
Physique Générale : Fluides et électromagnétisme (MA) – Prof. C. Theiler

23 Juin 2023

Règlement de l’examen

Il est strictement interdit de consulter l’énoncé de lexamen avant le signal de début !

— Avant de commencer un exercice, lire attentivement tout lénoncé. Certaines remarques, in-
dications, et hypothèses importantes peuvent être à la fin de l’énoncé.

— Il y a quatre exercices. Les points attribués à chaque exercice sont indiqués.
— Lutilisation du crayon à papier et du stylo rouge est interdite sur les feuilles rendues pour

correction.
— Écrire nom, prénom et numéro de table sur toutes les feuilles rendues, par exemple :

Marco Odermatt, MA XYZ
où XYZ est le numéro de table noté sur le post-it posé au coin de votre table.

— Lutilisation de téléphones portables, smartwatch, calculatrice, ou tout autre appareil électro-
nique est strictement interdite.

— Lexamen dure en tout 3h30min à partir du signal de début.
— Mettre votre carte CAMIPRO en évidence sur la table.
— Il nest pas possible de quitter la salle avant 9h45, même si lexamen a été rendu. De manière

générale, il nest pas permis de quitter la salle sans autorisation.
— Un formulaire manuscrit dune page A4 recto-verso ainsi que le formulaire du cours sont

autorisés durant lexamen.

Bon travail !
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Exercice 1 : Condensateur contenant un liquide (9 points)
On considère un condensateur plan avec des plaques de dimensions H et W , séparées par une
distance d. Ce condensateur contient un liquide enfermé entre ces deux plaques, comme montré
dans la figure. Le liquide est incompressible, de densité ρ, et il forme un angle de contact θ avec
les plaques du condensateur. La tension superficielle entre le liquide et l’air est γ. Du point de vue
électrostatique, le fluide peut être considéré comme un diélectrique de susceptibilité électrique χ. Le
tout est sujet à la gravité et lair environnant est à la pression patm et sa susceptibilité électrique est
négligeable. Le support, un isolant électrique, garde le liquide entre les deux plaques.
Les parties e)-f) sont indépendantes des parties a)-d).

h =?

H

W

d

θ

patm

~g

support isolant

liquide

(a) Déterminez la pression dans le liquide juste en dessous du ménisque (linterface liquide-gaz).
Est-elle inférieure ou supérieure à patm ? La distance d est suffisamment courte pour que la
forme du ménisque puisse être approximativement considérée comme cylindrique.

(b) La hauteur h du liquide est telle que p = patm au fond du liquide. Exprimez h en fonction des
quantités données. Vous pouvez négliger la variation de hauteur dans le ménisque.

(c) Quelle est la pression au fond du liquide si la distance entre les plaques est diminuée à d/2 ?
On suppose que le liquide ne dépasse pas la hauteur H.

(d) Dans la situation de la question a), quel est le sens de la force horizontale totale sur chacune
des plaques due au liquide et à lair ? Le calcul explicite des forces n’est pas demandé, mais
justifiez votre réponse et faites un dessin indiquant le sens des forces horizontales totales sur
chaque plaque.

(e) Exprimez la capacité du condensateur dans la situation de la question a) en fonction des
quantités données, en supposant ici que la hauteur h du liquide est connue. Vous pouvez vous
mettre dans le cas idéal d � W et d � H et supposer que le ménisque est horizontal.

(f) Toujours dans la situation de la question a), on applique maintenant une tension U entre les
deux plaques. Quelle est la charge du condensateur ? Et quelle est la valeur du champ électrique
entre les plaques au-dessus et en dessous du ménisque ?

Solution :
(a) Comme l’interface liquide-air est courbée, la pression patm au dessus du ménisque sera

différente de la pression p1 au dessous du ménisque. En plus, on sait que p1 < patm comme
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la surface est concave. La différence de pression peut être calculée grâce à la loi de Laplace.
Comme on suppose que la forme du ménisque est cylindrique, la loi nous donne

∆p =
γ

R
, (1)

où R est le rayon de courbure maximale de la surface. On obtient R = d/2
cos θ grâce à des

considérations trigonométriques. La loi de Laplace nous donne donc

patm − p1 =
2γ cos θ

d
(2)

=⇒ p1 = patm − 2γ cos θ

d
< patm. (3)

(b) Pour obtenir une expression pour la hauteur h du liquide, on calcule la pression p2 au fond
du liquide en considérant la pression hydrostatique et on impose p2 = patm. En appliquant
la loi de l’hydrostatique, on obtient

p2 = p1 + ρgh, (4)

où on a négligé la variation de hauteur dans le ménisque. En injectant le résultat de Eq.(3)
en Eq.(4), on obtient donc

p2 = patm − 2γ cos θ

d
+ ρgh (5)

=⇒ patm = patm − 2γ cos θ

d
+ ρgh (6)

=⇒ h =
2γ cos θ

dρg
, (7)

où on a imposé p2 = patm en Eq.(6). Eq.(7) nous donne donc l’expression pour h cherchée.
(c) On peut répéter le raisonnement fait dans la partie a). On sait que l’angle de contact θ

ne dépend pas de la distance entre les plaques. Avec une distance d/2 entre les plaques,
le rayon de courbure devient donc R′ = d/4

cos θ , comme on peut vérifier grâce aux mêmes
considérations trigonométriques appliquées en a). En appliquant la loi de Laplace pour le
calcul de la pression p′1 juste en dessous du ménisque on a

p′1 = patm − 4γ cos θ

d
. (8)

