique du
diélectrique considéré.

Sans donner une démonstration, les équations de Maxwell dans un milieu diélectrique
sont :

∇∧E = −∂B
∂t

∇∧B = ε0εµ0
∂E

∂t
∇ ·B = 0

ε0ε∇ ·E = 0
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Notez que l'introduction de ε n'a fait que déplacer le problème de la théorie (calculer
ρint = ρint(E,B), jint = jint(E,B)) à la détermination de ε ! Souvent on introduit

D = ε0εE

D est appelé vecteur déplacement électrique. Les équations de Maxwell sont donc

∇∧E = −∂B
∂t

∇∧B = µ0
∂D

∂t
∇ ·B = 0

∇ ·D = 0

si ε ne dépend ni de t ni de r.

En remplaçant D par ε0εE, on obtient

∇∧E = −∂B
∂t

∇∧B = ε0εµ0
∂E

∂t

On voit que par rapport au vide, ce sont les mêmes équations si on remplace ε0 par ε0ε.
Par conséquent, la relation de dispersion des ondes électromagnétiques planes dans un
diélectrique possédant une constante diélectrique relative ε est

ω

k
=

1
√
ε0µ0
√
ε

=
c√
ε

L'indice de réfraction n est dé�ni comme

n =
kc

ω
=
√
ε

ε étant plus grand que 1, l'indice de réfraction est supérieur à 1. Dans un diélectrique, la
vitesse de phase de l'onde est inférieure à c.

Si nous avons des charges et courants externes alors

∇×E = −∂B
∂t

∇×B = µ0
∂D

∂t
+ µ0jext

∇ ·B = 0

∇ ·D = ρext

D = ε0εE
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A l'interface entre deux diélectriques, la composante normale de D est discontinue s'il y
a une charge externe de surface σext. Si σext = 0, alors la composante normale de D est
continue :

[D⊥]21 = 0 = ε2E
(2)
⊥ − ε1E

(1)
⊥

9.7 Transformation des champs E et B

9.7.1 Introduction

La question que nous posons est la suivante : dans un certain référentiel R, nous avons
un champ E et un champ B. Comment se transforment-ils lorsque nous les observons
dans un référentiel R′ en mouvement uniforme par rapport à R ? Dans le cadre de
cette introduction, nous ne pourrons malheureusement pas démontrer les formules de
transformation. Contentons-nous de dire que les formules de transformation satisfont
toutes les exigence de la théorie de relativité restreinte. En particulier, les lois de la
physique sont invariantes lors d'une transformation d'un référentiel à un autre réfrentiel
qui se meut à une vitesse linéaire uniforme.

Nous supposons que le référentiel R′ bouge par rapport à R avec une vitesse v = (0, 0, v)
uniforme avec v < c. Nous dé�nissons β = v/c où c est la vitesse de la lumière.

9.7.2 Formules de transformation

Soient E et B les champs électrique et magnétique dans le référentiel R. E et B satisfont
les équations de Maxwell. Soient E′ et B′ les transformés de ces champs dans le référen-
tiel R′. Nous exigeons aussi que E′ et B′ satisfassent les équations de Maxwell dans le
référentiel R′ où les coordonnées d'espace sont (x′, y′, z′) et le temps t′.

Rappelons tout d'abord que (x′, y′, z′, t′) dans R′ sont liés à (x, y, z, t) dans R par la
transformation de Lorentz :

x′ = x

y′ = y

z′ =
1√

1− β2
(z − vt)

t′ =
1√

1− β2

(
t− v

c2
z
)

Sans démonstration, nous donnons la transformation des champs (E,B) en (E′,B′) :
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

B′x = 1√
1−β2

(
Bx + v

c2
Ey
)

B′y = 1√
1−β2

(
By − v

c2
Ex
)

B′z = Bz
E′x = 1√

1−β2
(Ex + vBy)

E′y = 1√
1−β2

(Ey − vBx)

