Physique Générale : Fluides et électromagnétisme (MA) — Prof. C. Theiler

23 Juin 2023

Reglement de I'examen

Il est strictement interdit de consulter I'énoncé de lexamen avant le signal de début!

Avant de commencer un exercice, lire attentivement tout lénoncé. Certaines remarques, in-
dications, et hypothéses importantes peuvent étre a la fin de I'énoncé.
Il'y a quatre exercices. Les points attribués a chaque exercice sont indiqués.
Lutilisation du crayon a papier et du stylo rouge est interdite sur les feuilles rendues pour
correction.
Ecrire nom, prénom et numéro de table sur toutes les feuilles rendues, par exemple :

Marco Odermatt, MA XYZ
ol XYZ est le numéro de table noté sur le post-it posé au coin de votre table.
Lutilisation de téléphones portables, smartwatch, calculatrice, ou tout autre appareil électro-
nique est strictement interdite.
Lexamen dure en tout 3h30min a partir du signal de début.
Mettre votre carte CAMIPRO en évidence sur la table.
Il nest pas possible de quitter la salle avant 9h45, méme si lexamen a été rendu. De maniére
générale, il nest pas permis de quitter la salle sans autorisation.
Un formulaire manuscrit dune page A4 recto-verso ainsi que le formulaire du cours sont
autorisés durant lexamen.

Bon travail !
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Exercice 1 : Condensateur contenant un liquide (9 points)

On considére un condensateur plan avec des plaques de dimensions H et W, séparées par une
distance d. Ce condensateur contient un liquide enfermé entre ces deux plaques, comme montré
dans la figure. Le liquide est incompressible, de densité p, et il forme un angle de contact 6 avec
les plagques du condensateur. La tension superficielle entre le liquide et I'air est v. Du point de vue
électrostatique, le fluide peut étre considéré comme un diélectrique de susceptibilité électrique . Le
tout est sujet a la gravité et lair environnant est a la pression pu;,, et sa susceptibilité électrique est
négligeable. Le support, un isolant électrique, garde le liquide entre les deux plaques.

Les parties e)-f) sont indépendantes des parties a)-d).

(a)

(f)

Patm

Q
<«
=

ég liquide
W

h =7

support isolant

Déterminez la pression dans le liquide juste en dessous du ménisque (linterface liquide-gaz).
Est-elle inférieure ou supérieure 3 puyn ? La distance d est suffisamment courte pour que la
forme du ménisque puisse étre approximativement considérée comme cylindrique.

La hauteur h du liquide est telle que p = patmn au fond du liquide. Exprimez h en fonction des
quantités données. Vous pouvez négliger la variation de hauteur dans le ménisque.

Quelle est la pression au fond du liquide si la distance entre les plaques est diminuée a d/27?
On suppose que le liquide ne dépasse pas la hauteur H.

Dans la situation de la question a), quel est le sens de la force horizontale totale sur chacune
des plaques due au liquide et a lair? Le calcul explicite des forces n'est pas demandé, mais
justifiez votre réponse et faites un dessin indiquant le sens des forces horizontales totales sur
chaque plaque.

Exprimez la capacité du condensateur dans la situation de la question a) en fonction des
quantités données, en supposant ici que la hauteur A du liquide est connue. Vous pouvez vous
mettre dans le cas idéal d < W et d < H et supposer que le ménisque est horizontal.
Toujours dans la situation de la question a), on applique maintenant une tension U entre les
deux plaques. Quelle est la charge du condensateur 7 Et quelle est la valeur du champ électrique
entre les plaques au-dessus et en dessous du ménisque ?

Solution :

()

Comme l'interface liquide-air est courbée, la pression puu, au dessus du ménisque sera
différente de la pression p; au dessous du ménisque. En plus, on sait que p1 < pgrm comme
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la surface est concave. La différence de pression peut étre calculée grace a la loi de Laplace.
Comme on suppose que la forme du ménisque est cylindrique, la loi nous donne

Ap =~ (1)

ou R est le rayon de courbure maximale de la surface. On obtient R = Cc(l)/s 29 grace a des

considérations trigonométriques. La loi de Laplace nous donne donc

2v cosf
Patm — P1 = 7 d (2)
2v cos
= P1 = Patm — 7 d < Patm- (3)

Pour obtenir une expression pour la hauteur A du liquide, on calcule la pression ps au fond
du liquide en considérant la pression hydrostatique et on impose po = patm. En appliquant
la loi de ’hydrostatique, on obtient

p2 = p1 + pgh, (4)

ol on a négligé la variation de hauteur dans le ménisque. En injectant le résultat de Eq.(3)
en Eq.(4), on obtient donc

2+ cos 0

d
2+ cos 0

d
: (7)

P2 = Datm — pgh (5)

— DPatm = Patm — Pgh (6)

2+ cos 6

:}h:
dpg

ol on a imposé pa = parm en Eq.(6). Eq.(7) nous donne donc 'expression pour h cherchée.

