Physique Générale : Fluides et électromagnétisme (MA) — Prof. C. Theiler

21 Juin 2024

Reglement de I'examen

Il est strictement interdit de consulter I'énoncé de I'examen avant le signal de début!

Avant de commencer un exercice, lire attentivement tout I'énoncé. Certaines remarques,
indications, et hypothéses importantes peuvent étre a la fin de I'énoncé.

Il'y a cinq exercices. Les points attribués a chaque exercice sont indiqués sur I'énoncé.

Les réponses doivent étre rédigées dans la cahier de réponses. Chaque question possede
un espace de réponse dédié dans le cahier de réponses. Si vous manquez de place
pour répondre a une question, des espaces de secours sont disponibles a la fin du cahier
de réponses, dans la section nommée "exercice 6". Indiquer que la réponse continue dans
I'espace de secours et, dans |'espace de secours, indiquer a quelle question vous répondez.
L'utilisation du crayon a papier et du stylo rouge est interdite sur les feuilles rendues pour
correction.

L'utilisation de téléphones portables, smartwatch, calculatrice, ou tout autre appareil élec-
tronique est strictement interdite.

L'examen dure en tout 3h30min a partir du signal de début.

Mettre votre carte CAMIPRO en évidence sur la table.

Il n'est pas possible de quitter la salle avant 9h45, méme si I'examen a été rendu. De maniére
générale, il n'est pas permis de quitter la salle sans autorisation.

Un formulaire manuscrit d'une page A4 recto-verso ainsi que le formulaire du cours sont
autorisés durant |'examen.

Bon travail !

1/21



2/21



Exercice 1 : Cloche de plongée (8 points)

Pour faire de la plongée, vous utilisez une cloche de plongée (une idée ancienne déja connue au
temps d'Aristote). Cette derniére est une cloche métallique, dans ce cas assimilée a un cylindre
ouvert en bas et renfermant une certaine quantité d'air. En tant que plongeur, vous avez acces a ce
réservoir d'air frais par un tuyau, permettant de respirer sous I'eau. La cloche de plongée est reliée
a un flotteur cylindrique par une tige de longueur D et de diamétre négligeable.

(a)

(c)

Soit M la masse totale de cette installation (cloche de plongée, tige verticale, flotteur cylin-
drique, et air enfermé). Quelles sont les valeurs minimale et maximale de M telles que la cloche
de plongée ne coule pas et ne remonte pas a la surface? Vous pouvez négliger la force que
le plongeur exerce sur cette installation via le tuyau et considérer h comme une constante.
Exprimez votre réponse en fonction des données de I'exercice parmi ry, k1, D, r2, ko, b, Datm, g,
et po.

Quelle est la pression de I'air a I'intérieur de la cloche de plongée si le flotteur cylindrique
est a moitié dans I'eau? Exprimez votre réponse en fonction des données de I'exercice parmi
ri, k1, D,ra, ko, h, Datm, g, €t po. Au-deld d'une possible accumulation de COs dans le tube,
pourquoi |'idée du plongeur de droite, ol le tuyau monte directement a la surface de I'eau, ne
fonctionnerait pas pour des profondeurs de quelques métres ?

AL, P=Paym

kt Surface de l'eau

v

Flotteur cylindrique
Eau, p= p,=const.

Cloche de plongée
. cylindrique

Air

FIGURE 1 — Situation pour les questions (a) et (b)

Considérez maintenant que vous avez la taille d’'une fourmi. A cette échelle, les effets de
tension superficielle sont importants. Comme illustré sur la Figure 2, vous pouvez supposer
que l'interface liquide-gaz est, en premiére approximation, sphérique. Est-ce que la situation de
la Figure 2 correspond a une situation de bon mouillage ou de mauvais mouillage ? Exprimez
la pression de I'air a I'intérieur de la cloche de plongée en fonction des données de |'exercice
parmiry, k1, D, 1o, ko, b, Patm, g, Po, 0 €t -y, avec 7y la tension superficielle liquide-gaz. Le flotteur
cylindrique est a moitié dans I'eau.
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Alr, P=p,

kot
v

Eau, p= p,=const.

Surface de l'eau

~ Flotteur cylindrique

_Cloche de plongée

FIGURE 2 - Situation pour la question (c)

(d) Vous décidez maintenant d'utiliser une cloche de plongée fermée, comme illustré sur la Figure 3
(initialement sans fuite). Vous maintenez une pression atmosphérique a I'intérieur de la cloche a
I'aide du tuyau de droite et vous vous servez du tuyau de gauche qui remonte jusqu'a la surface
pour respirer. Discuter si cette option peut fonctionner. Malheureusement, il y a maintenant
une fuite qui s'ouvre, de section S et a une profondeur H sous la surface de |'eau. En utilisant
la loi de Bernoulli, estimez le temps pour remplir le volume V' de la cloche de plongée fermée.
Vous pouvez supposer que la cloche de plongée reste a la méme profondeur pendant tout ce
temps. Cette hypothése est-elle justifiée ?

