
Physique Générale : Fluides et électromagnétisme (MA) – Prof. C. Theiler

21 Juin 2024

Règlement de l’examen

Il est strictement interdit de consulter l’énoncé de l’examen avant le signal de début !

— Avant de commencer un exercice, lire attentivement tout l’énoncé. Certaines remarques,
indications, et hypothèses importantes peuvent être à la fin de l’énoncé.

— Il y a cinq exercices. Les points attribués à chaque exercice sont indiqués sur l’énoncé.
— Les réponses doivent être rédigées dans la cahier de réponses. Chaque question possède

un espace de réponse dédié dans le cahier de réponses. Si vous manquez de place
pour répondre à une question, des espaces de secours sont disponibles à la fin du cahier
de réponses, dans la section nommée "exercice 6". Indiquer que la réponse continue dans
l’espace de secours et, dans l’espace de secours, indiquer à quelle question vous répondez.

— L’utilisation du crayon à papier et du stylo rouge est interdite sur les feuilles rendues pour
correction.

— L’utilisation de téléphones portables, smartwatch, calculatrice, ou tout autre appareil élec-
tronique est strictement interdite.

— L’examen dure en tout 3h30min à partir du signal de début.
— Mettre votre carte CAMIPRO en évidence sur la table.
— Il n’est pas possible de quitter la salle avant 9h45, même si l’examen a été rendu. De manière

générale, il n’est pas permis de quitter la salle sans autorisation.
— Un formulaire manuscrit d’une page A4 recto-verso ainsi que le formulaire du cours sont

autorisés durant l’examen.

Bon travail !
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Exercice 1 : Cloche de plongée (8 points)
Pour faire de la plongée, vous utilisez une cloche de plongée (une idée ancienne déjà connue au
temps d’Aristote). Cette dernière est une cloche métallique, dans ce cas assimilée à un cylindre
ouvert en bas et renfermant une certaine quantité d’air. En tant que plongeur, vous avez accès à ce
réservoir d’air frais par un tuyau, permettant de respirer sous l’eau. La cloche de plongée est reliée
à un flotteur cylindrique par une tige de longueur D et de diamètre négligeable.

(a) Soit M la masse totale de cette installation (cloche de plongée, tige verticale, flotteur cylin-
drique, et air enfermé). Quelles sont les valeurs minimale et maximale de M telles que la cloche
de plongée ne coule pas et ne remonte pas à la surface ? Vous pouvez négliger la force que
le plongeur exerce sur cette installation via le tuyau et considérer h comme une constante.
Exprimez votre réponse en fonction des données de l’exercice parmi r1, k1, D, r2, k2, h, patm, g,
et ρ0.

(b) Quelle est la pression de l’air à l’intérieur de la cloche de plongée si le flotteur cylindrique
est à moitié dans l’eau ? Exprimez votre réponse en fonction des données de l’exercice parmi
r1, k1, D, r2, k2, h, patm, g, et ρ0. Au-delà d’une possible accumulation de CO2 dans le tube,
pourquoi l’idée du plongeur de droite, où le tuyau monte directement à la surface de l’eau, ne
fonctionnerait pas pour des profondeurs de quelques mètres ?

Air

Air, p=patm

Eau, r= r0=const.
D

k2

h

k1

Flotteur cylindrique 

Cloche de plongée 
cylindrique 

Surface de l’eau

g r2

r1

Tuyau

Figure 1 – Situation pour les questions (a) et (b)

(c) Considérez maintenant que vous avez la taille d’une fourmi. À cette échelle, les effets de
tension superficielle sont importants. Comme illustré sur la Figure 2, vous pouvez supposer
que l’interface liquide-gaz est, en première approximation, sphérique. Est-ce que la situation de
la Figure 2 correspond à une situation de bon mouillage ou de mauvais mouillage ? Exprimez
la pression de l’air à l’intérieur de la cloche de plongée en fonction des données de l’exercice
parmi r1, k1, D, r2, k2, h, patm, g, ρ0, θ et γ, avec γ la tension superficielle liquide-gaz. Le flotteur
cylindrique est à moitié dans l’eau.
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Air

Air, p=patm
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r2
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cylindrique 

Surface de l’eau
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Eau, r= r0=const.

k2

k1

Tuyau

Figure 2 – Situation pour la question (c)

(d) Vous décidez maintenant d’utiliser une cloche de plongée fermée, comme illustré sur la Figure 3
(initialement sans fuite). Vous maintenez une pression atmosphérique à l’intérieur de la cloche à
l’aide du tuyau de droite et vous vous servez du tuyau de gauche qui remonte jusqu’à la surface
pour respirer. Discuter si cette option peut fonctionner. Malheureusement, il y a maintenant
une fuite qui s’ouvre, de section S et à une profondeur H sous la surface de l’eau. En utilisant
la loi de Bernoulli, estimez le temps pour remplir le volume V de la cloche de plongée fermée.
Vous pouvez supposer que la cloche de plongée reste à la même profondeur pendant tout ce
temps. Cette hypothèse est-elle justifiée ?

Air, p=patm

Surface de l’eau

g Air, p=patm

H

Fuite, section S

Volume V

Eau, r= r0=const.