On peut répéter le raisonnement fait dans la partie a). On sait que 'angle de contact 6
ne dépend pas de la distance entre les plaques. Avec une distance d/2 entre les plaques,
le rayon de courbure devient donc R’ = C(i/s 4(% comme on peut vérifier grace aux mémes
considérations trigonométriques appliquées en a). En appliquant la loi de Laplace pour le

calcul de la pression p} juste en dessous du ménisque on a

4~ cos
pll = Patm — ’Yid . (8)

Comme le liquide est incompressible et a cause de la géométrie du probleme, la hauteur
du liquide devient A’ = 2h. La loi de la hydrostatique nous donne donc, pour ph,

Py =P + pgh’ (9)
4~ cos
= Patm — 7 d + P92h (10)
4ycos  4rycosb
' dpg dpg (1)
= Patm, (]_2)

ou en Eq.(10) on a injecté le résultat de Eq.(8), pendant que en Eq.(11) on a injecté
Pexpression de h obtenue en Eq.(7) pour la partie b). On a donc obtenu la méme valuer
de pression de la partie b) : Eq.(12) montre que la pression au fond du liquide ne dépend
pas, dans ce cas, de la distance entre les deux plaques.

4/22



(d)

Les forces qui agissent sur les plaques sont

— la résultante des forces de pression ﬁair dues a Dair,

— la résultante des forces de pression ﬁliq dues au liquide,
— les forces de tension superficielle ﬁy,

comme indiqué sur le dessin ci-dessous pour la plaque de gauche. Le bilan de ces forces
donne le sens de la force horizontale totale sur chaque plaque.

ﬁair
—>

N
- F’Y
Figer

Considérons d’abord la portion supérieure du condensateur, ou il n’y a pas de liquide.

Pour chaque plaque, les forces de pression dues a 'air et agissantes depuis l'intérieur et
. L 7 sup,int & T 12 .

depuis Pextérieur se compensent, avec F 7" = —F """ Considérons maintenant la

portion inférieure du condensateur. A priori, dans la situation de la question a), on ne
peut rien affirmer sur la relation entre les forces F aé:ff ezt F}Z:f it Ep effet, cette relation
depend des données du probléme 0, d,y. Le sens de la force horizontale totale sur chaque
plaque dépendra donc de la somme de ces deux forces avec la composante horizontale de
ﬁ% dirigée vers l'intérieur.

On remarque que si, de plus, on suppose que la pression au fond du liquide est p2 = patm,
comme dans les situations des questions b)-c), on a que |ﬁlf;f < |ﬁai?f | comme
Plig < Patm a tout point du liquide. Dans ce cas, on peut donc conclure que la résultante
des forces de pression ﬁair et F}iq, combinée avec leffet de 137, donne lieu & une force
horizontale totale dirigée vers l'intérieur pour chaque plaque.

Comme pour I'exercice 1 de la Série 10, on peut calculer la capacité soit en appliquant la
loi de Gauss soit en considérant le condensateur comme deux condensateurs en parallele.
On utilise ici cette deuxieme méthode. Pour les surfaces des condensateurs, on a S7 = Wh,

Sy = W(H — h). Les capacités des condensateurs sont donc

C, = 50(1—‘;;()”/]1 (13)
Cy = "mfj_m, (14)

ou en Eq.(14) on a negligé la susceptibilité électrique de I'air. La capacité équivalente Ce,
pour les deux condensateurs en paralléle est donc

Ceq = Cl + CQ (15)
N 60W
_.47i7(114-hx). (16)

La capacité d’un condensateur est définie comme C' = ¢/U. Comme discuté dans la partie
e), le condensateur de I'exercice est équivalent a un condensateur de capacité Ce,. La charge
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q du condensateur est donc donnée par
q= CeqU> (17)

ol Ceq est donnée par I'expression en Eq.(16). De plus, comme I'ensemble de la plaque doit
étre a la méme tension, on a Uy = Uy = U. Or, si P;, P, sont deux points appartenants a
la premiere et a la deuxieme plaque, on a

PQ_‘ .
U——/ E-dl = —Ed. (18)
Py

Comme la distance entre les deux plaques est la méme pour les deux portions du conden-
sateur, on a donc, en norme

U, U
E=t== 1
L (19)
U, U
By= 22 -2,
2= — = (20)

Les résultats obtenus en Egs.(19), (20) montrent donc que le champ electric est le méme
pour les deux portions du condensateur.
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Exercice 2 : Problémes variés (9 points)
Les parties a), b) et c) sont indépendantes!

