
Physique Générale : Fluides et électromagnétisme (MA) � Prof. C. Theiler

22 Juin 2021

Règlement de l'examen

Il est strictement interdit de consulter l'énoncé de l'examen avant le signal de début !

� Avant de commencer un exercice, lire attentivement tout l'énoncé. Certaines remarques, in-
dications, et hypothèses importantes peuvent être à la �n de l'énoncé.

� Il y a quatre exercices. Les points attribués à chaque exercice sont indiqués.
� L'utilisation du crayon à papier et du stylo rouge est interdite sur les feuilles rendues pour

correction.
� Écrire nom, prénom et numéro de table sur toutes les feuilles rendues, par exemple :

Andri Ragettli, MA XYZ
où XYZ est le numéro de table noté sur le post-it posé au coin de votre table.

� L'utilisation de téléphones portables, smartwatch, calculatrice, ou tout autre appareil électro-
nique est strictement interdite.

� L'examen dure en tout 3h à partir du signal de début.
� Mettre votre carte CAMIPRO en évidence sur la table.
� Il n'est pas possible de quitter la salle avant 8h45, même si l'examen a été rendu. De manière

générale, il n'est pas permis de quitter la salle sans autorisation.
� Un formulaire manuscrit d'une page A4 recto-verso ainsi que le formulaire du cours sont

autorisés durant l'examen.

Bon travail !
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Exercice 1: Vidange d'une baignoire et siphon (9 points)
Vous avez �ni de prendre un bain dans votre baignoire et vous laissez couler l'eau (liquide incompres-
sible de densité ρL), qui passe à travers un tube de section carrée constante (de côté 2a) vers une
canalisation, comme indiqué dans la �gure à gauche. La baignoire a une longueur L, une largeur K,
et est initialement remplie d'eau à une hauteur H. La pression de l'air dans votre salle de bain est
p0. La pression de l'air dans la canalisation est pcan.
Remarques : Les points A, B, et C dans la �gure se trouvent au milieu de la section du tube. Vous
pouvez négliger les e�ets de capillarité dans cet exercice et considérer l'eau comme un �uide parfait.
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(a) En utilisant le Théorème de Bernoulli, trouvez la vitesse de l'eau à l'entrée de la canalisation
(point C dans la �gure) en fonction des paramètres donnés dans le texte et la �gure. Vous
pouvez supposer que L · K est beaucoup plus grand que la section du tube, de sorte que la
vitesse à la surface du liquide peut être négligée dans ce calcul.

(b) Quelle est la pression de l'eau aux points A et B ?

(c) En supposant que pcan = p0, combien de temps faudra-t-il pour que la baignoire soit vidée ?

On considère maintenant la baignoire vide, et l'on est dans la situation indiquée dans la �gure à
droite, avec p0 = pcan. Le siphon (partie du tube en forme de �U�) est rempli d'eau comme indiqué
et permet d'isoler votre salle de bain du gaz et des odeurs de la canalisation.

(d) Maintenant, la pression dans la canalisation augmente. Quelle est la surpression pcan− p0 maxi-
male admissible pour éviter que l'air de la canalisation puisse entrer dans la salle de bain ?
Supposez que cela sera le cas dès que la surface d'eau dans la partie droite du siphon se situera
à une hauteur plus basse que la ligne rouge hachurée dans le dessin de droite. Supposez que
les dimensions du tube sont telles que l'eau dans la partie gauche du siphon ne remonte pas
jusqu'au point A. Faire un dessin de la situation.

(e) On revient dans la situation décrite par la �gure de droite (p0 = pcan). Avant de partir de
chez vous pour une longue période, et pour éviter que l'eau dans le siphon ne s'évapore, vous
versez un peu d'huile alimentaire dans la baignoire. Cette huile (densité ρH = 0.9ρL) va �otter
sur la surface de l'eau du côté gauche du �U� du siphon, formant une couche d'épaisseur ∆Z.
Dessinez la situation �nale. Quel volume d'eau est parti dans la canalisation lors de cette action ?
Supposez que l'huile se trouve uniquement dans la partie verticale du tube.
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Solution:

(a) En utilisant le théorème de Bernoulli (1
2ρv

2 + ρgz + p =constant le long d'une ligne de

courant) sur un point sur la surface et en C, on obtient :

sur la surface : 1
2ρlv

2
0 + ρlg(H + h1) + P0 ≈ ρlg(H + h1) + P0 = const, car v0 ≈ 0

en C : 1
2ρlv

2
C + ρlghC +PC = 1

2ρlv
2
C +Pcan = const (on a utilisé que hC = 0 et PC = Pcan)

et donc, en simpli�ant,

vC =

√
2
P0 − Pcan

ρl
+ 2g(H + h1) (1)

(b) On compare le point C avec A, et on obtient par le théorème de Bernoulli :

1

2
ρlv

2
A + ρlghA + PA =

1

2
ρlv

2
C + ρlghC + PC .

En tenant compte de la conservation du �ux, on a que vA = vC , on trouve

ρlghA + PA = ρlghC + PC .

Et, en utilisant PC = Pcan, hC = 0 et hA = h1 on obtient

PA = Pcan − ρlgh1 (2)

De la même façon, en comparant le point C avec B, on trouve

PB = Pcan − ρlgh3 (3)

On peut aussi trouver PA (et aussi PB) en partant de la surface.

1

2
ρlv

2
A + ρlghA + PA =

1

2
ρlv

2
0 + ρlgh0 + P0,

⇒ 1

2
ρl

[
2
P0 − Pcan

ρl
+ 2g(H + h1)

]
+ ρlgh1 + PA = ρlg(h1 +H) + P0,

et donc, en réarrangeant :

PA = Pcan − ρlgh1.

(c) Comme dans cette partie Pcan = P0, l'équation 1 se simpli�e en vC =
√

2g(H + h1). En
considérant la conservation du �ux entre la surface et le point C (vHAH = vCAC), on
obtient l'expression de la vitesse de la surface ou le �ux du volume par le point A :

vH =
4a2

LK

√
2g(H + h1) (4)

ou du �ux du volume :

φ = 4a2
√

2g(H + h1). (5)

On procède en réarrangeant et en intégrant l'expression de la vitesse dH(t)
dt = −vH(t) :∫ 0

H

dH ′√
H ′ + h1

= −4a2
√

2g

LK

∫ ∆t

0
dt

−2
√
H ′ + h1|0H = −4a2

√
2g

LK
t|∆t0

−2
√
H + h1 = −4a2

√
2g

LK
∆t

∆t =
LK

a2
√

8g

(√
H + h1 −

√
h1

)
(6)
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(d) On commence par calculer la hauteur ∆z de liquide déplacée par la pression de

Figure 1 � Pression maximale dans la canalisation

la canalisation. De la �gure 1, en tenant compte des dimensions du tube, on peut voir que

∆z = h3 − h2 − 2a (7)

quand l'interface eau-air dans la partie droite du siphon arrive à la position de la ligne

rouge hachurée, en utilisant la loi de la pression hydrostatique, nous pouvons calculer la

pression :

Pcan = P0 + ρlg2∆z

ce qui, avec l'équation 7, nous donne le résultat

Pcan − P0 = ρlg(2h3 − 2h2 − 4a) (8)

(e) Comme on voit dans la �gure 2, la colonne d'huile de hauteur ∆z va déplacer un volume

d'eau de hauteur z2−z1 dans la canalisation. Pour trouver z2−z1, on commence par égaliser

la pression à gauche et à droite de la ligne au bas du siphon (voir la �gure) :

PL = ρlg(z1 − h2) + ρhg∆z + P0 = ρlg(z2 − h2) + P0 = PR

⇒ z2 − z1

∆z
=
ρh
ρl

⇒ z2 − z1 =
ρh
ρl

∆z

Donc, pour le volume d'eau parti dans la canalisation, on trouve

∆V = 4a2∆z
ρh
ρl

(9)
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Figure 2 � Huile dans le siphon
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Exercice 2: Écoulement (9 points)
On considère un écoulement stationnaire d'un �uide parfait et incompressible (ρ = ρ0 = const.). Le
champ de vitesse du �uide, en coordonnées cylindriques et pour r =

√
x2 + y2 ≥ R0, est donné par :

~u (~r) = ur(r)~er +
c0

r
~eθ, r ≥ R0

où c0 est une constante. La �gure suivante dé�nit les systèmes de coordonnées (cartésiennes et
cylindriques) utilisés.