Comme le liquide est incompressible et à cause de la géométrie du problème, la hauteur
du liquide devient h′ = 2h. La loi de la hydrostatique nous donne donc, pour p′2,

p′2 = p′1 + ρgh′ (9)

= patm − 4γ cos θ

d
+ ρg2h (10)

= patm − 4γ cos θ

dρg
+

4γ cos θ

dρg
(11)

= patm, (12)

où en Eq.(10) on a injecté le résultat de Eq.(8), pendant que en Eq.(11) on a injecté
l’expression de h obtenue en Eq.(7) pour la partie b). On a donc obtenu la même valuer
de pression de la partie b) : Eq.(12) montre que la pression au fond du liquide ne dépend
pas, dans ce cas, de la distance entre les deux plaques.
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(d) Les forces qui agissent sur les plaques sont
— la résultante des forces de pression ~Fair dues à l’air,
— la résultante des forces de pression ~Fliq dues au liquide,
— les forces de tension superficielle ~Fγ ,
comme indiqué sur le dessin ci-dessous pour la plaque de gauche. Le bilan de ces forces
donne le sens de la force horizontale totale sur chaque plaque.

~Fγ
~Fliq

~Fair

Considérons d’abord la portion supérieure du condensateur, où il n’y a pas de liquide.
Pour chaque plaque, les forces de pression dues à l’air et agissantes depuis l’intérieur et
depuis l’extérieur se compensent, avec ~F sup,int

air = −~F sup,ext
air . Considérons maintenant la

portion inférieure du condensateur. À priori, dans la situation de la question a), on ne
peut rien affirmer sur la relation entre les forces ~F inf,ext

air , ~F inf,int
liq . En effet, cette relation

depend des données du problème θ, d, γ. Le sens de la force horizontale totale sur chaque
plaque dépendra donc de la somme de ces deux forces avec la composante horizontale de
~Fγ , dirigée vers l’intérieur.
On remarque que si, de plus, on suppose que la pression au fond du liquide est p2 = patm,
comme dans les situations des questions b)-c), on a que |~F inf,int

liq | < |~F inf,ext
air | comme

pliq ≤ patm à tout point du liquide. Dans ce cas, on peut donc conclure que la résultante
des forces de pression ~Fair et ~Fliq, combinée avec l’effet de ~Fγ , donne lieu à une force
horizontale totale dirigée vers l’intérieur pour chaque plaque.

(e) Comme pour l’exercice 1 de la Série 10, on peut calculer la capacité soit en appliquant la
loi de Gauss soit en considérant le condensateur comme deux condensateurs en parallèle.
On utilise ici cette deuxième méthode. Pour les surfaces des condensateurs, on a S1 = Wh,
S2 = W (H − h). Les capacités des condensateurs sont donc

C1 =
ε0(1 + χ)Wh

d
(13)

C2 =
ε0W (H − h)

d
, (14)

où en Eq.(14) on a negligé la susceptibilité électrique de l’air. La capacité équivalente Ceq

pour les deux condensateurs en parallèle est donc

Ceq = C1 + C2 (15)

=
ε0W

d

(
H + hχ

)
. (16)

(f) La capacité d’un condensateur est définie comme C = q/U . Comme discuté dans la partie
e), le condensateur de l’exercice est équivalent à un condensateur de capacité Ceq. La charge
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q du condensateur est donc donnée par

q = CeqU, (17)

où Ceq est donnée par l’expression en Eq.(16). De plus, comme l’ensemble de la plaque doit
être à la même tension, on a U1 = U2 = U . Or, si P1, P2 sont deux points appartenants à
la première et à la deuxième plaque, on a

U = −
∫ P2

P1

~E · ~dl = −Ed. (18)

Comme la distance entre les deux plaques est la même pour les deux portions du conden-
sateur, on a donc, en norme

E1 =
U1

d
=

U

d
(19)

E2 =
U2

d
=

U

d
. (20)

Les résultats obtenus en Eqs.(19), (20) montrent donc que le champ electric est le même
pour les deux portions du condensateur.
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Exercice 2 : Problèmes variés (9 points)
Les parties a), b) et c) sont indépendantes !

(a) Vous poussez de leau (fluide incompressible de densité ρ) hors dune seringue de manière sta-
tionnaire, comme montré dans la figure ci-dessous. La seringue est caractérisée par les sections
S1 et S2 et le piston se déplace avec une vitesse v. Utilisez léquation de Bernoulli pour estimer
la vitesse de leau à la sortie de la seringue et la pression dans leau au niveau du piston.