(a) Vous poussez de leau (fluide incompressible de densité p) hors dune seringue de maniére sta-
tionnaire, comme montré dans la figure ci-dessous. La seringue est caractérisée par les sections
S1 et Sy et le piston se déplace avec une vitesse v. Utilisez [équation de Bernoulli pour estimer
la vitesse de leau a la sortie de la seringue et la pression dans leau au niveau du piston.

pisto n/ Patm

(b) On considére deux cordes de guitare identiques de longueur [ et et de masse par unité de
longueur . La premiére est installée avec une tension T, lautre avec une tension T+ AT, avec
AT <« T. Déterminez la fréquence fondamentale de chacune des deux cordes. Puis, déterminez
la fréquence du battement peggue si les deux cordes vibrent en méme temps, en développant le

résultat au premier ordre en =-.

(c) On considére deux cylindres creux de longueurs infinies, caractérisés par les rayons Ry, Ro, Rs,
et R4, comme montré dans la figure ci-dessous. On se place dans une situation stationnaire ol
le cylindre intérieur est parcouru par un courant le long du cylindre, selon laxe z. La densité
du courant est constante a travers la section de ce cylindre et est donnée par jo. Ce cylindre
n'est pas chargé. Le cylindre externe porte une charge par unité de longueur 7 et n'est pas
traversé par un courant. Déterminez la norme et la direction du champ électrique et du champ
magnétique dans la région Ry < r < R3 entre les deux cylindres.

z R4 /

Solution :

(a) On utilise I’équation de Bernoulli le long de la ligne de courant horizontale ainsi que la
conservation de flux, donnée par
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1 1
p1+ 5,0“% =p2+ §PU% (21)
u151 = UQSQ (22)

En choisissant la surface 1 juste devant le piston (air S7) et la surface 2 a la sortie de la
seringue (air S3), cela impose que pa = patm €t up = v. En utilisant la conservation du flux,
cela donne

5,
-5

1 51\?
P1 = Patm + §pu% ((SD — 1) (24)

Nous avons vu dans le cours que pour une corde sous tension 71" et de masse par longueur
u, ’équation d’onde transversale peut s’écrire comme

U2 (23)

0? T 92
=2y (25)
ot u ox
avec ¢ = \/% la vitesse de 'onde. Pour une corde avec les deux extrémités fixées, la
fréquence fondamentale est
c
V= — 26
51 (26)
avec ¢ = \/% et ¢ = ,/TJFTAT pour premiere et deuxieme corde, respectivement, ce qui

donne les fréquences fondamentaux suivantes :

1 /T

vy = ﬂ E (27)
1 [T+ AT

Vy = g 7# (28)

Quand les deux cordes sont jouées, ils produisent des ondes sonores. Avec le principe de
superposition, nous avons vu dans le cours que cela crée un battement de fréquence Av
donnée par la moitié de la différence des deux fréquences, i.e.

Av = %(VQ — 1) (29)
1 T+ AT T
A

En faisant le développement limité du premier ordre autour de % on a

LT i AT LT 1T (31)
4\ T AT 2T

Et donc
Ay~ — | —— (32)

8/22



(c) Pour répondre a la question, on va utiliser la Loi dAmpere

fé-dfzuofzuoﬂﬁd?x (33)

Nous savons que le champ magnétique est selon €y. Ceci suit du fait que chaque plan
contenant ’axe des cylindres est un plan de symétrie pour le courant et de la regle de
Alors, pour le chemin fermé, nous considérons un cercle dans la section du céble avec
Ry < r < Rs. Nous trouvons,

fﬁﬂéfé@@MZBm%r (34)
— — R2
1o ff Jo - dA = 2mpojo / RdR (35)
R1
= mhojo(R3 — RY) (36)

Nous pouvons résoudre pour B(r) et nous avons donc

io(R2 — R?
2r
Par la loi de Gauss, nous pouvons définir un cylindre de longueur L et de rayon Re < 1 <
R3. Par symétrie, E' ne peut pas avoir une composante autre que radiale et nous voyons
qu’il n’y a pas de charge dans le volume délimité par ce cylindre, tel que

(37)

I 1
ﬁ E-dS = ﬁ Eé; - é,.dS = E(r)2nrL = :(Charge enfermée) = 0 (38)
0

= E=0 (39)