Tuyau

Figure 3 – Situation pour la question (d)
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Solution :
(a) Les forces s’exerçant sur le système sont :

— Le poids M~g, orienté vers le bas
— La poussée d’Archimède −ρ0Vtot~g (équivalent à la somme des forces de pression aux

différentes profondeurs) orientée vers le haut.
Cependant, le volume immergé dans l’eau dépend du niveau d’immersion du flotteur, que
l’on appelle k1 − Z. Z est donc la hauteur non-immergée du flotteur. On peut re-écrire
l’expression de la poussée d’Archimède comme :

Farch = Vtot(Z)ρ0g (1)

Farch = [(k1 − Z)πr21 + (k2 − h)πr22]ρ0g (2)

Dans une situation statique, c’est à dire où la cloche ne remonte pas à la surface et ne
coule pas, la somme des forces est nulle. Nous pouvons donc égaliser les deux forces dans
notre système, vu qu’elles sont dans des directions opposées (~ez et -~ez).

Mg = [(k1 − Z)πr21 + (k2 − h)πr22]ρ0g (3)

La masse maximale du système correspond au moment où le flotteur est intégralement
submergé. En effet, si la masse est plus grande que cela, la poussée d’Archimède ne peut
plus augmenter pour compenser la masse et le système coule. En contrepartie, la masse
minimale correspond à la situation où le flotteur est entièrement hors de l’eau, car si
la masse diminue encore, le poids ne sera plus assez grand pour compenser la poussée
d’Archimède et la cloche remonte à la surface.
Ainsi,

Mmin = M(Z = k1) = (k2 − h)πr22ρ0 (4)
Mmax = M(Z = 0) = [k1r

2
1 + (k2 − h)r22]πρ0 (5)

(b) D’après la loi de l’hydrostatique la pression à l’intérieur de la cloche est égale à la pression
de l’eau en contact avec l’air de la cloche. La pression dans la cloche est donc :

p = (
k1
2

+D + k2 − h)ρ0g + patm (6)

L’idée du plongeur de droite ne marchera pas au-delà de quelques mètres car la pression de
l’eau sur ses poumons sera trop grande. En effet si la pression est trop grande, il n’arrivera
pas à gonfler ses poumons suffisamment pour inspirer l’air de la surface. C’est pour cela
que les plongeurs sous-marin utilisent un mélange d’air comprimé en bouteille à une plus
grande pression que l’air atmosphérique pour surmonter la pression de l’eau environnante.

(c) En utilisant la forme de la surface air-eau donné dans l’énoncé, il s’agit en effet d’une
situation de bon mouillage car l’angle formé entre la surface air-eau et le bord de la cloche
est inférieur à 90ř.
Maintenant que la tension de surface est importante, il y a une différence de pression non-
négligeable à l’interface air-eau. Cette différence de pression est proportionnelle à la tension
de surface γ :

p− p′ =
2γ cos(θ)

r2
(7)

Où p est la pression dans la cloche et p′ est la pression dans l’eau au niveau de l’interface
air-eau. En négligeant la variation de hauteur le long the la surface air-eau, on peut donc
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exprimer p comme :

p =
2γ cos(θ)

r2
+ p′ (8)

p =
2γ cos(θ)

r2
+ (

k1
2

+D + k2 − h)ρ0g + patm (9)

(d) Cette option peut fonctionner, car contrairement au plongeur de droite dans la question
a), la pression autour du ’plongeur’ est la pression atmosphérique donc il n’aura pas de
difficultés à gonfler ses poumons pour inspirer l’air de la surface. Il y a tout de même des
soucis importants avec cette situation avec l’alimentation d’air frais.
On utilise la loi de Bernoulli d’une façon similaire à l’exercice 2 de la série 6, en choisissant
un point A à la surface de l’eau et un point B sur la même ligne de courant au niveau de
l’entrée d’eau dans la fuite. La loi de Bernoulli nous dit que

1

2
ρv2A + ρgH + patm =

1

2
ρv2B + 0 + patm (10)

⇒ 1

2
ρv2A + ρgH =

1

2
ρv2B (11)

Or, d’après la conservation du flux, vASA = vBSB ⇒ vA = vB
S2
S1

≈ 0 car la surface de
l’eau est beaucoup plus grande que l’ouverture dans la cloche.
On a donc :

vB =
√
2gH (12)

Pour trouver le temps nécessaire pour remplir le volume V , on calcul l’augmentation du
volume d’eau de dV dans la cloche pendant un temps dt :

dV = SvBdt (13)

en intégrant d’un temps t0 = 0 à un temps tfin,∫ V

0
dV =

∫ tfin

0
SvBdt = SvBtfin (14)

⇒tfin =
V

SvB
=

V

S
√
2gH

(15)

On note que l’hypothèse que H reste constant dans ce processus n’est pas vraiment justifié
ici. Avec l’accumulation de l’eau dans la cloche fermée, celle-ci va commencer à couler.
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Exercice 2 : Champ de vitesse (8 points)
On considère l’écoulement d’un fluide parfait et incompressible (ρ = ρ0 = const.) avec le champ de
vitesse suivant :

~u(~r, t) =
1

τ
(x~ex − y~ey)

où τ > 0 est une constante donnée.
(a) Indiquez, dans le plan xy, le vecteur ~u aux points suivants :

(x, y) = (−1, 1); (x, y) = (0, 1); (x, y) = (1, 1);

(x, y) = (−1, 0); (x, y) = (0, 0); (x, y) = (1, 0);

(x, y) = (−1,−1); (x, y) = (0,−1); (x, y) = (1,−1);

Pour les représentations graphiques, prenez τ = 1s.
(b) Démontrez que ce champ de vitesse satisfait l’équation de continuité.
(c) Déterminez l’accélération d’un élément de fluide en un point (x, y) arbitraire. Tracez qualitati-

vement la forme de la ligne de courant proche du point (1, 1) et passant par ce dernier. Justifiez
votre réponse.