(b) On considère deux cordes de guitare identiques de longueur l et et de masse par unité de
longueur µ. La première est installée avec une tension T , lautre avec une tension T +∆T , avec
∆T � T . Déterminez la fréquence fondamentale de chacune des deux cordes. Puis, déterminez
la fréquence du battement perçue si les deux cordes vibrent en même temps, en développant le
résultat au premier ordre en ∆T

T .
(c) On considère deux cylindres creux de longueurs infinies, caractérisés par les rayons R1, R2, R3,

et R4, comme montré dans la figure ci-dessous. On se place dans une situation stationnaire où
le cylindre intérieur est parcouru par un courant le long du cylindre, selon laxe z. La densité
du courant est constante à travers la section de ce cylindre et est donnée par j0. Ce cylindre
n’est pas chargé. Le cylindre externe porte une charge par unité de longueur η et n’est pas
traversé par un courant. Déterminez la norme et la direction du champ électrique et du champ
magnétique dans la région R2 < r < R3 entre les deux cylindres.

Solution :
(a) On utilise l’équation de Bernoulli le long de la ligne de courant horizontale ainsi que la

conservation de flux, donnée par
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p1 +
1

2
ρu21 = p2 +

1

2
ρu22 (21)

u1S1 = u2S2 (22)

En choisissant la surface 1 juste devant le piston (air S1) et la surface 2 à la sortie de la
seringue (air S2), cela impose que p2 = patm et u1 = v. En utilisant la conservation du flux,
cela donne

u2 =
S1

S2
v (23)

p1 = patm +
1

2
ρu21

((
S1

S2

)2

− 1

)
(24)

(b) Nous avons vu dans le cours que pour une corde sous tension T et de masse par longueur
µ, l’équation d’onde transversale peut s’écrire comme

∂2y

∂t2
=

T

µ

∂2y

∂x2
(25)

avec c =
√

T
µ la vitesse de l’onde. Pour une corde avec les deux extrémités fixées, la

fréquence fondamentale est

ν =
c

2l
(26)

avec c =
√

T
µ et c =

√
T+∆T

µ pour première et deuxième corde, respectivement, ce qui
donne les fréquences fondamentaux suivantes :

ν1 =
1

2l

√
T

µ
(27)

ν2 =
1

2l

√
T +∆T

µ
(28)

Quand les deux cordes sont jouées, ils produisent des ondes sonores. Avec le principe de
superposition, nous avons vu dans le cours que cela crée un battement de fréquence ∆ν
donnée par la moitié de la différence des deux fréquences, i.e.

∆ν =
1

2
(ν2 − ν1) (29)

=
1

4l

(√
T +∆T

µ
−

√
T

µ

)
(30)

En faisant le développement limité du premier ordre autour de ∆T
T on a

1

4l

√
T

µ

(√
1 +

∆T

T
− 1

)
≈ 1

4l

√
T

µ

(
1 +

1

2

∆T

T
− 1

)
(31)

Et donc

∆ν ≈ 1

8l

√
T

µ

∆T

T
(32)
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(c) Pour répondre à la question, on va utiliser la Loi dAmpère∮
~B · d~l = µ0I = µ0

x
~j0 · ~dA (33)

Nous savons que le champ magnétique est selon ~eθ. Ceci suit du fait que chaque plan
contenant l’axe des cylindres est un plan de symétrie pour le courant et de la règle de
Alors, pour le chemin fermé, nous considérons un cercle dans la section du câble avec
R2 < r < R3. Nous trouvons,∮

~B · d~l =
∮

B~eθ · ~eθdl = B(r)2πr (34)

µ0

x
~j0 · ~dA = 2πµ0j0

∫ R2

R1

RdR (35)

= πµ0j0(R
2
2 −R2

1) (36)

Nous pouvons résoudre pour B(r) et nous avons donc

B(r) =
µ0j0(R

2
2 −R2

1)

2r
(37)

Par la loi de Gauss, nous pouvons définir un cylindre de longueur L et de rayon R2 < r <
R3. Par symétrie, ~E ne peut pas avoir une composante autre que radiale et nous voyons
qu’il n’y a pas de charge dans le volume délimité par ce cylindre, tel que

{
~E · d~S =

{
E~er · ~erdS = E(r)2πrL =

1

ε0
(charge enfermée) = 0 (38)

⇒ E = 0 (39)
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Exercice 3 : Tornade (11 points)
On considère une tornade associée à un écoulement d’air dont le champ de vitesse peut s’écrire sous
la forme suivante en coordonnées cartésiennes :

~u(x, y, z) =


ωr(x, y)~eθ = −ωy~ex + ωx~ey pour r =

√
x2 + y2 ≤ rc

k

r(x, y)
~eθ =

−ky

x2 + y2
~ex +

kx

x2 + y2
~ey pour r =

√
x2 + y2 > rc

avec ω > 0, k > 0 et rc > 0. r(x, y) =
√

x2 + y2 est le rayon associé aux coordonnées cylindriques
dont l’origine est le centre de la tornade et ~eθ =

1

r
(−y~ex+x~ey). Dans cet exercice, on considère l’air

comme un fluide parfait et incompressible de densité volumique ρ0 constante. On pourra négliger
l’influence de la gravité.
(a) Exprimez k en fonction de ω et d’autres grandeurs données dans l’énoncé tel que ~u(x, y, z) soit

une fonction continue. Dessinez qualitativement la norme du vecteur vitesse ~u en fonction de
r dans la situation où la condition précédente est respectée.

(b) Combien vaut ∂~u

∂t
? Déterminez l’accélération d’un élément fluide en un point (x, y, z) arbitraire.