9/22



Exercice 3 : Tornade (11 points)
On considére une tornade associée a un écoulement d’air dont le champ de vitesse peut s'écrire sous
la forme suivante en coordonnées cartésiennes :

wr(z,y)€y = —wyy + wrey pour r = /22 + 32 < r,
Uz, y,z) =
B k —ky kx
€p = é. e, ourr=+/22+y2>r
r(z,y) x2+y2x+m2+y2y P Ty

avecw >0, k> 0etr. > 0. r(z,y) = /22 + y? est le rayon associé aux coordonnées cylindriques

dont I'origine est le centre de la tornade et €y = —(—yé, + €y ). Dans cet exercice, on considere I"air
r

comme un fluide parfait et incompressible de densité volumique pg constante. On pourra négliger
I'influence de la gravité.

(a)

Exprimez k en fonction de w et d'autres grandeurs données dans I'énoncé tel que (x, y, z) soit
une fonction continue. Dessinez qualitativement la norme du vecteur vitesse 4 en fonction de
r dans la situation ou la condition précédente est respectée.

—

Combien vaut oi ? Déterminez |'accélération d'un élément fluide en un point (z, y, z) arbitraire.
Détaillez les étapes du calcul.

Déterminez le champ de pression p(z,y, z) pour r < r. sachant que p(r = 7.) = pc.

Un écoulement est appelé irrotationnel si Vx i = 0. Est-ce que 1 est un écoulement irrotationnel
en tout point de I'espace ? Justifiez votre réponse.

Nous nous placons maintenant en magnétostatique. Est-il possible d'avoir un champ magnétique
B dont I'expression est identique (aux unités pres) a celle du champ de vitesse 4 donnée dans
cet exercice ? Justifiez votre réponse.

Solution :

(a) Les expressions du champ de vitesse @ étant continue sur chacun de leur domaine respectif,

la seule discontinuée possible est sur le cercle r = r.. Pour que sur ce cercle le champ de

vitesse soit continu on doit avoir wr.€¢y = —ey, V0. Cette continuité implique la relation
Te
suivante entre k et w

2
k = wr;

Sous ces conditions, ’expression du champ de vitesse peut se réécrire uniquement en fonc-
tion de w et r. et on a en coordonnées cartésiennes

w(—yey + xéy) , Vvx2+y2 <.
. B 5
u(x,y, z) = . .
(2,9, 2) 77"78(_%% +x8,) , V¥ /22 + 42 > 71,

$2+y2

(40)

ce qui donnerait en en coordonnées cylindriques

Trois observations sont importantes pour tracer le champ de vecteur @(z,y, 2) :

— En tout point de I’espace, le vecteur vitesse est selon la direction azimutale.

— Pour r <7, on a ||i|| = wr et donc la norme de la vitesse augmente linéairement au fur
et a mesure que ’on s’éloigne du centre de la tornade.

10/22



2
— Pour r > r. on a ||| = w'E et donc la norme de la vitesse diminue selon Iinverse de
la distance du centre de la tornade une fois que ’on a passé le rayon caractéristique de
la tornade.
En tenant compte des deux dernieres observations, on peut tracer la norme du champ de
vecteur vitesse associé a la tornade. Ce tracé en fonction de r est visible sur la figure ci-
dessous.
Profil de ||| en fonction de r
(w=10rad.s™ ', r. =10 m )

100 T T T T
80 | : 8
T 60| ! |
: [
= | ]|, r > re
s 40 + | N
20 | | 1
0 | [ Te | | |
0 5 10 15 20 25 30

En incluant la premiere observation, on peut tracer le champ du vecteur vitesse de 1’écou-
lement dans le plan (zy) & un z quelconque (ceci n’était pas demandé dans ’énoncé). Ce
tracé est visible sur la figure ci-dessous.

Champ du vecteur vitesse 4 dans le plan (zy)
(w=10rad.s7t, r. =10 m )

30 ‘ ‘ | | |

20 [ vy v v r e u(xa% Z) _

LU i eSS INERRRR R

10| 440y sy pree=SSNNARRR AR

> yxxxx\i\‘{i\\\\\y///v///ffffff

N\\\\\\\\\Ww//////ﬁﬂﬂ

—20 F N NN NN NSNS R FITTTTAAAA A
—30 | | |

| |
-30 =20 —-10 O 10 20 30

z (m)

b) Le champ de vitesse ne présente pas de dépendance temporelle. On en déduit que 1’écoule-
( p p p p D q

ment est stationnaire et donc que 'on a — = (0. Pour autant, ’accélération d’un élément

ot
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fluide n’en est pas pour autant nulle puisque 'accélération d’un élément fluide s’écrit