AIr, P=p i
Surface de l'eau

Tuyau- _
\\ -

~ ~
d S

Eau, p= p,=const. BN H

FIGURE 3 — Situation pour la question (d)

4/21



Solution :

(a)

Les forces s’exercant sur le systéme sont :

— Le poids Mg, orienté vers le bas

— La poussée d’Archimede —poVined (équivalent a la somme des forces de pression aux
différentes profondeurs) orientée vers le haut.

Cependant, le volume immergé dans I'’eau dépend du niveau d’immersion du flotteur, que

l'on appelle k1 — Z. Z est donc la hauteur non-immergée du flotteur. On peut re-écrire

I’expression de la poussée d’Archimede comme :

Fa’r‘ch = ‘/tot(Z)pOg (1)

Farch = [(kl - Z)ﬂ'T’% + (kZ - h)ﬂ—r%]p()g (2)

Dans une situation statique, c’est a dire ou la cloche ne remonte pas a la surface et ne
coule pas, la somme des forces est nulle. Nous pouvons donc égaliser les deux forces dans
notre systéme, vu qu’elles sont dans des directions opposées (€2 et -€2).

Mg =|[(k1 — Z)m"% + (ko — h)m"%]pog (3)

La masse maximale du systéme correspond au moment ou le flotteur est intégralement
submergé. En effet, si la masse est plus grande que cela, la poussée d’Archimede ne peut
plus augmenter pour compenser la masse et le systeme coule. En contrepartie, la masse
minimale correspond a la situation ou le flotteur est entierement hors de l’eau, car si
la masse diminue encore, le poids ne sera plus assez grand pour compenser la poussée
d’Archimede et la cloche remonte a la surface.

Ainsi,

Mpin = M(Z = kl) = (k?2 - h)ﬂ"r’%po (4)
Minaz = M(Z = 0) = [k1r{ + (k2 — h)ri]mpo (5)

D’apres la loi de 'hydrostatique la pression a 'intérieur de la cloche est égale a la pression
de I'eau en contact avec I’air de la cloche. La pression dans la cloche est donc :

k
p= ("L 4 D+ky—h)pog + Patm (6)

2
L’idée du plongeur de droite ne marchera pas au-dela de quelques metres car la pression de
I’eau sur ses poumons sera trop grande. En effet si la pression est trop grande, il n’arrivera
pas a gonfler ses poumons suffisamment pour inspirer I'air de la surface. C’est pour cela
que les plongeurs sous-marin utilisent un mélange d’air comprimé en bouteille a une plus
grande pression que l'air atmosphérique pour surmonter la pression de ’eau environnante.

En utilisant la forme de la surface air-eau donné dans 1’énoncé, il s’agit en effet d’une
situation de bon mouillage car ’angle formé entre la surface air-eau et le bord de la cloche
est inférieur & 90r.

Maintenant que la tension de surface est importante, il y a une différence de pression non-
négligeable a l'interface air-eau. Cette différence de pression est proportionnelle a la tension
de surface v :

,  2ycos()

= -

(7)

Ou p est la pression dans la cloche et p’ est la pression dans ’eau au niveau de 'interface
air-eau. En négligeant la variation de hauteur le long the la surface air-eau, on peut donc

p—p
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exprimer p comme :

2~ cos(6
p=2050) (8)
)
2+ cos(6 k
p="T= TQ()+(21+D+kz—h)pog+patm (9)

Cette option peut fonctionner, car contrairement au plongeur de droite dans la question
a), la pression autour du ’plongeur’ est la pression atmosphérique donc il n’aura pas de
difficultés a gonfler ses poumons pour inspirer I’air de la surface. Il y a tout de méme des
soucis importants avec cette situation avec I’alimentation d’air frais.

On utilise la loi de Bernoulli d’une fagon similaire a I’exercice 2 de la série 6, en choisissant
un point A a la surface de ’eau et un point B sur la méme ligne de courant au niveau de
I’entrée d’eau dans la fuite. La loi de Bernoulli nous dit que

1 1
1 1
= 5/)1}124 + pgH = §pv,23 (11)

Or, d’apres la conservation du flux, vaS4 = vgSp = va = UB% ~ 0 car la surface de

I’eau est beaucoup plus grande que 'ouverture dans la cloche.
On a donc :

vp = +\/2gH (12)