Détaillez les étapes du calcul.
(c) Déterminez le champ de pression p(x, y, z) pour r ≤ rc sachant que p(r = rc) = pc.
(d) Un écoulement est appelé irrotationnel si ~∇×~u = ~0. Est-ce que ~u est un écoulement irrotationnel

en tout point de l’espace ? Justifiez votre réponse.
(e) Nous nous plaçons maintenant en magnétostatique. Est-il possible d’avoir un champ magnétique

~B dont l’expression est identique (aux unités près) à celle du champ de vitesse ~u donnée dans
cet exercice ? Justifiez votre réponse.

Solution :
(a) Les expressions du champ de vitesse ~u étant continue sur chacun de leur domaine respectif,

la seule discontinuée possible est sur le cercle r = rc. Pour que sur ce cercle le champ de
vitesse soit continu on doit avoir ωrc~eθ =

k

rc
~eθ, ∀θ. Cette continuité implique la relation

suivante entre k et ω
k = ωr2c

Sous ces conditions, l’expression du champ de vitesse peut se réécrire uniquement en fonc-
tion de ω et rc et on a en coordonnées cartésiennes

~u(x, y, z) =

 ω(−y~ex + x~ey) , ∀
√
x2 + y2 ≤ rc

ω
r2c

x2 + y2
(−y~ex + x~ey) , ∀

√
x2 + y2 > rc

(40)

ce qui donnerait en en coordonnées cylindriques

~u(r, θ, z) =

 ωr~eθ , ∀r ≤ rc

ω
r2c
r
~eθ , ∀r > rc

Trois observations sont importantes pour tracer le champ de vecteur ~u(x, y, z) :
— En tout point de l’espace, le vecteur vitesse est selon la direction azimutale.
— Pour r ≤ rc on a ‖~u‖ = ωr et donc la norme de la vitesse augmente linéairement au fur

et à mesure que l’on s’éloigne du centre de la tornade.
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— Pour r > rc on a ‖~u‖ = ω
r2c
r

et donc la norme de la vitesse diminue selon l’inverse de
la distance du centre de la tornade une fois que l’on à passé le rayon caractéristique de
la tornade.

En tenant compte des deux dernières observations, on peut tracer la norme du champ de
vecteur vitesse associé à la tornade. Ce tracé en fonction de r est visible sur la figure ci-
dessous.

0 5 10 15 20 25 30
0

20

40

60

80

100

rc

r (m)

‖~u
‖
(m

.s
−
1
)

Profil de ‖~u‖ en fonction de r
(ω = 10 rad.s−1, rc = 10 m )

‖~u‖, r ≤ rc
‖~u‖, r > rc

En incluant la première observation, on peut tracer le champ du vecteur vitesse de l’écou-
lement dans le plan (xy) à un z quelconque (ceci n’était pas demandé dans l’énoncé). Ce
tracé est visible sur la figure ci-dessous.

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

~u(x, y, z)

rc

x (m)

y
(m

)

Champ du vecteur vitesse ~u dans le plan (xy)
(ω = 10 rad.s−1, rc = 10 m )

(b) Le champ de vitesse ne présente pas de dépendance temporelle. On en déduit que l’écoule-

ment est stationnaire et donc que l’on a ∂~u

∂t
= ~0. Pour autant, l’accélération d’un élément
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fluide n’en est pas pour autant nulle puisque l’accélération d’un élément fluide s’écrit

D~u

Dt
=

∂~u

∂t
+ (~u · ~∇)~u

=



~0 +

ω

−y
x
0

 ·


∂

∂x
∂

∂y
∂

∂z


ω

−y
x
0

 , ∀
√
x2 + y2 ≤ rc

~0 +

ω
r2c

x2 + y2

−y
x
0

 ·


∂

∂x
∂

∂y
∂

∂z


ω

r2c
x2 + y2

−y
x
0

 , ∀
√
x2 + y2 > rc

=


ω(−y

∂

∂x
+ x

∂

∂y
)ω

−y
x
0

 , ∀
√
x2 + y2 ≤ rc

ω
r2c

x2 + y2
(−y

∂

∂x
+ x

∂

∂y
)ω

r2c
x2 + y2

−y
x
0

 , ∀
√
x2 + y2 > rc

=



ω2

−x
−y
0

 , ∀
√
x2 + y2 ≤ rc

ω2 r4c
x2 + y2


−y

∂

∂x

(
−y

x2 + y2

)
+ x

∂

∂y

(
−y

x2 + y2

)
−y

∂

∂x

(
x

x2 + y2

)
+ x

∂

∂y

(
x

x2 + y2

)
0

 , ∀
√
x2 + y2 > rc

=



−ω2

x
y
0

 , ∀
√
x2 + y2 ≤ rc

ω2 r4c
x2 + y2


− −2xy2

(x2 + y2)2
− x(x2 − y2)

(x2 + y2)2

−y(−x2 + y2)

(x2 + y2)2
− 2yx2

(x2 + y2)2

0

 , ∀
√

x2 + y2 > rc

=


−ω2

x
y
0

 , ∀
√
x2 + y2 ≤ rc

ω2 r4c
x2 + y2

−x
−y
0

 , ∀
√
x2 + y2 > rc

D’où l’expression finale en coordonnées cartésiennes

D~u

Dt
=

 −ω2(x~ex + y~ey) , ∀
√
x2 + y2 ≤ rc

−ω2 r4c
(x2 + y2)2

(x~ex + y~ey) , ∀
√
x2 + y2 > rc

(41)