Di i

Dt o TV

£y

—

O+ wl x| - |=||w]| x|, VWa2+y2<r,

_ 0
— z )
. 2 -y %75 2 -y
0+ wx2+y2 X . a WW X , V\/$2+y2>rc
0 4 0
0z
o o Y s
w—y—4+zrz—)w| = |, Va2 +y><r,
Ox oy 0
rg 0 0 r2 Y
w

/2 2
$2+y2(_y%+x%)wm g ,V X +y > Te

—z
WQ ) 7V\/$2+y2§7“c
0
0 —y 0 —y
- Yo \lzi 2]t 2 .2
" Oor \x*+vy oy \z?2 +vy
O.)2 QJi 2 _g L _|_x2 L 7v\/*752+y2>7'c
Ty You x2 + 92 oy \ 22 4 92
0

xr
S U R NCE RS
0

= —2zy®  a(e® —y?)
= A (Z’Q +y2)2 (.732 +y2)2
T
el I (sl s BT PR NVCR
(@2 +92)? (2% +9?)?
0
( T
—w? |y |, VWat P <re
. 0
- y .
i || WA
\ 0
D’ou I'expression finale en coordonnées cartésiennes
pi | ~w(ad +ud) S NCESTESS
g , ) .
Dt |~y +yd) W >

(41)

NB : Les calculs auraient été plus simples en restant en coordonnées cylindriques, mais il
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faut alors prendre la bonne expression de 'opérateur V dans ce systeme de coordonnées

( 0
0 ar. 0
0 . 12 wr |, Vr <rg

Diu 9z
Dt

2
w-<1, Vr>r.

—w?re,, Yr <r.
4

2’

—w
T‘3

€r, Yr > 1.

D’ou 'expression finale en coordonnées cylindriques

2 =
_ —wré,, Vr <r
b _ A
Dt —wz—gé}, Vr > 7.
r

(c) En labsence de viscosité et en négligeant la gravité, I’équation de Navier-Stokes s’écrit
simplement sous la forme suivante

Di -
— =—-VP
o Dt

En utilisant les résultats précédents, on obtient en coordonnées cartésiens

0
| % o (a2 + 47, TR S 7
VP=| — | P= r 1
B 2 c = > v 2 2 s p
éy Pow @1 72 (zey +yé&y) , Va2 +y Tch
0z

En projetant selon les différentes directions et en considérant les deux intervalles pour la
dépendance en r, on obtient
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oP
%:pow% , Va2 +y? <r.
oP 9 rd
P
ETRn pow?y , VVa+y? <.
dy (22 +y2)2 7 Y ‘
ob
L Jz
Par intégration on obtient
( 1
P(z,y,z) = §p0w2x2 + A(y, 2) , Va2 +y? <71, V(y, 2) € R?
1 r4
P(x,y,z):—§p0 W‘FB% , V@2 y? > e,V y,z)6R2
1
P(z,y,2) = 5pow’y? + C(x,2) , Va2 +y? <, V(x, 2) € R?
1 4
P(x,y,2) = §p0w2$y2+D x,2) , V\z2+y? >, V(z,2) € R?
( P(x,y,2) = E(z,y) V(x,y) € R

La dernier équation implique I'absence de variation en fonction de z. On peut donc se
focaliser sur les quatre premieres équations et 'unicité de la solution nous permet de
combiner les paires de solutions dans chaque intervalle, on obtient

1
P(z,y) = 5p0w2(3€2 +y)+ag , Va2 +y2 <.

1 rd
P(x,y):—§p0 W+ﬂ0 , YWat +y? >

g et By sont des constantes qui ne dépendent d’aucune variables, on peut lever 'indé-
terminée ces derniére en utilisant la condition P(z.,y.) = p. (avec 7. = /22 + y2). On
obtient le systéme d’équations suivant :

1
Pe = §p0w2(x§ +y2) + ap
1 9 7“4
= ——pow

+ Bo

Donc

1
2..2
Qo = Pe — 5 POW T

Bo = pe + 5pow2r2

En explicitant ’expression des constantes d’intégration on obtient

1 1
SP0w? (2% +y?) + pe — Spowr? Va2 +y? <o

2 2
P(z,y) = 1 7«4 1
*ipow2 2 42 + pe + 2P0W 7“2 , Vv 24+ y? >,

Apres quelques simplifications, on obtient ’expression de finale de la pression dans tout
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Pespace (mais seulement l'intervalle r < r. était demandée)