E′z = Ez

Ces relations donnent un résultat étonnant : les champs électrique et magnétique n'ont
pas d'existence indépendante comme des entités séparées. Prenons par exemple le cas
d'un champ B créé par des aimants permanents et observé dans le référentiel R. Dans
R, nous avons donc seulementB, et E = 0. Les formules de transformation nous donnent :

B′x = 1√
1−β2

Bx

B′y = 1√
1−β2

By

B′z = Bz

Le champ B′ est modi�é par rapport à B : les composantes x et y sont augmentées par
le facteur (1− β2)−1/2. Mais le fait important est l'apparition du champ électrique E′ :

E′x = 1√
1−β2

(−vBy)

E′y = 1√
1−β2

(vBx)

E′z = 0

Nous notons que le vecteur (E′x, E
′
y, 0) n'est autre que

E′ =
1√

1− β2
(v ∧B)

car

(v ∧B) =

∥∥∥∥∥∥
ex ey ez
0 0 v
Bx By Bz

∥∥∥∥∥∥
(v ∧B) = ex(−vBy) + ey(vBx)

Dans R′, outre le champ magnétostatique B′, nous avons aussi un champ électrostatique
E = (1 − β2)−1/2(v ∧ B). Pour de faibles vitesses v/c � 1, (1 − β2)−1/2 ≈ 1. Alors :
E′ = v ∧B.

Prenons le cas inverse. Dans R, nous avons une charge �xe et le champ qu'elle génère
est un champ électrostatique E. Il n'y a pas de champ magnétostatique B : B = 0. De
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nouveau, dans R′, nous pouvons calculer le champ E′ :
E′x = 1√

1−β2
Ex

E′y = 1√
1−β2

Ey

E′z = Ez

En plus, dans R′, nous avons un champ magnétostatique B′ :
B′x = 1√

1−β2

(
v
c2
Ey
)

= 1√
1−β2

v
c
Ey
c

B′y = 1√
1−β2

(
− v
c2
Ex
)

= − 1√
1−β2

v
c
Ex
c

B′z = Bz

Donc

B′ =
1√

1− β2

(
E

c
∧ v
c

)

Pour l'observateur dansR′, outre le champ électrostatique E′, il existe aussi un champB′.
Comme nous savons que les lois de physique sont valables aussi dans R′, on peut dire que
B′ doit être généré par un courant. D'où vient ce courant ? Dans R′, la charge immobile
dans R est en mouvement : toute charge en mouvement correspond à un courant et c'est
ce courant qui crée B′.

Ce petit calcul montre que les champs E et B sont intimement liés. On peut trouver un
référentiel où seul un champ existe et dans un autre où E et B existent.

9.8 Loi de l'optique géométrique et équations de Maxwell

Nous nous proposons de retrouver, au moins pour le cas le plus simple, la loi de la
ré�exion sur une surface métallique plane à partir des équations de Maxwell.

Hypothèse :

Nous considérons une onde électromagnétique plane incidente sur une surface métallique
plane. La géométrie est donnée sur la �gure 9.6.

Le plan d'incidence est dé�ni par le vecteur d'onde ki de l'onde incidente et la normale
n (||n|| = 1) à la surface métallique. Sur la �gure 9.6, c'est le plan de la feuille.

Les champs électriques Ei et magnétique Bi sont indiqués sur la �gure. (Ei,Bi et ki)
forment un trièdre direct. La dépendance de Ei et Bi sont

Ei = Eoi exp{i(ki · r− ωt)}
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Figure 9.6 � Ré�exion sur surface métallique plane

Bi = Boi exp{i(ki · r− ωt)}

avec

ω

ki
= c = vitesse de la lumire

||Eoi||
||Boi||

= c

Les champs ré�échis sont notés avec l'indice R

ER = E0R exp {i(kR · r− ωt)}

BR = B0R exp {i(kR · r− ωt)}

L'onde ré�échie se propageant également dans le vide nous avons

ω

kR
= c et

||E0R||
||B0R||

= c

Montrons que Θ = ΘR c'est-à-dire que l'angle d'incidence est égal à l'angle de ré�exion.