NB : Les calculs auraient été plus simples en restant en coordonnées cylindriques, mais il
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faut alors prendre la bonne expression de l’opérateur ~∇ dans ce système de coordonnées

D~u

Dt
=



~0 +


 0
ωr
0

 ·


∂

∂r
1

r

∂

∂θ
∂

∂z



 0
ωr
0

 , ∀r ≤ rc

~0 +




0

ω
r2c
r
0

 ·


∂

∂r
1

r

∂

∂θ
∂

∂z





0

ω
r2c
r
0

 , ∀r > rc

=



ω
∂

∂θ

 0
ωr
0

 , ∀r ≤ rc

ω
r2c
r2

∂

∂θ


0

ω
r2c
r
0

 , ∀r > rc

=


ω2r

∂~eθ
∂θ

, ∀r ≤ rc

ω2 r
4
c

r3
∂~eθ
∂θ

, ∀r > rc

=

 −ω2r~er, ∀r ≤ rc

−ω2 r
4
c

r3
~er, ∀r > rc

D’où l’expression finale en coordonnées cylindriques

D~u

Dt
=

 −ω2r~er, ∀r ≤ rc

−ω2 r
4
c

r3
~er, ∀r > rc

(c) En l’absence de viscosité et en négligeant la gravité, l’équation de Navier-Stokes s’écrit
simplement sous la forme suivante

ρ0
D~u

Dt
= −~∇P

En utilisant les résultats précédents, on obtient en coordonnées cartésiens

~∇P =


∂

∂x
∂

∂y
∂

∂z

P =

 ρ0ω
2(x~ex + y~ey) , ∀

√
x2 + y2 ≤ rc

ρ0ω
2 r4c
(x2 + y2)2

(x~ex + y~ey) , ∀
√
x2 + y2 > rc

1

ρ0

En projetant selon les différentes directions et en considérant les deux intervalles pour la
dépendance en r, on obtient
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

∂P

∂x
= ρ0ω

2x , ∀
√
x2 + y2 ≤ rc

∂P

∂x
= ρ0ω

2x
r4c

(x2 + y2)2
, ∀
√
x2 + y2 > rc

∂P

∂y
= ρ0ω

2y , ∀
√
x2 + y2 ≤ rc

∂P

∂y
= ρ0ω

2y
r4c

(x2 + y2)2
, ∀
√
x2 + y2 > rc

∂P

∂z
= 0

Par intégration on obtient

P (x, y, z) =
1

2
ρ0ω

2x2 +A(y, z) , ∀
√
x2 + y2 ≤ rc,∀(y, z) ∈ R2

P (x, y, z) = −1

2
ρ0ω

2 r4c
x2 + y2

+B(y, z) , ∀
√
x2 + y2 > rc,∀(y, z) ∈ R2

P (x, y, z) =
1

2
ρ0ω

2y2 + C(x, z) , ∀
√
x2 + y2 ≤ rc,∀(x, z) ∈ R2

P (x, y, z) = −1

2
ρ0ω

2 r4c
x2 + y2

+D(x, z) , ∀
√
x2 + y2 > rc,∀(x, z) ∈ R2

P (x, y, z) = E(x, y) , ∀(x, y) ∈ R2

La dernier équation implique l’absence de variation en fonction de z. On peut donc se
focaliser sur les quatre premières équations et l’unicité de la solution nous permet de
combiner les paires de solutions dans chaque intervalle, on obtient

P (x, y) =
1

2
ρ0ω

2(x2 + y2) + α0 , ∀
√
x2 + y2 ≤ rc

P (x, y) = −1

2
ρ0ω

2 r4c
x2 + y2

+ β0 , ∀
√
x2 + y2 > rc

α0 et β0 sont des constantes qui ne dépendent d’aucune variables, on peut lever l’indé-
terminée ces dernière en utilisant la condition P (xc, yc) = pc (avec rc =

√
x2c + y2c ). On

obtient le système d’équations suivant :
pc =

1

2
ρ0ω

2(x2c + y2c ) + α0

pc = −1

2
ρ0ω

2 r4c
x2c + y2c

+ β0

Donc 
α0 = pc −

1

2
ρ0ω

2r2c

β0 = pc +
1

2
ρ0ω

2r2c

En explicitant l’expression des constantes d’intégration on obtient

P (x, y) =


1

2
ρ0ω

2(x2 + y2) + pc −
1

2
ρ0ω

2r2c , ∀
√
x2 + y2 ≤ rc

−1

2
ρ0ω

2 r4c
x2 + y2

+ pc +
1

2
ρ0ω

2r2c , ∀
√
x2 + y2 > rc

Après quelques simplifications, on obtient l’expression de finale de la pression dans tout
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l’espace (mais seulement l’intervalle r ≤ rc était demandée)

P (x, y) =


pc +

1

2
ρ0ω

2r2c

(
x2 + y2

r2c
− 1

)
, ∀
√
x2 + y2 ≤ rc

pc −
1

2
ρ0ω

2r2c

(
r2c

x2 + y2
− 1

)
, ∀
√
x2 + y2 > rc

(42)