(d) Utilisez l’équation d’Euler pour déterminer l’expression du champ scalaire de pression p(~r, t)
sachant que p(~r = ~0, t) = p0. Négligez la force de gravité dans l’équation d’Euler.

(e) Pourquoi ce champ de vitesse ne peut-il pas décrire l’écoulement en tout point de l’espace ? En
considérant le résultat de (d), trouvez la valeur maximale de r =

√
x2 + y2 telle que l’expression

de ~u(~r, t) reste valable en tout point.
Solution :
(a) La représentation du vecteur vitesse aux points demandées et avec τ = 1s est visible sur

la figure ci dessous.

x

y

(b) Le fluide étant incompressible, sa densité volumique est constante et on a ρ = ρ0. L’équation
de continuité s’écrit :

∂ρ

∂t
+ ~∇ · (ρ~u) = ∂ρ

∂t︸︷︷︸
=0

+ρ~∇ · ~u+ ~u · ~∇ρ︸ ︷︷ ︸
=0

Il s’agit donc de s’assurer que ρ~∇ · ~u = 0, ce qui est bien le cas :

ρ~∇ · ~u = ρ

(
∂ux
∂x

+
∂uy
∂y

)
= ρ

(
1

τ
− 1

τ

)
= 0

(16)
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L’équation de continuité est donc bien satisfaite !
(c) L’accélération d’un élément de fluide est donnée par la formule

~a =
D~u

Dt

=

(
∂

∂t
+ ~u · ~∇

)
~u

=
∂~u

∂t
+
(
~u · ~∇

)
~u

(17)

L’écoulement étant caractérisé par un champ de vitesse ne dépendant pas du temps, l’écou-
lement peut être considéré comme stationnaire. On a donc ∂~u

∂t = 0 et l’équation (17) nous
donne

~a =
(
~u · ~∇

)
~u

=

(
ux

∂

∂x
+ uy

∂

∂y

)
~u

=

(
ux

∂ux
∂x + uy

∂ux
∂y

ux
∂uy

∂x + uy
∂uy

∂y

)

=

(
x
τ2
y
τ2

)
L’accélération d’un élément de fluide est donc donnée par

~a =
1

τ2
(x~ex + y~ey) (18)

La ligne de courant passant par le point (1, 1) est représentée dans la figure ci-dessous.

x

y

On peut justifier ça de plusieurs façons.
La plus simple est de dessiner le vecteur ~u à plusieurs points autour du point (1, 1) et
dessiner la ligne de courant à partir de ça.
On peut alternativement remarquer à partir de l’équation (18) que, au point (1, 1), on a
~u ⊥ ~a. Localement, l’accélération est donc purement centripète et on s’attend à observer
une courbe qui, proche du point (1, 1), se comporte comme celle dans la figure ci-dessus
(localement, très proche du point (1, 1), la trajectoire peut être considérée un arc de cercle).
Il y a aussi une troisième alternative : on peut résoudre l’équation du mouvement et obtenir
la trajectoire d’une particule de fluide passant par le point (1, 1) au temps t = 0s. En
faisant ça on peut montrer qu’on obtient la trajectoire ~r(t) =

(
exp(t/τ), exp(−t/τ)

)
. On

obtient donc que, dans le plan xy, la ligne de courant cherchée est donnée par la courbe
représentée dans la figure ci-dessus. Cette courbe est l’hyperbole xy = 1, comme on a
que rx(t)ry(t) = 1 pour l’expression trouvée pour ~r(t). Ce dernier raisonnement peut être
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appliqué à cet exercice car, dans le cas d’un écoulement stationnaire, les lignes de courant
coïncident avec les trajectoires des éléments de fluide.

(d) Le fluide étant parfait, il n’y pas d’effets liés à la viscosité. En négligeant la gravité, l’équa-
tion d’Euler nous donne

ρ

(
∂~u

∂t
+
(
~u · ~∇

)
~u

)
= −~∇p

Donc, l’écoulement étant stationnaire (∂~u∂t = ~0), on a

ρ
(
~u · ~∇

)
~u = −~∇p

Le membre de gauche ρ
(
~u · ~∇

)
~u a déjà été calculé dans la question (c) de cet exercice.