A la surface métallique dé�nie par n · r = 0 nous avons

E0i exp {iki · r}+E0R exp {ikR · r} = 0 ∀n · r = 0 (9.13)

par suite de deux considérations physiques :
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a) dans le métal le champ E est nul
b) le champ E est continu à l'interface car il est tangentiel

Faisons maintenant quelques manipulations vectorielles. Nous avons ∀r dans l'espace

r = (n · r)n− n× (n× r)

Donc sur l'interface n · r = 0, r est donné par

r = −n× (n× r)

La condition (9.13) étant vraie pour tout n · r = 0 nous devons avoir

ki · r = kR · r (∀n · r = 0⇔ ∀r = −n× (n× r))

ki · (n× (n× r)) = kR · (n× (n× r))

or

ki · (n× (n× r)) = (ki × n) · (n× r)

kR · (n× (n× r)) = (kR × n) · (n× r)

Donc

[(ki × n)− (kR × n)] · (n× r) = 0 ∀r tel que n · r = 0

⇒ (ki × n) = (kR × n)⇒ ||ki × n|| = ||kR × n||

De plus ||n|| = 1 et ||ki|| = ||kR|| = c
ω .

On doit donc avoir

sin ΘR = sin(π −Θi) = sin Θi

C'est la loi de la ré�exion bien connue.

Les directions de Ei et de ER sont indiquées sur la �gure.

D'une manière générale, on peut retrouver les autres lors de l'opération géométrique à
partir des équations de Maxwell. [cf. p. ex. Electromagnetic theory par J. D. Stratton p.
490 et suivantes]
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9.9 Appendice - Potentiels

9.9.1 Potentiels vecteur A et scalaire Φ

Reprenons les équations de Maxwell :

∇ ·B = 0 (9.14)

∇×E = −∂B
∂t

(9.15)

A partir de la première équation 9.14, nous pouvons dé�nir B par :

B = ∇×A (9.16)

car
∇ · (∇×A) = 0

L'équation 9.15 devient :

∇×
(
E+

∂A

∂t

)
soit

E+
∂A

∂t
= −∇Φ

E = −∇Φ− ∂A

∂t
(9.17)

On voit donc que E et B peuvent être exprimés par les potentiels vectoriel A et scalaire
Φ. Pour exprimer A et Φ, nous utilisons les deux dernières équations de Maxwell :

∇ ·E =
ρ

ε0
(9.18)

∇×B = µ0J+
1

c2

∂E

∂t
(9.19)

où ρ et J sont respectivement les densités de charge et de courant. En remplaçant 9.16
et 9.17, on a :

+∇2Φ +
∂

∂t
∇ ·A = − ρ

ε0
(9.20)
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∇× (∇×A) +
1

c2
∇∂Φ

∂t
+

1

c2

∂2A

∂t2
= µ0J

∇2A−∇
(
∇ ·A +

1

c2

∂Φ

∂t

)
− 1

c2

∂2A

∂t2
= µ0J (9.21)

Plusieurs remarques importantes doivent être notées :

� les quatres équations de Maxwell sont réduites aux deux équations couplées 9.20 et
9.21 pour les potentiels A et Φ et à la dé�nition des champs E et B 9.16 et 9.17

� les quantités physiques sont les champs E et B. Ce sont E et B que l'on mesure.
� les potentiels A et Φ ne sont pas déterminés univoquement. Par exemple, on peut
rajouter à Φ une constante sans pour cela changer E.

Soient deux couples de potentiels (A et Φ) et (A' et Φ′). Cherchons la condition qui
laisse E et B invariants. Comme B = ∇×A, on voit immédiatement que

A' = A+∇f

ne change pas B.

∇×A' = ∇×A +∇× (∇f) = ∇×A = B

E doit rester invariant lorsque l'on transforme A en A' :

E = −∇Φ− ∂A

∂t
= −∇Φ− ∂A'

∂t
+∇∂f

∂t
= −∇Φ′ − ∂A'

∂t

On doit également transformer Φ en Φ′.