1 2.2 2 +y° /2 2
pc+§p0w Te 2 —1 , Vvat +y2 <re
5
1 T
pc—2p0w27“(2;< < 1> 7V\/ $2+y2>rc

22+ 92

P(z,y) = (42)

NB : de nouveau il était possible d’utiliser les coordonnées cylindriques, dans ce cas ci on
aurait eu

9
;. pow?ré,, Vr <1,
- 10
VE=11 | T~ 2lea >
7 o058 o >
0z

En projetant selon les différentes directions et en considérant les deux intervalles pour la
dépendance en r, on obtient

o = pow?r, Vr <r.
oP T
o = pow 5 Yr > re
Por _,
;=
!
\ 0z N
Par intégration on obtient
1
P(r,0,z) = §p0w2r2 + A0, 2) , Vr <re,V(0,2) € R
1 4
P(r,0,z) = —§p0w2:—; + B(6,2) , Vr>r.,V(0,z) € R
P(r,0,z) = C(r,2) V(r, 2) € R?
P(r,0,2) = D(r,0) ,V(r,0) € R?

L’unicité des équations implique que l'on a C(r,z) = D(r,0),¥(r,0,2z) € R3, cela est
possible uniquement si les solutions ne dépendent pas de 0 et z.

La condition P(r = r.) = p. permet de lever I'indéterminée sur les constantes d’intégration

1
—pow?r? + A =p,

2
1 27”21
_§p0w ﬁ +B = Pc

C

Donc

Apres quelques simplifications, on obtient ’expression de finale de la pression dans tout
Pespace (similaire a 1’expression obtenu en utilisant les coordonnées cartésienne)

1 2
Pec + 7POW2T3 <<T> - 1) 5 Vr < Te
2 Te

Pe) =4 :
ot 2e2 (e
Pe 2p0w T <<r> 1) , Yr >
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Un tracé de la pression dans une section a un z donné est visible sur la figure ci-dessous
(ceci n’était pad demandé dans 1’énoncé). On remarque que la pression vaut p. — pow?r2 /2
en r = 0 et augmente quadratiquement pour atteindre p. en r = r. puis décroit de maniére
inversement proportionnel au rayon r au-dela, jusqu’a atteindre asymptotiquement p. +
pow?r2 /2 & I'infini. On observe alors qu’il existe un cas non physique ot la pression pourrait
étre négative, pour ne pas tomber dans cette situation il faut respecter I'inégalité suivante
pe > pow?r?/2 ce qui peut sinterpréter comme étant le fait que la densité d’énergique
cinétique de rotation de la tornade en r. ne peut pas étre plus élevé que la densité d’énergie
associé a la pression.

Champ de pression P(r) dans le plan (zy)
(w=10 rad.s~!, r. = 10 m, p. = 101300 Pa )

-10°
T T
1.06
20 | -
1.04
<
&
— 1.02 ~
E o - 2
= 1 2
g
B
0.98
i20 - .
0.96
| | | | |
-30 —-20 -—-10 0 10 20 30
z (m)
(d) Calculons le rotationnel de .
En coordonnées cartésiennes, le rotationnel d’un vecteur @(zx,y, z) s’écrit
Ous _ duy
y 0z
Vxi= | Qe O
Oz oy
En appliquant cette formule a I’expression de ’énoncé pour @ en coordonnées cartésiennes
, on obtient
( /0-0
0—-0]), Vr<r.
. w+w
V xi=

0—
0 - o , Y1 > 1
et 3k
| Oz \ 22+ 12 Oy \* +y

2
)é’z, Vr > r,

16/22



Donc I’écoulement est donc irrotationnel uniquement a l'extérieur de la tornade puisque
l'on a

- 2we, , Vr <r.
frg — 4
v {O , Vr >, (43)

NB : De nouveau c’est un peu plus rapide en cylindrique. En coordonnées cylindriques, le
rotationnel d'un vecteur (r, 6, z) s’écrit (voir formulaire du cours)

10us  Oug
— o o
U= 0z or

0 ou

1 T
102 ) —

r <8r( )~ g >

En appliquant cette formule a I'expression de @ donnée dans 1’énoncé (dont les variations

se font uniquement en fonction de r selon la direction €p), on obtient

0 .
- %g(rwr) L, Vr<r,
V xu= a’r 7“2
1 c\ >
=—(rw—)e Vr >r
TBT( 7“) = ¢
gz ,V?"S’l’c

] 2w
10 , Yr >

On retrouve un résultat indique a celui en coordonnées cylindriques, c’est rassurant.