Projetons maintenant l’équation d’Euler selon les directions ~ex et ~ey :
— selon ~ex : 1

τ2
ρx = − ∂p

∂x

— selon ~ey : 1
τ2
ρy = −∂p

∂y
Par intégration de la relation selon ~ex, on conclut que :

p(x, y) = −1

2
ρ
x2

τ2
+ c1(y),

avec c1(y) une fonction arbitraire qui ne dépend pas de x.
Par intégration de la relation selon ~ey, on déduit :

p(x, y) = −1

2
ρ
y2

τ2
+ c2(x),

avec c2(x) une fonction indépendante de y.
On a donc que :

p(x, y) = −1

2
ρ
x2

τ2
− 1

2
ρ
y2

τ2
+ c3,

avec c3 un constante qui ne dépend ni de x ni de y.
En utilisant la condition p(0, 0) = p0, on en déduit finalement que :

p(x, y) = − 1

2τ2
ρ
(
x2 + y2

)
+ p0

(e) Ce champ de vitesse ne peut pas décrire l’écoulement partout dans l’espace car pour x, y →
±∞ on a |u| → ∞, ce qui n’est pas un écoulement physique. De plus, vu que la pression
diminue en s’éloignant de (0, 0), on obtiendrait une valeur négative de pression lorsque le
terme négatif de l’équation (d) devient plus grand que p0.
Or, on peut écrire la fonction p(x, y) en fonction de r =

√
x2 + y2 :

p(r) = − 1

2τ2
ρr2 + p0 (19)

La pression devient négative si on considère des valeurs de r plus grandes que une valeur
maximale rmax, correspondant à la valeur de r telle que p(r) = 0. On obtient donc rmax

en imposant p(r) = 0

− 1

2τ2
ρr2 + p0 = 0

⇒ rmax =

√
2τ2p0
ρ
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Exercice 3 : Diode à vide (6 points)
On considère une diode à vide constituée de deux conducteurs métalliques montrés sur la figure
ci-dessous, caractérisés par les rayons R1 et R2. Ils ont une longueur l � R2 et ils se trouvent à
l’intérieur d’une ampoule en verre dans laquelle on a fait le vide. Le conducteur interne est maintenu
à un potentiel électrostatique φ1 = const. = 0. Le potentiel du conducteur externe φ2 est variable.
Le conducteur interne est chauffé à une température suffisamment élevée pour qu’une émission
thermoélectronique ait lieu (des électrons sont éjectés de la surface du conducteur interne vers le
volume entre les deux conducteurs). Le nombre d’électrons éjectés par le conducteur interne par unité
de temps est donnée par k et est indépendant de φ2. Dans cet exercice, vous pouvez négliger l’effet
de la gravité. En plus, vous pouvez supposer que les électrons sont éjectés radialement, c’est-à-dire
avec vitesse initiale perpendiculaire à la surface du conducteur interne.

ampoule en verre

l

R1

R2

mise à
la terreφ1

φ2

(a) Pour φ2 > 0, quel est le courant circulant entre le conducteur interne et externe ? Et quelle est
la norme et la direction de la densité de courant juste en dehors du conducteur interne ?

(b) La vitesse maximale des électrons éjectés est donnée par v0. Trouvez l’expression du potentiel
φ2,crit du conducteur externe à partir duquel aucun de ces électrons n’atteint le conducteur
externe. Puis, tracer qualitativement le courant I entre le conducteur interne et externe en
fonction de φ2 (on considérera des valeurs positives et négatives de φ2 pour tracer le graphe
de la fonction I(φ2)).

Solution :
(a) Si le conducteur externe est à un potentiel φ2 > 0, il y aura un champ électrique allant

du conducteur externe au conducteur interne ( ~E = −∇φ). Donc, tous les électrons éjectés
du conducteur interne seront accélérés et atteindront le conducteur externe. Comme k
électrons, chacun de charge −e, sont éjectés par unité de temps, le courant circulant entre
le conducteur interne et externe est donné par

I = −k e (20)

qui est bien un courant comme k et e ont respectivement des unités de s−1 et C. Le courant
est négatif comme on nous demande le courant qui circule entre conducteur interne et
externe.
Or, on sait que l’aire de la surface extérieure du conducteur interne vaut S1 = 2πR1l. Donc,
avec l’expression de I dérivée en (20), la norme de la densité de courant ~j1 juste en dehors
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du conducteur interne vaut

j1 =
|I|
S1

=
ke

2πR1l

La direction de la densité de courant sera radiale ; de plus, elle sera orientée vers l’intérieur,
comme le courant est négatif. Finalement, la densité de courant est donc donnée par

~j1 = − ke

2πR1l
~er

(b) On peut décrire qualitativement la situation comme suit. Si le conducteur externe est à
un potentiel φ2 > 0, tous les électron éjectés seront accélérés et atteindront ce conducteur
indépendamment de leur vitesse d’éjection. Si par contre φ2 < 0, les électrons seront décé-
lérés ; ceux qui sont éjectés avec une vitesse plus élevée qu’une valeur minimale atteindront
le conducteur externe, les autres seront réfléchis et retomberont sur le conducteur interne.
En plus, il y aura une valeur critique φ2,crit < 0 telle que si φ2 < φ2,crit aucun électron
n’atteindra le conducteur externe.
Ceci peut être compris en utilisant la conservation de l’énergie totale pour les électrons
éjectés. On peut appliquer ce principe comme il n’y a aucune force non conservative. Pour
un électron de masse me, de charge −e et de vitesse v sous l’effet d’un champ de potentiel
électrostatique φ, cette énergie peut être exprimée comme