Φ′ = Φ− ∂f

∂t

Les transformations

A' = A+∇f (9.22)

Φ′ = Φ− ∂f

∂t
(9.23)

laissent les champs E et B invariants. On les appelle transformations de jauge et les
champs E et B sont invariants par transformation de jauge. Notons de nouveau que
les transformations de jauge et nous laissent encore une liberté de choisir une condition
auxiliaire car la fonction scalaire f est arbitraire. On peut, par exemple, trouver une
jauge où
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Φ′ = 0

mais par contre il est impossible de trouver A' = 0 car ceci implique trois conditions.

9.9.2 Jauge de Lorentz

On note que les équations 9.20 et 9.21 couplent A et Φ. Utilisons le fait que nous pouvons
encore imposer une condition scalaire que nous choisissons comme :

∇ ·AL +
1

c2

∂ΦL

∂t
= 0 (9.24)

Ce choix particulier d'une relation entre AL et ΦL est appelé jauge de Lorentz. L'indice
L est mis pour Lorentz. Les équations 9.20 et 9.21 deviennent :

∇2AL −
1

c2

∂2AL

∂t2
= −µ0J (9.25)

∇2ΦL −
1

c2

∂2ΦL

∂t2
= − ρ

ε0
(9.26)

Par la méthode de transformée de Fourier on trouve :

˜̃
AL (ω, k) =

µ0
˜̃
J

k2 − ω2

c2

(9.27)

˜̃ΦL (ω, k) =

˜̃ρ
ε0

k2 − ω2

c2

(9.28)

Véri�ons que ˜̃
AL et ˜̃ΦL satisfont à la condition 9.24 :

−µ0k · ˜̃J+
1

c2ε0
ω ˜̃ρ = µ0

(
−k · ˜̃J+ ω ˜̃ρ

)
= 0

car ce n'est autre que la transformée de Fourier de l'équation de continuité :

∂ρ

∂t
+∇ · J = 0

Exprimons maintenant AL et ΦL comme fonction de r et t.
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ΦL (r, t) =

∫
d3kdω exp [i (ωt− k · r)]

=
1

ε0

∫
dω

∫
k3

˜̃ρ (k, ω)

k2 − ω2/c2
exp [i (ωt− k · r)] (9.29)

Rappelons que nous avons montré que

1

(2π)3

∫
k3 exp (−ik · r)

k2 − ω2/c2
=

exp [−i(ωr/c)]
4πr

d'où par transformation inverse de Fourier

1

k2 − ω2/c2
=

∫
d3r0

exp (+ik · r0) exp
(
−iωc r0

)
4πr0

(9.30)

En insérant 9.30 dans 9.29 on obtient :

ΦL (r, t) =
1

ε0

∫
dω

∫
d3k

∫
d3r0

˜̃ρ (k, ω)
exp [iωt− ik (r− r0)− iωr0/c]

4πr0

=
1

ε0

∫
dω

∫
d3r0ρ̃ (r− r0)

exp
[
iω
(
t− r0

c

)]
4πr0

=
1

ε0

∫
d3r0

ρ
(
t− r0

c ; r− r0

)
4πε0r0

En écrivant r1 = r− r0, on obtient alors :

ΦL (r, t) =

∫
d3r1

ρ
(
t− |r−r1|c ; r1

)
4πε0|r− r1|

(9.31)

De même

AL (r, t) =

∫
d3r1

µ0J
(
t− |r−r1|c ; r1

)
4πε0|r− r1|

(9.32)

Il est important de noter qua dans l'intégrale, le temps t′ = t− |r−r1|c n'est pas une con-
stante. Pour un point d'observation donné r, et pour un moment d'observation t donné,
t′ doit tenir comptedu temps de propagation |r−r1|c depuis la source r1 jusqu'au point r
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Illustrons ce point en calculant les potentiels Φ et A produits par une charge en mouve-
ment :

ρ(r, t) = q δ (r− r0(t))

J = q v(t)δ (r− r0(t))

Le potentiel scalaire est alors :

ΦL(r, t) = q

∫
d3r1

δ
(
r1 − r0

(
t− |r−r1|c

))
4πε0|r− r1|

(9.33)