Pour trouver le temps nécessaire pour remplir le volume V', on calcul 'augmentation du
volume d’eau de dV dans la cloche pendant un temps dt :

dV = Svgdt (13)

en intégrant d’un temps tp = 0 a un temps ¢,

|4 tfin
/ dV = / Svpdt = Svptyip (14)
0 0

S A — (15)
fin = Svg Sv2gH
On note que 'hypothese que H reste constant dans ce processus n’est pas vraiment justifié
ici. Avec 'accumulation de ’eau dans la cloche fermée, celle-ci va commencer a couler.
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Exercice 2 : Champ de vitesse (8 points)
On consideére |'écoulement d'un fluide parfait et incompressible (p = py = const.) avec le champ de
vitesse suivant :

(7, 1) = (a2, — yé,)
ol 7 > 0 est une constante donnée.
(a) Indiquez, dans le plan zy, le vecteur @ aux points suivants :

(xvy) = (_17 1)? (x,y) = (07 1)5 ($>y) = (17 1)?
(z,y) = (=1,0); (z,y) = (0,0); (z,y) = (1,0);
(z,y) = (=1,-1); (z,y) = (0,-1); (z,y) = (1,-1);

Pour les représentations graphiques, prenez 7 = 1s.

(b) Démontrez que ce champ de vitesse satisfait I'équation de continuité.

(c) Déterminez I'accélération d'un élément de fluide en un point (z,y) arbitraire. Tracez qualitati-
vement la forme de la ligne de courant proche du point (1, 1) et passant par ce dernier. Justifiez
votre réponse.

(d) Utilisez I'équation d'Euler pour déterminer |'expression du champ scalaire de pression p(7,t)
sachant que p(7" = 0, t) = po. Négligez la force de gravité dans I'équation d'Euler.

(e) Pourquoi ce champ de vitesse ne peut-il pas décrire I'écoulement en tout point de I'espace ? En
considérant le résultat de (d), trouvez la valeur maximale de r = /22 4 y? telle que I'expression
de (7, t) reste valable en tout point.

Solution :
(a) La représentation du vecteur vitesse aux points demandées et avec 7 = 1s est visible sur
la figure ci dessous.

(b) Le fluide étant incompressible, sa densité volumique est constante et on a p = pg. L’équation
de continuité s’écrit :

. B . .
£+V-(pﬁ): a—f NPV R v
=7 Rt

Il s’agit donc de s’assurer que pﬁ -1 =0, ce qui est bien le cas :
Ouy  Ouy
_l’_ R
’ < dr  Jy )

(1 _ 1) (16)

pﬁ-ﬁ

=p
0



L’équation de continuité est donc bien satisfaite !
(c) L’accélération d’un élément de fluide est donnée par la formule

Du
Dt
0 L i.%)a (17)
= +u- U
ot
ou -
z——+@rv)a
ot
L’écoulement étant caractérisé par un champ de vitesse ne dépendant pas du temps, 1’écou-
lement peut étre considéré comme stationnaire. On a donc % = 0 et ’équation (17) nous
donne

a:

|
VR
<

5]
(ST
£ 8§
+
e g
<
QD |
Q)
S<SIE
~_

L’accélération d’un élément de fluide est donc donnée par

L. 1, .
a= ﬁ(:vex + yéey) (18)

La ligne de courant passant par le point (1, 1) est représentée dans la figure ci-dessous.

Yy \

8

On peut justifier ¢a de plusieurs facons.

La plus simple est de dessiner le vecteur 4 a plusieurs points autour du point (1,1) et
dessiner la ligne de courant a partir de ca.

On peut alternativement remarquer a partir de I’équation (18) que, au point (1,1), on a
i | d. Localement, I’accélération est donc purement centripete et on s’attend a observer
une courbe qui, proche du point (1,1), se comporte comme celle dans la figure ci-dessus
(localement, trés proche du point (1, 1), la trajectoire peut étre considérée un arc de cercle).
Il y a aussi une troisiéme alternative : on peut résoudre I’équation du mouvement et obtenir
la trajectoire d’une particule de fluide passant par le point (1,1) au temps ¢t = 0s. En
faisant ¢a on peut montrer qu’on obtient la trajectoire 7(t) = (exp(t/T), exp(—t/T)). On
obtient donc que, dans le plan zy, la ligne de courant cherchée est donnée par la courbe
représentée dans la figure ci-dessus. Cette courbe est I’hyperbole xy = 1, comme on a
que 74 (t)ry(t) = 1 pour I'expression trouvée pour 7(t). Ce dernier raisonnement peut étre

8/21



appliqué a cet exercice car, dans le cas d'un écoulement stationnaire, les lignes de courant
coincident avec les trajectoires des éléments de fluide.

Le fluide étant parfait, il n’y pas d’effets liés a la viscosité. En négligeant la gravité, ’équa-

tion d’Euler nous donne P
p<(,;;+ (%) u) — %

-,

Donc, I’écoulement étant stationnaire ( % =0), on a

p@rﬁ)a:—vp

Le membre de gauche p (ﬂ' . 6) @ a déja été calculé dans la question (c) de cet exercice.