Etot =
1

2
mev

2 + qφ+megh

=
1

2
mev

2 − eφ

où on a négligé la contribution de l’énergie potentielle gravitationnelle. Considérons un
électron éjecté de la surface du conducteur interne à la vitesse maximale v0.Comme φ1 = 0,
son énergie initiale au moment de l’éjection vaut donc

Ein =
1

2
mev

2
0 (21)

Or, on veut trouver φ2,crit tel que seulement les électrons éjectés avec vitesse v0 atteignent
le conducteur externe. Dans ce cas limite un tel électron atteindra le conducteur externe
avec vitesse nulle, avec énergie finale

Ef = 0− eφ2,crit = −eφ2,crit (22)

pendant que tous les électrons éjectés avec vitesse plus petite que v0 seront réfléchis. Comme
par conservation de l’énergie totale on a Ein = Ef , à partir des équations (21) et (22) on
obtient

1

2
mev

2
0 = −eφ2,crit

=⇒ φ2,crit = −mev
2
0

2e

(23)

On dessine qualitativement le courant entre les deux conducteurs en fonction de φ2 dans
la figure ci-dessous.
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Exercice 4 : Induction dans un fil élastique (6 points)
On considère la situation montrée dans la figure suivante. Une boucle de conducteur élastique de
section circulaire est tenue en forme de cercle. Entre les points A et B (qui sont reliés par un isolant
de longueur négligeable), il y a un interrupteur S. Le tout est plongé dans un champ magnétique
constant ~B = B0~ez.
À un instant t0 > 0 donné, le fil formant la boucle est lâché. Par conséquent, il se comprime en
gardant à tout moment une forme de cercle dans le plan xy. Dans l’intervalle de temps [t0, t1]
pendant cette compression, le rayon du cercle varie comme r(t) = ct−α, avec c et α des constantes
positives, et le rayon du fil a(t) satisfait a(t) � r(t).

2a(t)

r(t)

S

A

B
y

xz

(a) On suppose d’abord que l’interrupteur S est ouvert, de telle sorte qu’aucun courant ne peut
circuler dans le fil. Quelle est la tension induite dans la boucle pour t ∈ [t0, t1] ? Exprimez le
résultat en fonction des quantités données.

(b) Pour le reste de l’exercice, l’interrupteur S est fermé. Donnez la direction du courant circulant
dans le fil. Est-ce que la force de Lorentz ressentie par le fil tend à accélérer ou ralentir la
compression du fil ? Justifiez votre réponse.

(c) Exprimez la résistance de ce fil en fonction des quantités données. Supposez que le volume
total du fil reste constant au cours du temps et est donné par V0. Le fil a une conductivité
σc qui ne varie pas en fonction de la longueur du fil. Finalement, déterminez le courant I(t)
qui circule dans la boucle, en négligeant les effets d’auto-inductance ainsi que la résistance de
l’interrupteur S.

Solution :
(a) Du fait du champ magnétique, il existe un flux magnétique à travers la surface Σ(t) définie

par le cercle de rayon r(t). Si l’on oriente, comme le système de coordonnées, donné d~Σ =
dΣ~ez, alors ce flux s’exprime

φB0(t) =
x

Σ(t)

~B · d~Σ = B0Σ(t) = B0π(ct
−α)2

La variation temporelle de la surface Σ(t) génère une variation du flux dans le temps, ce
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qui induit l’apparition d’une force électromotrice dans le fil. D’après la loi de Faraday, la
force électromotrice induite s’écrit

εind = −dφB0

dt
= − d

dt
(B0π(ct

−α)2)

D’où
εind = 2αB0πc

2t−(2α+1)

(b) Avec l’orientation choisie pour d~Σ, le sens conventionnel du courant (selon lequel I > 0)
respectera la règle de la main droite et sera selon ~eθ. En accord avec la règle de Lenz,
le courant induit I dans la boucle cree un champ magnetique induit Bind qui s’oppose
au changement du flux magnetique qui cree le courant induit. Puisque le flux magnétique
diminue avec le temps, Bind sera le long de ~ez et, compte tenu de la règle de la main droite,
la direction du courant doit être ~eθ (comme indiqué en vert sur le schéma).

S

A

B

2a(t)

r(t)

y

xz

I(t)

Autrement, on peut aussi argumenter de la manière suivante. En considérant uniquement
la résistance électrique du fil R ainsi que la force électromotrice induite, la loi des mailles
donne

−RI + εind = 0

et donc
RI = 2αB0πc

2t−(2α+1)

Étant donné que α > 0, on a I > 0 et donc la circulation du courant se fait effectivement
selon l’orientation du schéma.
Comme un courant passe par le fil, il est sujet à la force de Lorentz, qui a l’expression
d~F = Id~l × ~B. Comme d~l = r(t)dθ~eθ, il y a

d~F = Id~l × ~B = Ir(t)B0dθ(~eθ × ~ez) = Ir(t)dθB0~er

La force est orientée selon la direction positive de ~er, donc elle tend à ralentir la compression
du fil.