La simplicité formelle de l'expression 9.33 cache en fait plusieurs di�cultés. Tout d'abord
notons que la fonction de Dirac sélectionne un point r0 de la trajectoire et un moment
tR :

tR = t− |r− r0|
c

qui donne une contribution au potentiel Φ(t, r). A un point d'observation donné r et à
un temps d'observation donné t, tR est constant et r1(tR) est identique à r0(tR) :

ΦL(r, t) =
q

4πε0|r− r0(tR)|

∫
d3r1δ

(
r1 − r0

(
t− |r− r1|

c

))
(9.34)

La deuxième di�culté est liée à la fonction de Dirac dans l'équation 9.34. Formellement
cette fonction de Dirac a pour argument une fonction f(r1). La règle dans ce cas est la
suivante :

Si on a δ(f(x)) et que f(x) a un zéro d'ordre 1 en x = x1, alors autour de x1 on

a :

δ(f(x)) =
δ(x− x1)

∂f
∂x

∣∣∣
x=x1

(9.35)

En e�et, δ(f(x)) ' δ(
∣∣∣(x− x1) ∂f∂x1

∣∣∣
x=x1

)

Revenons à l'équation 9.34 et dé�nissons :

R = r− r0(tR)
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et choisissons un système d'axe de coordonnées avec la direction (1) selon R. La direction
R est une direction privilégiée dans le problème : en e�et lors de l'évaluation de 9.34, r0

doit être évalué en tR, c'est-à-dire pour :

tR = t− |r− r0(tR)|
c

= t− |R|
c

Autrement dit, le zéro de l'argument de la fonction de Dirac est égal à R. En choisissant
R comme étant l'un des axes (1, par exemple) du système de coordonnées dans lequel
nous travaillons, on ramène alors le problème à un problème unidimensionnel.

∫
d3r1δ

(
r1 −

r0(tR)

c

)
=

1

1− v0(tR)·R
c|R|

où v0(tR) est la vitesse de la particule en (tR, r0). ΦL est donc égal à :

ΦL =
ρ

4πε0

(
R− v0(tR)·R

c

)
ΦL(r, t) =

ρ

4πε0

(
|r− r0(tR)| − v0(tR)·(r−r0(tR))

c

) (9.36)

De même :

AL(r, t) =
µ0ρ

4π

v0(tR)(
|r− r0(tR)| − v0(tR)·(r−r0(tR))

c

) (9.37)

tR = t− |r− r0(tR)|
c

(9.38)

ΦL et AL donnés par 9.36 et 9.37 sont les potentiels de Liennard-Wiechert retardés,
c'est-à-dire que la position et la vitesse de particule doivent être prises sur la trajectoire
au temps retardé tR donné par 9.38. tR dépend explicitement de la trajectoire de la
particule, de r et de t. Il est important de se rappeler ce point pour calculer E et B.

9.9.3 Jauge de Coulomb

Une autre manière de découpler les équations 9.20 et 9.21 est de choisir :

∇ ·AC = 0
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Ce choix de jauge est appelé jauge de Coulomb.

En e�et, l'équation 9.20 devient :

∇2ΦC = − ρ
ε0

soit

˜̃ΦC =
˜̃ρ

ε0k2
(9.39)

ΦC(r, t) =
1

4πε0

∫
d3r0

ρ(r0, t

|r− r0
(9.40)

L'indice C est utilisé pour indiquer la jauge de Coulomb. Notons la forme de l'équation
9.40 qui est identique au potentiel coulombien de l'électrostatique.