Projetons maintenant ’équation d’Euler selon les directions €, et € :

— selon € : T%pm = —%
> .1 _ _09p
— selon €, : py = —3y

Par intégration de la relation selon €., on conclut que :
22

1
M%w:—5¢3+q@%

avec ¢1(y) une fonction arbitraire qui ne dépend pas de z.
Par intégration de la relation selon €y, on déduit :

1 g2
p(xvy) = 75/)? + 62(1‘)7
avec () une fonction indépendante de y.
On a donc que :
1 22 1 92
p(z,y) = 9P T 5P + ¢s,

avec cz un constante qui ne dépend ni de x ni de y.
En utilisant la condition p(0,0) = pp, on en déduit finalement que :

1
p(x,y) = —5=p (2> +v*) + po

2T
Ce champ de vitesse ne peut pas décrire I’écoulement partout dans ’espace car pour z,y —
+o00 on a |u| — oo, ce qui n’est pas un écoulement physique. De plus, vu que la pression
diminue en s’éloignant de (0,0), on obtiendrait une valeur négative de pression lorsque le
terme négatif de 1’équation (d) devient plus grand que py.
Or, on peut écrire la fonction p(x,y) en fonction de r = \/x? + y? :

L,
)= ——or 19
p(r) = —55pr" +po (19)
La pression devient négative si on considere des valeurs de r plus grandes que une valeur
maximale 7,,4,, correspondant & la valeur de r telle que p(r) = 0. On obtient donc 7,4y
en imposant p(r) =0

Lo 0
———0r —
27_2 1Y Do
272pg
= Tmaz =
p
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Exercice 3 : Diode a vide (6 points)

On considére une diode a vide constituée de deux conducteurs métalliques montrés sur la figure
ci-dessous, caractérisés par les rayons R; et Rs. lls ont une longueur [ > Rs et ils se trouvent a
I'intérieur d'une ampoule en verre dans laquelle on a fait le vide. Le conducteur interne est maintenu
a un potentiel électrostatique ¢1 = const. = 0. Le potentiel du conducteur externe ¢o est variable.
Le conducteur interne est chauffé a une température suffisamment élevée pour qu'une émission
thermoélectronique ait lieu (des électrons sont éjectés de la surface du conducteur interne vers le
volume entre les deux conducteurs). Le nombre d'électrons éjectés par le conducteur interne par unité
de temps est donnée par k et est indépendant de ¢5. Dans cet exercice, vous pouvez négliger |'effet
de la gravité. En plus, vous pouvez supposer que les électrons sont éjectés radialement, c'est-a-dire
avec vitesse initiale perpendiculaire a la surface du conducteur interne.

ampoule en verre

b2

¢ — mise a

— la terre

(a) Pour ¢3 > 0, quel est le courant circulant entre le conducteur interne et externe ? Et quelle est
la norme et la direction de la densité de courant juste en dehors du conducteur interne ?

(b) La vitesse maximale des électrons éjectés est donnée par vg. Trouvez |'expression du potentiel
¢2,crit du conducteur externe a partir duquel aucun de ces électrons n'atteint le conducteur
externe. Puis, tracer qualitativement le courant I entre le conducteur interne et externe en
fonction de ¢2 (on considérera des valeurs positives et négatives de ¢o pour tracer le graphe
de la fonction I(¢2)).

Solution :

(a) Si le conducteur externe est a un potentiel ¢o > 0, il y aura un champ électrique allant
du conducteur externe au conducteur interne (E = —V¢). Donc, tous les électrons éjectés
du conducteur interne seront accélérés et atteindront le conducteur externe. Comme k
électrons, chacun de charge —e, sont éjectés par unité de temps, le courant circulant entre
le conducteur interne et externe est donné par

I=—ke (20)

qui est bien un courant comme k et e ont respectivement des unités de s~! et C. Le courant
est négatif comme on nous demande le courant qui circule entre conducteur interne et
externe.

Or, on sait que 'aire de la surface extérieure du conducteur interne vaut S7 = 2w R1l. Donc,
avec I’expression de I dérivée en (20), la norme de la densité de courant j1 juste en dehors
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du conducteur interne vaut
=
S1
ke
2w Ryl

La direction de la densité de courant sera radiale ; de plus, elle sera orientée vers l'intérieur,
comme le courant est négatif. Finalement, la densité de courant est donc donnée par

- k@
J1 =

—

TR

On peut décrire qualitativement la situation comme suit. Si le conducteur externe est a
un potentiel ¢o > 0, tous les électron éjectés seront accélérés et atteindront ce conducteur
indépendamment de leur vitesse d’éjection. Si par contre ¢o < 0, les électrons seront décé-
lérés ; ceux qui sont éjectés avec une vitesse plus élevée qu’'une valeur minimale atteindront
le conducteur externe, les autres seront réfléchis et retomberont sur le conducteur interne.
En plus, il y aura une valeur critique ¢ .ix < 0 telle que si g2 < ¢ it aucun électron
n’atteindra le conducteur externe.