(e) Pour avoir un champ B @ dont lexistence est possible, il faut que ce dernier respecte
les équations de Maxwell. En magnétostatique uniquement deux équations font intervenir
le champ magnétique :

— L’équation de Gauss (ou Maxwell-Thomson) s’écrit

V-B=0
En coordonnées cartésiennes, la divergence d’un vecteur u(z,y, z) s’écrit

= Ouy  Ouy Ou,
V.u_6$+67y+8z

En appliquant cette formule & ’expression de ’énoncé pour i en coordonnées carté-

siennes on obtient

o(— 0
( y)—i-w—x—i-O, Vr <r.
. i — ox y
U= 9 — 9 x
wr?— 4 twrl—|—=—"—)40, Vr>r
Oz \ 22 + 92 Oy \ 22 + 2 ’ c
0, Vr <r,
= 2xy —2xy
2
wre ((x? e P y2>2) T

Dou V- @ = 0,Vr et donc un champ magnétique dont la distribution spatiale est
similaire a celle de @ (i.e. un champ B proportionnel a @) peut en effet a priori exister.
Il reste a étudier les implications de l'autre équation de Maxwell faisant intervenir B.
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NB : en coordonnées cylindriques I’expression de la divergence est la suivante

N _,_lﬁrur +1%+8uz
u_'r ox r 00 0z

Le fait que Vi = 0, Vr apparalt immédiatement puisque ¥ est uniquement selon éy et
que cette composante ne dépend pas de la coordonnée 6.
L’équation de la loi d’Ampére (ou Maxwell-Ampere) s’écrit

ﬁ X é = ,uo_:
En faisant une équivalence avec I’expression V x i, cette équation posseéde toujours une
solution et nous permet d’obtenir la distribution spatiale de la densité volumique de
courant j (similaire & la distribution spatiale de V x @) qui donnera naissance & un
champ magnétique dont la distribution spatiale sera identique a celle de 4 donnée par
I’énoncé. Concretement il faudrait avoir la forme suivante :

(44)

7 cgé’z , Vr <re
0 , Vr >

Le coefficient multiplicateur aura la dimension nécessaire pour maintenir ’homogénéité
(c’est & dire des C.m~2) et sa valeur aura une influence uniquement sur I'intensité du
champ magnétique généré par cette distribution de courants.
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Exercice 4 : Circuit tournant (10 points)

Un fil conducteur forme une boucle fermée en forme de cercle de rayon a, comme montré dans
la figure pour le temps t = 0. Cette boucle est fixée sur une poignée isolante et tourne autour
de I'axe vertical (I'axe z) a la fréquence angulaire w. La résistance dans la partie supérieure de la
boucle est égale a R. Elle est beaucoup plus grande que la résistance du reste du fil. La boucle
contient aussi une capacité égale a C' et une inductance égale a L, avec L beaucoup plus grande
que l'auto-inductance du reste du circuit. Le tout est plongé dans un champ magnétique constant
dans |'espace et le temps, donné par Eext = Begt€y.

(a)

t=20
_—
—_—
C

—_—
Z

—_—
x_/

—

Quel est le minimum et le maximum du flux du champ magnétique B.,; a travers la boucle
fermée ? Choisir I'orientation de I'élément vectoriel de surface dS a t = 0 comme indiqué dans
la figure.

Calculez la f.é.m. €;,4(t) induite dans le circuit par le champ magnétique Boas.

Ecrivez la loi des mailles pour la boucle fermée. Définissez la direction positive du courant
I en accord avec la définition de dS (3 t = 0, ceci correspond au sens opposé a l'aiguille
d'une montre). Puis, dérivez par rapport au temps |'équation obtenue pour établir une équation
différentielle pour I. Si vous nétes pas siir du signe avec laquelle €;,,4(t) apparait dans la loi des
mailles, faites un choix a ce moment.

En notation complexe, on peut écrire la f.é.m. induite comme

Eind(t) = Eme™! (45)

ou €, € C est une constant et ~ indique des grandeurs complexes. Déterminez &,,. Puis,
injectez cette expression de €;,4(t) dans I'équation différentielle pour I trouvée dans la partie
(c) et cherchez une solution pour le courant dans le circuit de la forme I(t) = Ipe™*. Déterminez
Io.

A partir du résultat de (d), trouvez la forme réelle de I(t) dans le cas L = 0.

A partir du résultat de (e), déterminez la puissance moyennée dans le temps qui est dissipée
dans la résistance R. Est-elle égale a la puissance moyennée fournie par la f.é.m. induite?