Considérons maintenant l'équation pour AC :

∇2AC −
1

c2

∂2AC

∂t2
= −µ0

(
J− ε0∇

∂ΦC

∂t

)
(
−k2 +

ω2

c2

)
˜̃
AC = −µ0

˜̃
J +

1

c2
∇iω ˜̃ΦC (9.41)

Le membre de droite de 9.41 peut se simpli�er en utilisant l'équation de continuité :

∂ρ

∂t
+∇ · J = 0

iω ˜̃ρ− ik · ˜̃J = 0

iωk2 ˜̃ΦCε0 = ik · ˜̃J

˜̃
AC = µ0

˜̃
J− k·

˜̃
J

k2
k

k2 − ω2

c2

(9.42)

On remarque que le potentiel vecteur AC dans la jauge de Coulomb est donné par la
composante de J transverse à k (cf. Appendice suivante)

˜̃
JT = ˜̃

J− k · ˜̃J
|k2|

k (9.43)
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k · ˜̃JT = 0

˜̃
AC = µ0

˜̃
JT

k2 − ω2

c2

(9.44)

C'est pour cela que la jauge de Coulomb est aussi appelé jauge transverse. Dans l'espace
direct le courant transverse JT (r, t) est donné par :

JT (r, t) = J (r, t)− 1

4π
∇
∫

d3r0

∂ρ(r0,t)
∂t

|r− r0|

Le courant transverse comporte également une composante qui en chaque point r varie
instantanément avec la densité de charge. De plus même si J et ρ sont localisées dans
l'espace, JT (r, t) ne l'est pas.
Faisons maintenant quelques remarques sur la jauge de Coulomb. Tout d'abord l'ex-
pression explicite de ΦC(r, t) montre que ΦC ne présente pas le retard : c'est un po-
tentiel instantané. Ce fait illustre l'importance de faire une distinction entre les quan-
tités physiques comme E et B et les potentiels. Le champ électrique total E est formé
de la composante électrostatique −∇ΦC(r, t) et d'une composante électromagnétique

−∂AC
∂t . Les composantes �instantanées� de ces deux champs se compensent de sorte que

le champ électrique total est causal. Notons également qu'en relativité restreinte la rela-
tion ∇ ·AC = 0 n'est pas invariante lors d'un changement de référentiel. Par contre la
jauge de Lorentz :

∇ ·AL +
1

c2

∂ΦL

∂t
= 0

est invariante lors d'un changement de référentiel dans le cadre de la relativité restreinte.
Calculons maintenant E dans la jauge de Coulomb :

E = −∇ΦC −
∂AC

∂t
E = Ees +Eem

Ees = −∇ΦC

La composante Ees est appelée électrostatique ou longitudinale car :

∇×Ees = −∇× (∇ΦC) = 0

Ees est parallèle à k. Bien entendu, ∇ ·Ees = ρ/ε0
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Qu'en est-il de Eem = −∂AC
∂t ? Rappelons que AC est généré par le courant transverse :

JT = J− ε0
∂

∂t
∇Φ = J+ ε0

∂

∂t
Ees

∇ · JT = 0 ⇒ ∇ ·Eem = 0

∇×Eem = − ∂

∂t
(∇×AC) = − ∂

∂t
B

1

c2

∂

∂t
Eem = −µ0JT −∇2AC

Or ∇× (∇×AC) = ∇(∇ ·AC)−∇2AC , donc :

µ0JT +
1

c2

∂

∂t
Eem = ∇×B

Notons �nalement une autre propriété du courant transverse JT . Prenons la transformée
de Fourier inverse dans l'espace r :

J̃T (ω, r) =

∫
d3k e−ik·r ˜̃

JT (ω,k)

En remplaçant ˜̃
JT par sa valeur :

J̃T (ω,k) =

∫
d3k ˜̃

J (ω,k) e−ik·r −
∫

d3k
k · ˜̃J (ω,k)

|k|2
ke−ik·r

˜̃JT (ω,k) = J̃T (ω,k)−
∫

d3k
k · ˜̃J (ω,k)

|k|2
ke−ik·r

Or
k·

˜̃
J(ω,k)
|k|2 k est la transformée de Fourier de :

J̃L (ω,k) = −∇ 1

4π

∫
d3 r′

∇′ · J̃ (r′, ω)

|r − r′|

où ∇′ · J̃ est la divergence de J̃ selon la variable r′.