Ceci peut étre compris en utilisant la conservation de ’énergie totale pour les électrons
éjectés. On peut appliquer ce principe comme il n’y a aucune force non conservative. Pour
un électron de masse m., de charge —e et de vitesse v sous 'effet d’'un champ de potentiel
électrostatique ¢, cette énergie peut étre exprimée comme

1
Eiot = 5m6v2 + Q¢ + megh

1
= —mev? — ed
2
ou on a négligé la contribution de I’énergie potentielle gravitationnelle. Considérons un
électron éjecté de la surface du conducteur interne a la vitesse maximale vyg.Comme ¢ = 0,
son énergie initiale au moment de 1’éjection vaut donc

1
Eip, = imevg (21)

Or, on veut trouver ¢z .+ tel que seulement les électrons éjectés avec vitesse vy atteignent
le conducteur externe. Dans ce cas limite un tel électron atteindra le conducteur externe
avec vitesse nulle, avec énergie finale

Ep =0~ epacrit = —€P2,crit (22)
pendant que tous les électrons éjectés avec vitesse plus petite que vg seront réfléchis. Comme

par conservation de 'énergie totale on a Ej;, = Ey, a partir des équations (21) et (22) on
obtient

1
§mev8 = _€¢2,cr7ﬁt
2 (23)
mevg
= ¢2,crit = - %

On dessine qualitativement le courant entre les deux conducteurs en fonction de ¢ dans
la figure ci-dessous.
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Exercice 4 : Induction dans un fil élastique (6 points)

On considére la situation montrée dans la figure suivante. Une boucle de conducteur élastique de
section circulaire est tenue en forme de cercle. Entre les points A et B (qui sont reliés par un isolant
de longueur négligeable), il y a un interrupteur S. Le tout est plongé dans un champ magnétique
constant B = Bgée..

A un instant ¢y > 0 donné, le fil formant la boucle est laché. Par conséquent, il se comprime en
gardant a tout moment une forme de cercle dans le plan zy. Dans l'intervalle de temps [to, 1]
pendant cette compression, le rayon du cercle varie comme 7(t) = ct™%, avec ¢ et «a des constantes
positives, et le rayon du fil a(t) satisfait a(t) < r(t).

BO?Z

(a) On suppose d'abord que I'interrupteur S est ouvert, de telle sorte qu'aucun courant ne peut
circuler dans le fil. Quelle est la tension induite dans la boucle pour ¢ € [to, t1]? Exprimez le
résultat en fonction des quantités données.

(b) Pour le reste de I'exercice, I'interrupteur S est fermé. Donnez la direction du courant circulant
dans le fil. Est-ce que la force de Lorentz ressentie par le fil tend a accélérer ou ralentir la
compression du fil 7 Justifiez votre réponse.

(c) Exprimez la résistance de ce fil en fonction des quantités données. Supposez que le volume
total du fil reste constant au cours du temps et est donné par Vj. Le fil a une conductivité
0. qui ne varie pas en fonction de la longueur du fil. Finalement, déterminez le courant I(t)
qui circule dans la boucle, en négligeant les effets d’auto-inductance ainsi que la résistance de
I'interrupteur S.

Solution :

(a) Du fait du champ magnétique, il existe un flux magnétique a travers la surface 3(t) définie
par le cercle de rayon r(t). Si 'on oriente, comme le systéme de coordonnées, donné ds =
dXé,, alors ce flux s’exprime

b5, (t) = H B-dS = ByX(t) = Byr(ct™®)?
S(t)

La variation temporelle de la surface 3(t) génére une variation du flux dans le temps, ce
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qui induit 'apparition d’'une force électromotrice dans le fil. D’apres la loi de Faraday, la
force électromotrice induite s’écrit
d¢p, d

. — — __(B —a\2
€ind dt dt( OF(Ct ) )

D’ou
Eind = 2aBomct— et

Avec l'orientation choisie pour di, le sens conventionnel du courant (selon lequel I > 0)
respectera la reégle de la main droite et sera selon éy. En accord avec la reégle de Lenz,
le courant induit I dans la boucle cree un champ magnetique induit Bj,q qui s’oppose
au changement du flux magnetique qui cree le courant induit. Puisque le flux magnétique
diminue avec le temps, Bi,q sera le long de €, et, compte tenu de la régle de la main droite,
la direction du courant doit étre € (comme indiqué en vert sur le schéma).