Comment interprétez-vous ce résultat?
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Solution :

(a) Le flux du champ magnétique a travers la boucle fermée est,
Op = [[ Bew - S (46)

ou le flux est maximale quand le champ magnétique et le vecteur dS sont paralleles et
minimale quand ils sont anti-paralléles,

P = B, 4ma’ (47)
PP = —Begyma’ (48)
(b) La f.e.m. induite dans le circuit se trouve avec la loi de Faraday,

0P
€ind = — atBa (49)

alors il faut d’abord trouver une expression général du flux magnétique en fonction de
temps. A partir de la partie (a), nous savons que nous avons une situation sinosoidal, car
le flux magnétique oscille avec la rotation de la boucle, ou I'amplitude et donné par ®'£*,
®p5 =0 at=0. Nous pouvons donc écrire,

®p(t) = 7a®Begy sin (wt) (50)
Puis, on trouve la f.e.m. induite,
€ind(t) = —Ta2wBeg; cos (wt) (51)

(c) La loi des Mailles pour la boucle fermée s’écrit,

I
cina(t) — IR — L% - % =0 (52)

ou nous avons sommé les tensions a travers chaque composant électronique ainsi que la
f.e.m. induite qui représente la source de tension. La dérivée temporelle nous donne,

deipg  d?1  _dl 1

— +R— + — 53
dt dt? + dt * C’ (53)
ou nous trouvons de la partie (b),
d’I ar 1
LW + RE + c= 70*w? Begy sin (wt) (54)

(d) Nous pouvons récrire la f.e.m. induite en notation complexe comme,
€ind(t) = €mn(cos (wt) + isin (wt)) (55)

Puis, a partir de la réponse de (b), nous savons que,

Re(Eing) = —ma’wBegs cos (wt) (56)

Re(€ind) = Re(ép) cos (wt) — Im(&,,) sin (wt) (57)

En comparant ces deux équations, nous trouvons que Re(&,,) = —ma?wBey et Im(&,,) = 0.
Et donc nous trouvons que &, est en effet une quantité réelle, &, = —ma?wBey:.
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Cela nous donne,
d€ing
dt
Maintenant, en injectant ce résultat et le courant de la forme I(t) = Ipe™* dans I'équation
différentielle, nous trouvons,

= Epmiwe™t (58)

. - - T

Emiwe™! = —Lw?T + Riwl + o (59)

. -
Emiw = —Lw?Iy + Riwly + 50 (60)

~ 1
Emiw = Iy (—Lw2 + Riw + C> (61)

On trouve donc pour o, o

s Emiw (62)

(Riw — Lw? + %)
(e) La forme réelle de I(t) s’écrit,
Re(I) = Re(Ip) cos (wt) — Im(Ip) sin (wt). (63)
Dans le cas L = 0, nous avons,

A Emiw  émiw  Riw— 1/C _ Emw(wR +1/C) (64)
T (Riw+ L) (Riw+ L) Riw—1/C W?RE+1/C?

et donc, se rapellant que €, € R,

~ Emw?R
D) = —5—"5
Re(h) = e r1j00 (65)
- Emw/C
Im(ly) = 55—
mh) = gy 1)ce (66)
Nous pouvons écrire la forme réelle de I(¢) comme,
Re(I) = __tmt wR cos (wt) — 1 sin (wt) (67)
- Ww2R2+1/C? C
avec &y, = —ma’wBeyt.

(f) La puissance dissipée dans la résistance R est,

=2 2
€ w R

(W?R2 +1/C?)

2wR

Pr=1I°R=
R c

cos (wt) sin (wt)

(68)
La moyenne temporelle des fonctions trigonométriques sont : (sin?(z)) = (cos?(z)) = 1/2
et (sin (z) cos(z)) = 0. Donc, nous trouvons,

1
5 <w2R2 cos®(wt) + 7] sin?(wt) —

e Ww’R & WwR
Pr) = m 1/2w°R? = = 69
(Pr) = im 1 1/07) < [0 R+ 202> 2(w2R2 1+ 1/C7) (69)
La puissance fournie par la f.é.m induite est,
P = Teimg = ——Y (R cos (wt) —i— sin (wt) ) émcos (wt) (70
ind — Eznd—w2R2+1/02 w w —%C m (w €m w
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Dongc, pour la puissance moyennée, nous obtenons,

Emw e wR

@R 1 10 = e 1)

(Pund) = 5 (1)
La puissance moyennée fournie par la f.é.m induite est en effet égale a la puissance moyennée
dissipée par la résistance. La seule composante électrique qui dissipe de I’énergie est la
résistance : le condensateur fait seulement du stockage d’énergie. Donc, toute la puissance
induite doit étre dissipée par la résistance.
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