(c) Tout d’abord, on calcule la résistance du fil R. Puisque le volume du fil est constant au
cours du temps, il y aura, pour t ∈ [t0, t1]

V0 = 2πr(t)πa2(t)
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d’où
a2(t) =

V0

2π2r(t)
=

V0

2π2c
tα

Par conséquent, l’expression de la résistance, considérant la conductivité σc = 1/ρc, est

R(t) = ρc
2πr(t)

πa2(t)
=

4π2

σcV0
r2(t) =

4π2c2

σcV0
t−2α

En remplaçant l’expression de R dans la formule pour I trouvée à la question précédente,
on obtient

I(t) =
εind(t)

R(t)
=

2αB0πc
2t−(2α+1)

4π2c2

σcV0
t−2α

=
σcB0V0

2π

α

t

L’augmentation de la section du fil et la réduction de sa longueur compensent en partie
la diminution de εind avec le temps et le courant diminue avec le temps seulement comme
t−1.
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Exercice 5 : Cage de Faraday : cas statique et non-statique (10 points)
Dans cet exercice, on se propose d’étudier le phénomène d’écrantage d’une cage de Faraday pour le
champ électromagnétique généré par une particule ponctuelle de charge q < 0.
La cage de Faraday en question est assimilable à un conducteur homogène globalement neutre, de
conductivité électrique σc et de forme assimilable à une boule creuse.
Pour commencer, on étudie le cas où la particule chargée ne bouge pas.
(a) Dans chacune des situations illustrées sur la figure ci-dessous, indiquer qualitativement (sans

calculs) :
— le champ électrique ~E à la position P .
— la distribution des charges électriques dans/sur le conducteur.
Commenter la différence entre les deux situations.

Situation 1 :

P

q < 0

Situation 2 :

q < 0

P

On étudie maintenant le cas dynamique où, la particule chargée étant mobile, elle génère une onde
électromagnétique se propageant dans l’espace. On cherche à comprendre la propagation de cette
onde à l’intérieur du conducteur. On fera l’hypothèse que la longueur d’onde de l’onde est beaucoup
plus petite que les dimensions du conducteur, qui peut alors être assimilé à un volume infini. On
négligera aussi les effets de bord en considérant que le conducteur porte une densité volumique de
charge nulle en tout point.
(b) Montrer que dans ce cas, l’équation d’onde généralisée pour le champ électrique ~E prend la

forme suivante

∆ ~E =
1

c2
∂2 ~E

∂t2
+ µ0σc

∂ ~E

∂t
(24)

Rappels :
— la loi d’Ohm locale s’écrit ~j = σc ~E, avec ~j la densité de courant.
— pour tout champ vectoriel ~A, on a l’égalité ~∇× (~∇× ~A) = ~∇(~∇ · ~A)−∆ ~A.

(c) Déterminer l’expression de l’équation d’onde généralisée pour le champ magnétique ~B.
(d) On considère une onde plane sinusoïdale de la forme suivante

~̃E(z, t) = E0 exp
i(ωt−kz) ~ex (25)

où ω ∈ R+, E0 ∈ R+ et k = kr + iki avec kr ∈ R+ et ki ∈ R. Dans la limite où σc � ω
c2µ0

,
montrer que pour satisfaire l’équation généralisée pour le champ électrique ~E, on doit avoir
ki = ±

√
ωµ0σc

2 .
(e) Décrire le comportement de l’onde se propageant dans le conducteur pour les deux valeurs

de ki trouvées précédemment. Pourquoi l’une des deux solutions n’est-elle pas physiquement
acceptable ?

(f) On suppose que la solution ayant un sens physique trouvé précédemment reste valable pour
la cage de Faraday d’épaisseur finie. Sous quelle condition la cage de Faraday arrive-t-elle à
écranter l’onde électromagnétique générée par la charge mobile ? L’écrantage de cette onde
fonctionne-t-il aussi bien lorsque la particule chargée se trouve à l’intérieur et à l’extérieur de
la cage de Faraday ?
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Solution :
(a) Dans chacune des situations, le champ électrique statique généré par la particule chargée

va induire un réagencement des charges au sein du conducteur afin de maintenir un champ
électrique nul à l’intérieur du conducteur. Cependant, du fait de la différence de géométrie,
le phénomène d’écrantage sera différent pour chacune des situations :
— Situation 1 : La source de champ électrique se trouve ici à l’extérieur de la cage de

Faraday. La redistribution des charges à la surface extérieure du conducteur permettra
de garantir un champ électrique nul à l’intérieur de ce dernier. La charge n’étant ici pas
centrée par rapport à la cage, un surplus de charges positives apparaîtra à sa surface sur
le côté à proximité de la charge q < 0 (champ électrique externe plus intense), tandis
qu’une charge opposée s’accumulera à sa surface sur le côté le plus éloigné (champ
électrique externe plus faible). Le champ électrique étant nul au sein du conducteur de
la cage de Faraday, et la surface intérieure ne portant pas de charge, le champ électrique
sera également nul en tout point du volume encapsulé à l’intérieur de la cage de Faraday,
donc ~E(P ) = ~0.