BO gz

Autrement, on peut aussi argumenter de la maniere suivante. En considérant uniquement
la résistance électrique du fil R ainsi que la force électromotrice induite, la loi des mailles
donne

—RI+6pg=0

et donc
RI = 2aByrct~ (2ot
Etant donné que o > 0, on a I > 0 et donc la circulation du courant se fait effectivement
selon l'orientation du schéma.
Comme un courant passe par le fil, il est sujet a la force de Lorentz, qui a I’expression
dF = Idl x B. Comme dl = r(t)dféy, il y a
dF = Idl x B = I'r(t)Bod(éy x &,) = Ir(t)d8Byé,

La force est orientée selon la direction positive de €., donc elle tend a ralentir la compression
du fil.

Tout d’abord, on calcule la résistance du fil R. Puisque le volume du fil est constant au
cours du temps, il y aura, pour ¢ € [to, 1]

Vo = 2mr(t)ma®(t)
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R (0
C2n2r(t)  272c

(67

a®(t)
Par conséquent, 'expression de la résistance, considérant la conductivité o. = 1/p,, est

2mr(t)  4m?
t) = e =
Rt)=p ma?(t) O'C‘/OT

2(t) _ 472 c? 20
o Vo
En remplagant I’expression de R dans la formule pour I trouvée a la question précédente,
on obtient
I(t) - Eind(t) 20 Byt~ (20+1) _ 0.BoVh
T R(t)  ArPi2a 21 ¢

o Vo

L’augmentation de la section du fil et la réduction de sa longueur compensent en partie
la diminution de €j,q avec le temps et le courant diminue avec le temps seulement comme
t=1.
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Exercice 5 : Cage de Faraday : cas statique et non-statique (10 points)

Dans cet exercice, on se propose d'étudier le phénomeéne d'écrantage d'une cage de Faraday pour le
champ électromagnétique généré par une particule ponctuelle de charge ¢ < 0.

La cage de Faraday en question est assimilable a un conducteur homogene globalement neutre, de
conductivité électrique o, et de forme assimilable a une boule creuse.

Pour commencer, on étudie le cas ou la particule chargée ne bouge pas.

(a)

Dans chacune des situations illustrées sur la figure ci-dessous, indiquer qualitativement (sans
calculs) :

— le champ électrique E 3la position P.

— la distribution des charges électriques dans/sur le conducteur.

Commenter la différence entre les deux situations.

Situation 1 : Situation 2 :

q<0 P

On étudie maintenant le cas dynamique ou, la particule chargée étant mobile, elle génére une onde
électromagnétique se propageant dans |'espace. On cherche a comprendre la propagation de cette
onde a l'intérieur du conducteur. On fera I'hypothése que la longueur d'onde de I'onde est beaucoup

plus

petite que les dimensions du conducteur, qui peut alors étre assimilé a un volume infini. On

négligera aussi les effets de bord en considérant que le conducteur porte une densité volumique de
charge nulle en tout point.

(b)

Montrer que dans ce cas, I'équation d'onde généralisée pour le champ électrique E prend la

forme suivante . .
1 0°F )
e — 24
2 o % (24)

AE =

Rappels :

— la loi d’'Ohm locale s’écrit ; = o.E, avecf la densité de courant.

— pour tout champ vectoriel A, on a I'égalité V x (V x A) = V(V - A) — AA.
Déterminer |'expression de |'équation d'onde généralisée pour le champ magnétique B.
On considére une onde plane sinusoidale de la forme suivante

E(z,t) = Egexp'@=F) g, (25)

olw€RY, By e RT et k =k, +ik; avec k, € RT et k; € R. Dans la limite ot o, >
montrer que pour satisfaire I'équation généralisée pour le champ électrique E, on doit avoir
By = [

Décrire le comportement de I'onde se propageant dans le conducteur pour les deux valeurs
de k; trouvées précédemment. Pourquoi I'une des deux solutions n'est-elle pas physiquement
acceptable?

On suppose que la solution ayant un sens physique trouvé précédemment reste valable pour
la cage de Faraday d'épaisseur finie. Sous quelle condition la cage de Faraday arrive-t-elle a
écranter I'onde électromagnétique générée par la charge mobile? L'écrantage de cette onde
fonctionne-t-il aussi bien lorsque la particule chargée se trouve a l'intérieur et a I'extérieur de
la cage de Faraday?