NB : de nouveau il était possible d’utiliser les coordonnées cylindriques, dans ce cas ci on
aurait eu

~∇P =


∂

∂r
1

r

∂

∂θ
∂

∂z

P =

 ρ0ω
2r~er, ∀r ≤ rc

ρ0ω
2 r

4
c

r3
~er, ∀r > rc

En projetant selon les différentes directions et en considérant les deux intervalles pour la
dépendance en r, on obtient



∂P

∂r
= ρ0ω

2r, ∀r ≤ rc

∂P

∂r
= ρ0ω

2 r
4
c

r3
, ∀r > rc

1

r

∂P

∂θ
= 0

∂P

∂z
= 0

Par intégration on obtient
P (r, θ, z) =

1

2
ρ0ω

2r2 +A(θ, z) , ∀r ≤ rc,∀(θ, z) ∈ R2

P (r, θ, z) = −1

2
ρ0ω

2 r
4
c

r2
+B(θ, z) , ∀r > rc,∀(θ, z) ∈ R2

P (r, θ, z) = C(r, z) ,∀(r, z) ∈ R2

P (r, θ, z) = D(r, θ) ,∀(r, θ) ∈ R2

L’unicité des équations implique que l’on a C(r, z) = D(r, θ), ∀(r, θ, z) ∈ R3, cela est
possible uniquement si les solutions ne dépendent pas de θ et z.
La condition P (r = rc) = pc permet de lever l’indéterminée sur les constantes d’intégration

1

2
ρ0ω

2r2c +A = pc

−1

2
ρ0ω

2 r
4
c

r2c
+B = pc

Donc 
A = pc −

1

2
ρ0ω

2r2c

B = pc +
1

2
ρ0ω

2r2c

Après quelques simplifications, on obtient l’expression de finale de la pression dans tout
l’espace (similaire à l’expression obtenu en utilisant les coordonnées cartésienne)

P (r) =


pc +

1

2
ρ0ω

2r2c

((
r

rc

)2

− 1

)
, ∀r ≤ rc

pc −
1

2
ρ0ω

2r2c

((rc
r

)2
− 1

)
, ∀r > rc
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Un tracé de la pression dans une section à un z donné est visible sur la figure ci-dessous
(ceci n’était pad demandé dans l’énoncé). On remarque que la pression vaut pc− ρ0ω

2r2c/2
en r = 0 et augmente quadratiquement pour atteindre pc en r = rc puis décroît de manière
inversement proportionnel au rayon r au-delà, jusqu’à atteindre asymptotiquement pc +
ρ0ω

2r2c/2 à l’infini. On observe alors qu’il existe un cas non physique où la pression pourrait
être négative, pour ne pas tomber dans cette situation il faut respecter l’inégalité suivante
pc > ρ0ω

2r2c/2 ce qui peut sinterpréter comme étant le fait que la densité d’énergique
cinétique de rotation de la tornade en rc ne peut pas être plus élevé que la densité d’énergie
associé à la pression.

rc

−30 −20 −10 0 10 20 30

−20

0

20

x (m)

y
(m

)

Champ de pression P (r) dans le plan (xy)
(ω = 10 rad.s−1, rc = 10 m, pc = 101300 Pa )

0.96

0.98

1

1.02

1.04

1.06

·105

Pr
es

su
re

/(
Pa

)

(d) Calculons le rotationnel de ~u.
En coordonnées cartésiennes, le rotationnel d’un vecteur ~u(x, y, z) s’écrit

~∇× ~u =


∂uz
∂y

− ∂uy
∂z

∂ux
∂z

− ∂uz
∂x

∂uy
∂x

− ∂ux
∂y


En appliquant cette formule à l’expression de l’énoncé pour ~u en coordonnées cartésiennes
, on obtient

~∇× ~u =



 0− 0
0− 0
ω + ω

 , ∀r ≤ rc
0− 0
0− 0

ωr2c
∂

∂x

(
x

x2 + y2

)
+ ωr2c

∂

∂y

(
y

x2 + y2

)
 , ∀r > rc

=


2ω~ez, ∀r ≤ rc

ωr2c

(
x2 + y2 − 2x2

(x2 + y2)2
+

x2 + y2 − 2y2

(x2 + y2)2

)
~ez, ∀r > rc

16/22



Donc l’écoulement est donc irrotationnel uniquement à l’extérieur de la tornade puisque
l’on a

~∇× ~u =

{
2ω~ez , ∀r ≤ rc
~0 , ∀r > rc

(43)

NB : De nouveau c’est un peu plus rapide en cylindrique. En coordonnées cylindriques, le
rotationnel d’un vecteur ~u(r, θ, z) s’écrit (voir formulaire du cours)

~∇× ~u =


1
r

∂uz
∂θ

− ∂uθ
∂z

∂ur
∂z

− ∂uz
∂r

1
r

(
∂

∂r
(ruθ)−

∂ur
∂θ

)


En appliquant cette formule à l’expression de ~u donnée dans l’énoncé (dont les variations
se font uniquement en fonction de r selon la direction ~eθ), on obtient