R0

x

y

z

�

(a) Montrer que ~u (~r) satisfait l'équation de continuité si ur(r) = c1/r, où c1 est une constante.
On supposera par la suite que c1 = c0 = c > 0.

(b) Dessiner les vecteurs vitesse pour r = R0, r = 2R0, r = 3R0 et θ = 0, θ = π/4, θ = π/2
(donc, en neuf points de l'espace au total). Puis, dessiner qualitativement les lignes de courant.

(c) Calculer le �ux massique (masse par unité de temps) à travers une surface en forme de cylindre
de hauteur H et de rayon rcyl = 2R0. L'axe principal du cylindre est orienté selon ~ez et passe par
le point (x = 0, y = 0). Même question pour rcyl = 3R0. Les �ux sont-ils égaux ? Commenter.

(d) Donner l'expression de ~u (~r) dans le système de coordonnées cartésiennes (x,y,z) tel que dé�ni
dans la �gure.

(e) Calculer, en coordonnées cartésiennes, la composante x de accélération d'un élément �uide en
un point (x, y, z) avec

√
x2 + y2 ≥ R0.

Solution:

(a) L'écoulement étant stationnaire et incompressible, l'équation de continuité est satisfaite si

∇ · ~u = 0. On a, en coordonnées cylindriques,

∇ · ~u =
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

=
1

r

∂(rur)

∂r

car uz = 0 et uθ ne dépend pas de θ. On a alors

∇ · ~u = 0 ⇐⇒ 1

r

∂(rur)

∂r
= 0 ⇐⇒ rur = cst ⇐⇒ ur ∝

1

r
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et donc ur = c1
r = c

r satisfait bien l'équation de continuité.

(b) La �gure ci-dessous montre les vecteurs vitesse demandés (�èches rouges) et la forme des

lignes de courant (lignes bleues).

(c) Un cylindre de hauteur H et de rayon r = 2R0 est composé de trois faces :
� Les deux faces aux extrémités, dont le vecteur surface est orienté selon ~ez et −~ez.
� La face �circulaire�, dont le vecteur surface est orienté selon ~er, et s'exprime d~S = dS~er.
Le �ux massique Φ passant à travers la surface du cylindrique est donné par

Φ = ρ0

∫
S
~u · d~S.

Pour les deux faces aux extrémités, le �ux sera nul car ~u ⊥ ~ez. Il ne nous reste qu'à calculer

le �ux sur la face �circulaire�, Scirc,

Φ = ρ0

∫
Scirc

~u · d~S

= ρ0

∫
Scirc

( c
r
~er +

c

r
~eθ

)
· dS~er

= ρ0

∫
Scirc

c

r
dS

=
cρ0

2R0

∫
Scirc

dS

=
cρ0

2R0
2π2R0H

= 2πρ0cH

De la même façon, on a, pour un cylindre de rayon 3R0,

Φ′ = 2πρ0cH

On constate que Φ = Φ′. Les �ux sont égaux, ce qui n'est pas surprenant car l'écoulement est

incompressible : il ne peut pas y avoir �d'accumulation� de masse entre les deux cylindres.
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(d) Le passage entre coordonnées cartésiennes et cylindriques peut être e�ectué en utilisant que

{
~er = cos θ~ex + sin θ~ey

~eθ = − sin θ~ex + cos θ~ey

On peut donc réecrire

~u (~r) =
c

r
(cos θ~ex + sin θ~ey) +

c

r
(− sin θ~ex + cos θ~ey)

=
c

r
(cos θ − sin θ)~ex +

c

r
(sin θ + cos θ)~ey

et comme r =
√
x2 + y2, cos θ = x/r et sin θ = y/r, on a

~u (~r) =
c

x2 + y2
(x− y)~ex +

c

x2 + y2
(y + x)~ey

(e) La composante selon x de l'accélération d'un élément �uide est donnée, en régime station-

naire, par

Dux
Dt

= ux
∂ux
∂x

+ uy
∂ux
∂y

Calculons chacun de ces termes

ux
∂ux
∂x

=
c (x− y)

x2 + y2

∂

∂x

(
c

x2 + y2
(x− y)