_wW
o’
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Solution :

(a) Dans chacune des situations, le champ électrique statique généré par la particule chargée
va induire un réagencement des charges au sein du conducteur afin de maintenir un champ
électrique nul a I'intérieur du conducteur. Cependant, du fait de la différence de géométrie,
le phénomeéne d’écrantage sera différent pour chacune des situations :

— Situation 1 : La source de champ électrique se trouve ici a l'extérieur de la cage de
Faraday. La redistribution des charges a la surface extérieure du conducteur permettra
de garantir un champ électrique nul a l'intérieur de ce dernier. La charge n’étant ici pas
centrée par rapport a la cage, un surplus de charges positives apparaitra a sa surface sur
le coté & proximité de la charge ¢ < 0 (champ électrique externe plus intense), tandis
qu'une charge opposée s’accumulera & sa surface sur le coté le plus éloigné (champ
électrique externe plus faible). Le champ électrique étant nul au sein du conducteur de
la cage de Faraday, et la surface intérieure ne portant pas de charge, le champ électrique
sera également nul en tout point du volume encapsulé a I'intérieur de la cage de Faraday,
donc E(P) = 0.

— Situation 2 : La source de champ électrique se trouve ici a I'intérieur de la cage de Fa-
raday. Afin d’écranter parfaitement le champ électrique généré par la particule chargée
et puisque le conducteur est parfait, une charge positive —q doit apparaitre distribuée
sur la surface interne de la cage de Faraday. La charge étant centrée, la distribution
de charge positive se fera de maniére uniforme. Puisque le conducteur est globalement
neutre, une charge g doit apparaitre distribuée a la surface extérieure de la cage. Un
observateur placé en P percevra un champ électrique égal a celui d’une charge ponc-
tuelle de charge g < 0, donc E (P) = avec 7 le vecteur allant de la charge ¢ au
point P et r sa norme.

On remarque donc que la cage de Faraday est efficace pour écranter le volume qu’elle

contient des champs électriques statiques externes, mais n’a aucun effet pour la situation

opposée.

q T
4eq 737

Situation 1 : Situation 2 :

V-E = z (Gauss)
V-B =0 (Gauss pour B ) (26)
VxE = —%—IE ) (Faraday)
VxB =pud+ uoso%—f (Maxwell-Ampere)

ot E est le champ électrique, B est le champ magnétique, J est la densité de courant, p
est la densité de charge, g est la permittivité du vide et pg est la perméabilité du vide.

De plus, a l'intérieur du conducteur électrique, la loi d’Ohm locale nous donne que

-

J=o0.E (27)
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ou o, est la conductivité électrique du matériau.

En considérant ’absence de charge libre en tout point et en injectant 'information issue
de la loi d’Ohm locale dans I’équation de Maxwell-Ampere, les équations de Maxwell de-
viennent

VxB =po.E+ poco %
En prenant le rotationnel de I’équation de Faraday, on obtient

- - o - 0B

Vx(VxE)=-Vx 5
Pour le terme de gauche, on peut utiliser la propriété vectorielle rappelée dans I’énoncé pour
faire apparaitre le terme de gauche de la loi de Gauss et le Laplacien du champ électrique.
Pour le terme de droite, on peut utiliser le fait que le champ électrique étant différentiable
en tout temps et en tout point de ’espace, la dérivée temporelle et le rotationnel peuvent
étre permutés pour faire apparaitre le terme de gauche de I’équation de Maxwell-Ampere.
Ainsi, on obtient

SV B -AB=-20  VxB
——

= o :
o =M00cE+u080%
, OF O°E
& —AE = — — — 00 —==
HoO0 ¢ o1 HoE0 o2

Sachant que pgeg = C%, on obtient en effet I’expression de ’énoncé pour I’équation généra-
lisée pour le champ électrique

B 0E 1 0%E
AFE = pgoe—— +

o TEoe (28)

Pour trouver 'expression de I’équation d’onde généralisée pour le champ magnétique, le
raisonnement est similaire a celui de la question (b) mais il faut partir avec le rotationnel
de ’équation de Maxwell-Ampeére. En procédant ainsi, on obtient

VX(VXB):/L()UCVXE—I—,LLQE()VXE

Pour les mémes raisons que pour la question précédente, I’équation précédente peut éga-
lement se mettre sous la forme suivante ou ’on fait apparaitre les termes de gauche de
I’équation de la loi de Gauss pour B et de Faraday

=

Lo , L B .
V(V-B)—-AB = cVXFE —VxFE
( ) HoOc V X L +[10€0 X

N——" ot
=0 __oB __oB
ot ot
_ OB 0°B
& —AB = — —_— = —
H0oO0¢ a1 HoE0 912

Et donc pour I'équation d’onde généralisée pour le champ magnétique, on obtient

S OB 1 0°B
AB=moear t a2 ge




(d) En considérant la solution proposée dans I’énoncé de la forme

E(z,t) = Eyexp'@ %) ¢,

Alors pour le dérivé premiere en temps, on a

Bzt
9 (Z7 ) = iwE, esz(wt—kz) o
ot
= iwE(z,t)
Pour la dérivée seconde
OB (2,
aij? ) _ —w2E0 expz(wt—kz) e,
= —w?E(z,1)
Et effet pour le Laplacien
~ 62 ~ 82 =~ 82 ~
AFE(z,t) = 522 E(z,t) + 6y2E(z,t) + aZ2E(z,t)
0% =