En e�et, calculons la transformée de Fourier de J̃L (ω, r) donnée par l'expression précé-
dente :
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˜̃
JL (ω,k) =

1

(2π)3

∫
d3r J̃L (ω, r) eik·r

= +ik
1

(2π)3

∫
d3rd3r′

∇′ · J̃ (r′, ω)

|r − r′|
eik·r

1

4π

= +ik
1

(2π)3

∫
d3r

eik·(r−r')

4π|r − r′|

∫
d3r′∇′ · J̃

(
r′, ω

)
eik·r'

= +i
k

|k|2
1

(2π)3

∫
d3r′∇′ · J̃

(
r′, ω

)
eik·r'

= +k
k · ˜̃J′

|k|2

On a donc :

J̃T (r, ω) = J̃ (r, ω)−∇
∫

d3r′
∇′ · J̃ (r′, ω)

4π|r − r′|
= J̃ (r, ω)− J̃L (r, ω)

Même si le courant J est localisé dans l'espace r', les courants longitudinal J̃L (r, ω) et
transverse J̃T (r, ω) existent dans tout l'espace. Ceci a pour conséquence que, du point
de vue pratique, il ne sera pas possible de consédirér le développement en champ lointain
pour évaluer AC .
Finalement montrons comment on peut passer de la jauge de Lorentz à la jauge de
Coulomb. Les équations 9.9.1 et 9.9.1 appliquées au cas particulier de ces 2 jauges don-
nent :

AL = AC +∇f

ΦL = ΦC −
∂f

∂t

∇ ·AL +
1

c2

∂ΦL

∂t
= 0 = ∇ ·AC +∇2f +

1

c2

∂ΦC

∂t
− 1

c2

∂2f

∂t2

∇2f − 1

c2

∂2f

∂t2
=

1

c2

∂ΦC

∂t

Les indices C et L désignent respectivement les potentiels dans les jauges de Coulomb et
de Lorentz.
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A la �n de cette discussion sur la jauge de Coulomb, notons qu'elle est souvent utilisée
lorsque ρ = 0. Dans ce cas Φ = 0 et

E = −∂AC

∂t
B = ∇×AC

avec JT = J.

9.10 Appendice - Champ transverse et champ longitudinal

Un champ vectoriel vL est dit longitudinal si

∇× vL = 0 en tout point de l'espace

Un champ vectoriel vT est dit transverse so

∇ · vT = 0 en tout point de l'espace

En transformée de Fourier on a :

k× ṽL = 0

k · ṽT = 0

Un champ longitudinal dans l'espace k est parallèle à k tandis qu'un champ transverse
est perpendiculaire à k. Cette dé�nition nous permet de décomposer tout vecteur ṽ en
composantes longitudinale et transverse :

ṽ = ṽL + ṽT

ṽT = ṽ − k

k

(
k

k
· ṽ
)

ṽL = ṽ − ṽT

vL =

∫
d3k e−ik·rṽL

vT =

∫
d3k e−ik·rṽT



Annexe

Unités électrique et magnétique

Système SI : m, kg, s, A

[Courant] = Ampère = A

Coulomb = A · s

Champ électrique [E] = Newton
Coulomb = kgm

s2
× 1

As = kgm
As3

[E] = V olt
m = V

m avec V olt = V = kgm2

As3

Potentiel électrique : [Φ] = V olt

Capacité C d'un condensateur : q = CU

[C] = Coulomb
V olt = Farad = F

Farad = F = A·s
kgm2/As3

[C] = Farad = F = A2s4

kgm2

Unité de ε0, permittivité du vide

[ε0] = A2s4

kgm3 = F
m ε0 = 8.8× 10−12 F

m

223
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Résistance R

[R] = [Φ]
[I] = Ω = V

A = kgm2

A2s3

Impédance Z

[Z] = Ω

Champ magnétique B

Force [F ] = [I][m][B]

[B] = Tesla = T = [F ]
[I][m] = Newton

A·m =

frackgms2 1
Am = kg

As2

Perméabilité du vide µ0

[µ0] = T ·m
A = kgm

A2s2
= Henry

m = H
m

[H] = kgm2

A2s2

µ0 = 4π10−7H
m

Inductance [L] = Henry

Relation importante :

1
ε0µ0

= c2 = Carré de la vitesse de la lumière
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