— Situation 2 : La source de champ électrique se trouve ici à l’intérieur de la cage de Fa-
raday. Afin d’écranter parfaitement le champ électrique généré par la particule chargée
et puisque le conducteur est parfait, une charge positive −q doit apparaître distribuée
sur la surface interne de la cage de Faraday. La charge étant centrée, la distribution
de charge positive se fera de manière uniforme. Puisque le conducteur est globalement
neutre, une charge q doit apparaître distribuée à la surface extérieure de la cage. Un
observateur placé en P percevra un champ électrique égal à celui d’une charge ponc-
tuelle de charge q < 0, donc ~E(P ) = q

4πε0
~r
r3

, avec ~r le vecteur allant de la charge q au
point P et r sa norme.

On remarque donc que la cage de Faraday est efficace pour écranter le volume qu’elle
contient des champs électriques statiques externes, mais n’a aucun effet pour la situation
opposée.

Situation 1 :

P

~E = ~0

q < 0
++

+
+

+

+

+ -

-

-
-

-
--

Situation 2 :

q < 0

P
~E

-

-

-
-

-

-

-

-

-
-

-

-

+

+
++

+

+

+

+
+ +

+

+

(b) Pour rappel, les expressions générales des équations de Maxwell sont les suivantes
~∇ · ~E = ρ

ε0
(Gauss)

~∇ · ~B = 0 (Gauss pour ~B )
~∇× ~E = −∂ ~B

∂t (Faraday)
~∇× ~B = µ0

~J + µ0ε0
∂ ~E
∂t (Maxwell-Ampère)

(26)

où ~E est le champ électrique, ~B est le champ magnétique, ~J est la densité de courant, ρ
est la densité de charge, ε0 est la permittivité du vide et µ0 est la perméabilité du vide.
De plus, à l’intérieur du conducteur électrique, la loi d’Ohm locale nous donne que

~J = σc ~E (27)
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où σc est la conductivité électrique du matériau.
En considérant l’absence de charge libre en tout point et en injectant l’information issue
de la loi d’Ohm locale dans l’équation de Maxwell-Ampère, les équations de Maxwell de-
viennent 

~∇ · ~E = 0
~∇ · ~B = 0

~∇× ~E = −∂ ~B
∂t

~∇× ~B = µ0σc ~E + µ0ε0
∂ ~E
∂t

En prenant le rotationnel de l’équation de Faraday, on obtient

~∇× (~∇× ~E) = −~∇× ∂ ~B

∂t

Pour le terme de gauche, on peut utiliser la propriété vectorielle rappelée dans l’énoncé pour
faire apparaître le terme de gauche de la loi de Gauss et le Laplacien du champ électrique.
Pour le terme de droite, on peut utiliser le fait que le champ électrique étant différentiable
en tout temps et en tout point de l’espace, la dérivée temporelle et le rotationnel peuvent
être permutés pour faire apparaître le terme de gauche de l’équation de Maxwell-Ampère.
Ainsi, on obtient

~∇(~∇ · ~E︸ ︷︷ ︸
=0

)−∆ ~E = − ∂

∂t
~∇× ~B︸ ︷︷ ︸

=µ0σc
~E+µ0ε0

∂ ~E
∂t

⇔ −∆ ~E = −µ0σc
∂ ~E

∂t
− µ0ε0

∂2 ~E

∂t2

Sachant que µ0ε0 =
1
c2

, on obtient en effet l’expression de l’énoncé pour l’équation généra-
lisée pour le champ électrique

∆ ~E = µ0σc
∂ ~E

∂t
+

1

c2
∂2 ~E

∂t2
(28)

(c) Pour trouver l’expression de l’équation d’onde généralisée pour le champ magnétique, le
raisonnement est similaire à celui de la question (b) mais il faut partir avec le rotationnel
de l’équation de Maxwell-Ampère. En procédant ainsi, on obtient

~∇× (~∇× ~B) = µ0σc~∇× ~E + µ0ε0~∇× ∂ ~E

∂t

Pour les mêmes raisons que pour la question précédente, l’équation précédente peut éga-
lement se mettre sous la forme suivante où l’on fait apparaître les termes de gauche de
l’équation de la loi de Gauss pour ~B et de Faraday

~∇(~∇ · ~B︸ ︷︷ ︸
=0

)−∆ ~B = µ0σc ~∇× ~E︸ ︷︷ ︸
=− ∂ ~B

∂t

+µ0ε0
∂

∂t
~∇× ~E︸ ︷︷ ︸
=− ∂ ~B

∂t

⇔ −∆ ~B = −µ0σc
∂ ~B

∂t
− µ0ε0

∂2 ~B

∂t2

Et donc pour l’équation d’onde généralisée pour le champ magnétique, on obtient

∆ ~B = µ0σc
∂ ~B

∂t
+

1

c2
∂2 ~B

∂t2
(29)
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(d) En considérant la solution proposée dans l’énoncé de la forme

~̃E(z, t) = E0 exp
i(ωt−kz) ~ex

Alors pour le dérivé première en temps, on a

∂ ~̃E(z, t)

∂t
= iωE0 exp

i(ωt−kz) ~ex

= iω ~̃E(z, t)

Pour la dérivée seconde

∂2 ~̃E(z, t)

∂t2
= −ω2E0 exp

i(ωt−kz) ~ex

= −ω2 ~̃E(z, t)