En injectant les résultats intermédiaires précédent dans I’équation (28), on obtient

2 ~ ~

—

-, w? = ,
—k?E(z,t) = —;E(z,t) + iwpooE(z,t)
W2

2_7_.
S kS = 2 WO ¢

Il s’agit donc de trouver la racine carré d’'un nombre complexe k qui peut s’écrire sous la
forme k = k, 4+ ik;. On a donc deux expressions pour le carré de ce nombre complexe

k2 = ";—22 — WO,
k* = k? — k? + 2ik;k,

Deux nombres complexe étant égaux si et seulement si leurs parties réelles et imaginaires

sont égales, on a donc
2 2 _ w?
ki —ki =%
w
2k;k, = —wugo. — k, = —‘2‘72?0

En injectant I’expression de k, de la deuxieme dans la premiere équation, on obtient

Pt
4k? b2
En posant X = kiz, on reconnait I’équation d’'un polyndéme du second degré de la forme
suivante ) 5 5 o
w WO
X?+5X - =0
2
c2 4k;
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Le discriminant de ce polynéme donne

3= (2)"+ oy

Le discriminant étant positif, les solution X4 sont de la forme

a3 () o
1) (e ()

Puisque I’énonce spécifie que o, > CQ‘ZO le terme de droite dans la racine ci-dessus est

dominant sur les autre et on a simplement

WHoO ¢

Xy =+
+ 9

k; étant par définition positif, le terme négatif ne nous intéresse pas et puisque X = k?, on
a, en passant a la racine, le résultat escompté

WHOO ¢
2

ki = & (30)

NB : 1l était possible d’utiliser une autre méthode passant par la racine d’une exponentielle
complexe de module et phase identique a k.

(e) Si on distingue le comportement de I'onde de maniére séparé pour les deux solutions pos-
sibles, on a :
— Lorsque k; = \/wpo./2 : L’onde peut s’écrire sous la forme

= wWHQTc .
E(Z, t) = EO esz\/T expl(wtfk,‘z) é»x

Donc on a une onde se propageant dans le matériaux avec une pulsation w et une
longueur d’onde 27 /k,, mais dont ’amplitude augmente de maniére exponentielle avec
la distance.

— Lorsque k; = —y/wpgo./2 : Cette fois ci on a

o _, [erooe
E(z,t) = Egexp z\/Tesz(wtfsz) g,

Donc le méme terme lié & la propagation de 'onde du cas précédent, mais cette fois-ci
I’amplitude diminue de maniére exponentielle. La distance caractéristique § de cette
décroissance s’exprime § = (wppoe./2) " V/2.
Dans notre cas la solution ou k; > 0 n’a pas de sens physique puisque cela impliquera une
augmentation exponentielle de 'amplitude de ’onde et donc de sont énergie qui divergerait.
NB : En pratique, la solution ou k; > 0 correspondrait a la solution physiquement accep-
table pour une onde se propageant vers les z négatif, c’est a dire avec k, < 0.
(f) En considérant la solution trouvé précédemment o ’onde électromagnétique décroit expo-
nentiellement avec une distance caractéristique ¢ dans le conducteur, on en déduis que pour
pouvoir écranter cette onde la conducteur doit étre plus épais que d. Si on note [ I’épaisseur
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caractéristique de la cage, alors cela se traduit par I'inégalité [-§ > 1. Le phénomeéne d’at-

ténuation étant indépendant de la direction de propagation de ’onde, ’écrantage se faire

aussi bien pour des ondes allant de I'intérieur vers extérieur de la cage que de 'extérieur
vers 'intérieur. En pratique ¢ est appelé épaisseur de peau, on remarque que cette grandeur
dépend de deux grandeurs pour lesquelles on peut s’intéresser aux cas limites :

— La pulsation de l’onde : Plus I'onde aura une pulsation/fréquence élevé, plus ’épaisseur
de peau sera fine et donc la cage de Faraday sera efficace. A faible fréquence par contre,
I’atténuation de I'onde sera moindre. Dans le cas statique ¢ est infini mais le phéno-
mene d’écrantage se fera principalement du fait de 'apparition de charge en surface du
conducteur (charge que l'on a négligé au début de I’étude du cas dynamique).

— La conductivité électrique du conducteur : Pour une pulsation donnée, la cage de Faraday
sera d’autant plus efficace que la conductivité électrique du matériau utilisé sera élevée.
Inversement, une cage de Faraday constitué d’un matériau isolant sera tres peu efficace.
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