~∇× ~u =


1
r

∂

∂r
(rωr)~ez , ∀r ≤ rc

1
r

∂

∂r
(rω

r2c
r
)~ez , ∀r > rc

=

{
2ω~ez , ∀r ≤ rc
~0 , ∀r > rc

On retrouve un résultat indique à celui en coordonnées cylindriques, c’est rassurant.
(e) Pour avoir un champ ~B ∝ ~u dont l’existence est possible, il faut que ce dernier respecte

les équations de Maxwell. En magnétostatique uniquement deux équations font intervenir
le champ magnétique :
— L’équation de Gauss (ou Maxwell-Thomson) s’écrit

~∇ · ~B = 0

En coordonnées cartésiennes, la divergence d’un vecteur ~u(x, y, z) s’écrit

~∇ · ~u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

En appliquant cette formule à l’expression de l’énoncé pour ~u en coordonnées carté-
siennes on obtient

~∇ · ~u =


ω
∂(−y)

∂x
+ ω

∂x

∂y
+ 0, ∀r ≤ rc

ωr2c
∂

∂x

(
−y

x2 + y2

)
+ ωr2c

∂

∂y

(
x

x2 + y2

)
+ 0, ∀r > rc

=

 0, ∀r ≤ rc

ωr2c

(
2xy

(x2 + y2)2
+

−2xy

(x2 + y2)2

)
, ∀r > rc

D’où ~∇ · ~u = 0,∀r et donc un champ magnétique dont la distribution spatiale est
similaire à celle de ~u (i.e. un champ ~B proportionnel à ~u) peut en effet à priori exister.
Il reste à étudier les implications de l’autre équation de Maxwell faisant intervenir ~B.
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NB : en coordonnées cylindriques l’expression de la divergence est la suivante

~∇ · ~u =
1

r

∂rur
∂x

+
1

r

∂uθ
∂θ

+
∂uz
∂z

Le fait que ~∇ · ~u = 0,∀r apparaît immédiatement puisque ~u est uniquement selon ~eθ et
que cette composante ne dépend pas de la coordonnée θ.

— L’équation de la loi d’Ampère (ou Maxwell-Ampère) s’écrit

~∇× ~B = µ0
~j

En faisant une équivalence avec l’expression ~∇×~u, cette équation possède toujours une
solution et nous permet d’obtenir la distribution spatiale de la densité volumique de
courant ~j (similaire à la distribution spatiale de ~∇ × ~u) qui donnera naissance à un
champ magnétique dont la distribution spatiale sera identique à celle de ~u donnée par
l’énoncé. Concrètement il faudrait avoir la forme suivante :

~j ∝
{

ω~ez , ∀r ≤ rc
~0 , ∀r > rc

(44)

Le coefficient multiplicateur aura la dimension nécessaire pour maintenir l’homogénéité
(c’est à dire des C.m−2) et sa valeur aura une influence uniquement sur l’intensité du
champ magnétique généré par cette distribution de courants.
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Exercice 4 : Circuit tournant (10 points)
Un fil conducteur forme une boucle fermée en forme de cercle de rayon a, comme montré dans
la figure pour le temps t = 0. Cette boucle est fixée sur une poignée isolante et tourne autour
de l’axe vertical (l’axe z) à la fréquence angulaire ω. La résistance dans la partie supérieure de la
boucle est égale à R. Elle est beaucoup plus grande que la résistance du reste du fil. La boucle
contient aussi une capacité égale à C et une inductance égale à L, avec L beaucoup plus grande
que l’auto-inductance du reste du circuit. Le tout est plongé dans un champ magnétique constant
dans l’espace et le temps, donné par ~Bext = Bext~ey.

(a) Quel est le minimum et le maximum du flux du champ magnétique ~Bext à travers la boucle
fermée ? Choisir l’orientation de l’élément vectoriel de surface d~S à t = 0 comme indiqué dans
la figure.

(b) Calculez la f.é.m. εind(t) induite dans le circuit par le champ magnétique ~Bext.
(c) Écrivez la loi des mailles pour la boucle fermée. Définissez la direction positive du courant

I en accord avec la définition de d~S (à t = 0, ceci correspond au sens opposé à l’aiguille
d’une montre). Puis, dérivez par rapport au temps l’équation obtenue pour établir une équation
différentielle pour I. Si vous nêtes pas sûr du signe avec laquelle εind(t) apparaît dans la loi des
mailles, faites un choix à ce moment.

(d) En notation complexe, on peut écrire la f.é.m. induite comme

ε̃ind(t) = ε̃meiωt (45)

où ε̃m ∈ C est une constant et ∼ indique des grandeurs complexes. Déterminez ε̃m. Puis,
injectez cette expression de ε̃ind(t) dans l’équation différentielle pour I trouvée dans la partie
(c) et cherchez une solution pour le courant dans le circuit de la forme Ĩ(t) = Ĩ0e

iωt. Déterminez
Ĩ0.

(e) À partir du résultat de (d), trouvez la forme réelle de I(t) dans le cas L = 0.
(f) À partir du résultat de (e), déterminez la puissance moyennée dans le temps qui est dissipée

dans la résistance R. Est-elle égale à la puissance moyennée fournie par la f.é.m. induite ?
Comment interprétez-vous ce résultat ?