Et effet pour le Laplacien

∆ ~̃E(z, t) =
∂2

∂x2
~̃E(z, t) +

∂2

∂y2
~̃E(z, t) +

∂2

∂z2
~̃E(z, t)

=
∂2

∂z2
~̃E(z, t)

= −k2E0 exp
i(ωt−kz) ~ex

= −k2 ~̃E(z, t)

En injectant les résultats intermédiaires précédent dans l’équation (28), on obtient

−k2 ~̃E(z, t) = −ω2

c2
~̃E(z, t) + iωµ0σc ~̃E(z, t)

⇔ k2 =
ω2

c2
− iωµ0σc

Il s’agit donc de trouver la racine carré d’un nombre complexe k qui peut s’écrire sous la
forme k = kr + iki. On a donc deux expressions pour le carré de ce nombre complexe{

k2 = ω2

c2
− iωµ0σc

k2 = k2r − k2i + 2ikikr

Deux nombres complexe étant égaux si et seulement si leurs parties réelles et imaginaires
sont égales, on a donc {

k2r − k2i = ω2

c2

2kikr = −ωµ0σc → kr = −ωµ0σc

2ki

En injectant l’expression de kr de la deuxième dans la première équation, on obtient

ω2µ2
0σ

2
c

4k2i
− k2i =

ω2

c2

En posant X = k2i , on reconnaît l’équation d’un polynôme du second degré de la forme
suivante

X2 +
ω2

c2
X − ω2µ2

0σ
2
c

4k2i
= 0
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Le discriminant de ce polynôme donne

∆ =
(ω
c

)4
+ (ωµ0σc)

2

Le discriminant étant positif, les solution X± sont de la forme

X± =
1

2

((ω
c

)2
±
√(ω

c

)4
+ (ωµ0σc)2

)

=
1

2

(ω
c

)21±

√
1 +

(
c2µ0σc

ω

)2


Puisque l’énonce spécifie que σc � ω
c2µ0

le terme de droite dans la racine ci-dessus est
dominant sur les autre et on a simplement

X± = ±ωµ0σc
2

ki étant par définition positif, le terme négatif ne nous intéresse pas et puisque X = k2i , on
a, en passant à la racine, le résultat escompté

ki = ±
√

ωµ0σc
2

(30)

NB : Il était possible d’utiliser une autre méthode passant par la racine d’une exponentielle
complexe de module et phase identique à k.

(e) Si on distingue le comportement de l’onde de manière séparé pour les deux solutions pos-
sibles, on a :
— Lorsque ki =

√
ωµ0σc/2 : L’onde peut s’écrire sous la forme

~̃E(z, t) = E0 exp
z
√

ωµ0σc
2 expi(ωt−krz) ~ex

Donc on a une onde se propageant dans le matériaux avec une pulsation ω et une
longueur d’onde 2π/kr, mais dont l’amplitude augmente de manière exponentielle avec
la distance.

— Lorsque ki = −
√
ωµ0σc/2 : Cette fois ci on a

~̃E(z, t) = E0 exp
−z

√
ωµ0σc

2 expi(ωt−krz) ~ex

Donc le même terme lié à la propagation de l’onde du cas précédent, mais cette fois-ci
l’amplitude diminue de manière exponentielle. La distance caractéristique δ de cette
décroissance s’exprime δ = (ωµ0σc/2)

−1/2.
Dans notre cas la solution où ki > 0 n’a pas de sens physique puisque cela impliquera une
augmentation exponentielle de l’amplitude de l’onde et donc de sont énergie qui divergerait.
NB : En pratique, la solution où ki > 0 correspondrait à la solution physiquement accep-
table pour une onde se propageant vers les z négatif, c’est à dire avec kr < 0.

(f) En considérant la solution trouvé précédemment où l’onde électromagnétique décroît expo-
nentiellement avec une distance caractéristique δ dans le conducteur, on en déduis que pour
pouvoir écranter cette onde la conducteur doit être plus épais que δ. Si on note l l’épaisseur
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caractéristique de la cage, alors cela se traduit par l’inégalité l · δ � 1. Le phénomène d’at-
ténuation étant indépendant de la direction de propagation de l’onde, l’écrantage se faire
aussi bien pour des ondes allant de l’intérieur vers l’extérieur de la cage que de l’extérieur
vers l’intérieur. En pratique δ est appelé épaisseur de peau, on remarque que cette grandeur
dépend de deux grandeurs pour lesquelles on peut s’intéresser aux cas limites :
— La pulsation de l’onde : Plus l’onde aura une pulsation/fréquence élevé, plus l’épaisseur

de peau sera fine et donc la cage de Faraday sera efficace. A faible fréquence par contre,
l’atténuation de l’onde sera moindre. Dans le cas statique δ est infini mais le phéno-
mène d’écrantage se fera principalement du fait de l’apparition de charge en surface du
conducteur (charge que l’on a négligé au début de l’étude du cas dynamique).

— La conductivité électrique du conducteur : Pour une pulsation donnée, la cage de Faraday
sera d’autant plus efficace que la conductivité électrique du matériau utilisé sera élevée.
Inversement, une cage de Faraday constitué d’un matériau isolant sera très peu efficace.
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