19/22



Solution :
(a) Le flux du champ magnétique à travers la boucle fermée est,

ΦB =
x

~Bext · d~S (46)

où le flux est maximale quand le champ magnétique et le vecteur d~S sont parallèles et
minimale quand ils sont anti-parallèles,

Φmax
B = Bextπa

2 (47)

Φmin
B = −Bextπa

2 (48)

(b) La f.e.m. induite dans le circuit se trouve avec la loi de Faraday,

εind = −∂ΦB

∂t
, (49)

alors il faut d’abord trouver une expression général du flux magnétique en fonction de
temps. A partir de la partie (a), nous savons que nous avons une situation sinosoidal, car
le flux magnétique oscille avec la rotation de la boucle, où l’amplitude et donné par Φmax

B ,
ΦB = 0 à t = 0. Nous pouvons donc écrire,

ΦB(t) = πa2Bext sin (ωt) (50)

Puis, on trouve la f.e.m. induite,

εind(t) = −πa2ωBext cos (ωt) (51)

(c) La loi des Mailles pour la boucle fermée s’écrit,

εind(t)− IR− L
dI

dt
− q

C
= 0 (52)

où nous avons sommé les tensions à travers chaque composant électronique ainsi que la
f.e.m. induite qui représente la source de tension. La dérivée temporelle nous donne,

dεind
dt

= L
d2I

dt2
+R

dI

dt
+

I

C
, (53)

où nous trouvons de la partie (b),

L
d2I

dt2
+R

dI

dt
+

I

C
= πa2ω2Bext sin (ωt) (54)

(d) Nous pouvons récrire la f.e.m. induite en notation complexe comme,

ε̃ind(t) = ε̃m(cos (ωt) + i sin (ωt)) (55)

Puis, à partir de la réponse de (b), nous savons que,

Re(ε̃ind) = −πa2ωBext cos (ωt) (56)

Re(ε̃ind) = Re(ε̃m) cos (ωt)− Im(ε̃m) sin (ωt) (57)

En comparant ces deux équations, nous trouvons que Re(ε̃m) = −πa2ωBext et Im(ε̃m) = 0.
Et donc nous trouvons que ε̃m est en effet une quantité réelle, ε̃m = −πa2ωBext.
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Cela nous donne,
dε̃ind
dt

= ε̃miωeiωt (58)

Maintenant, en injectant ce résultat et le courant de la forme Ĩ(t) = Ĩ0e
iωt dans l’équation

différentielle, nous trouvons,

ε̃miωeiωt = −Lω2Ĩ +RiωĨ +
Ĩ

C
(59)

ε̃miω = −Lω2Ĩ0 +RiωĨ0 +
Ĩ0
C

(60)

ε̃miω = Ĩ0

(
−Lω2 +Riω +

1

C

)
(61)

On trouve donc pour Ĩ0,
Ĩ0 =

ε̃miω(
Riω − Lω2 + 1

C

) (62)

(e) La forme réelle de I(t) s’écrit,

Re(I) = Re(Ĩ0) cos (ωt)− Im(Ĩ0) sin (ωt). (63)

Dans le cas L = 0, nous avons,

Ĩ0 =
ε̃miω(

Riω + 1
C

) =
ε̃miω(

Riω + 1
C

)Riω − 1/C

Riω − 1/C
=

ε̃mω(ωR+ i/C)

ω2R2 + 1/C2
(64)

et donc, se rapellant que ε̃m ∈ R,

Re(Ĩ0) =
ε̃mω2R

ω2R2 + 1/C2
(65)

Im(Ĩ0) =
ε̃mω/C

ω2R2 + 1/C2
(66)

Nous pouvons écrire la forme réelle de I(t) comme,

Re(I) =
ε̃mω

ω2R2 + 1/C2

(
ωR cos (ωt)− 1

C
sin (ωt)

)
(67)

avec ε̃m = −πa2ωBext.
(f) La puissance dissipée dans la résistance R est,

PR = I2R =
ε̃2mω2R

(ω2R2 + 1/C2)2

(
ω2R2 cos2(ωt) +

1

C2
sin2(ωt)− 2ωR

C
cos (ωt) sin (ωt)

)
(68)

La moyenne temporelle des fonctions trigonométriques sont : 〈sin2(x)〉 = 〈cos2(x)〉 = 1/2
et 〈sin (x) cos(x)〉 = 0. Donc, nous trouvons,

〈PR〉 =
ε̃2mω2R

(ω2R2 + 1/C2)2

(
1/2ω2R2 +

1

2C2

)
=

ε̃2mω2R

2(ω2R2 + 1/C2)
(69)

La puissance fournie par la f.é.m induite est,

Pind = Iεind =
ε̃mω

ω2R2 + 1/C2

(
ωR cos (ωt)− i

1

C
sin (ωt)

)
ε̃m cos (ωt) (70)
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Donc, pour la puissance moyennée, nous obtenons,

〈Pind〉 =
ε̃mω

2(ω2R2 + 1/C2)
ωRε̃m =

ε̃2mω2R

2(ω2R2 + 1/C2)
(71)

La puissance moyennée fournie par la f.é.m induite est en effet égale à la puissance moyennée
dissipée par la résistance. La seule composante électrique qui dissipe de l’énergie est la
résistance : le condensateur fait seulement du stockage d’énergie. Donc, toute la puissance
induite doit être dissipée par la résistance.

22/22