)
=
c2 (x− y)

x2 + y2

∂

∂x

(
x− y
x2 + y2

)
=
c2 (x− y)

x2 + y2

(
x2 + y2 − 2x (x− y)

(x2 + y2)2

)
=
c2 (x− y)

(x2 + y2)3

(
y2 − x2 + 2xy

)
et

uy
∂ux
∂y

=
c (x+ y)

x2 + y2

∂

∂y

(
c

x2 + y2
(x− y)

)
=
c2 (x+ y)

x2 + y2

∂

∂y

(
x− y
x2 + y2

)
=
c2 (x+ y)

x2 + y2

(
−x2 − y2 − 2y (x− y)

(x2 + y2)2

)
=
c2 (x+ y)

(x2 + y2)3

(
y2 − x2 − 2xy

)
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et donc

Dux
Dt

=
c2 (x− y)

(x2 + y2)3

(
y2 − x2 + 2xy

)
+
c2 (x+ y)

(x2 + y2)3

(
y2 − x2 − 2xy

)
=

c2

(x2 + y2)3

[
(x− y)

(
y2 − x2 + 2xy

)
+ (x+ y)

(
y2 − x2 − 2xy

)]
=

c2

(x2 + y2)3

[
xy2 − x3 + 2x2y − y3 + yx2 − 2xy2 + xy2 − x3 − 2x2y + y3 − x2y − 2xy2

]
=

c2

(x2 + y2)3

[
−2x3 − 2xy2

]
=

−2c2

(x2 + y2)3x
(
x2 + y2

)
=

−2c2

(x2 + y2)2x
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Exercice 3: Barres chargées et mesure de la tension super�cielle (9 points)
On considère deux barres rectilignes, in�nies, parallèles, à une distance l l'une de l'autre, et de rayon a
(voir �gure). Les deux barres portent une densité de charge de surface constante, donnée par σel > 0.
Entre les deux barres, un �lm de liquide est suspendu, d'épaisseur 2a et également avec une extension
in�nie le long de la dimension y. Le liquide est un isolant et sa susceptibilité électrique est négligeable.

(a) Déterminer le champ ~E généré par la barre 1 pour r =
√
x2 + z2 < a et r =

√
x2 + z2 > a, en

fonction des paramètres donnés.

(b) Déterminer maintenant la force par longueur de barre que la barre 2 ressent à cause du champ
électrique généré par la barre 1. On peut supposer que a� l. Pourquoi cela simpli�e le calcul ?
Quelle est la direction de cette force ?

(c) Le système est en équilibre et on ne considère pas la force de gravité. En déduire la tension
super�cielle du liquide, γlg.

(d) Déterminer la di�érence de potentiel électrostatique entre les points A et B.

(e) Déterminer la di�érence de potentiel électrostatique entre les points C et D séparés par la
distance d le long de l'axe x.

Solution:

(a) Selon la loi de Gauss, le �ux du champ électrique ~E à travers une surface fermée Σ est

proportionel à la charge contenue dans cette surface, tel que∫
Σ

~E · ~dS =
Qint
ε0

(1)

Il est important de voir que le liquide isolant n'a�ecte pas le champ électrique, car χE �
1 ⇒ εr ≈ 1 ⇒ ε0εr ≈ ε0. Par symétrie de la barre 1, on peut voir que le champ électrique

généré par cette barre a uniquement une composante radiale, i.e. ~E = E(r)~er. On dé�nit

donc comme surface Σ un cylindre de rayon r et de longueur L en direction ~ey, avec l'axe

principale de ce cylindre égal à celui de la barre 1. Pour le cas de r < a, aucune charge

n'est contenue et ainsi :
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∫
Σ

~E · ~dS = 0 (2)∫
Σcirc

E(r)~er · dS ~er =

E(r)

∫
Σcirc

dS = E(r)2πrL =

⇒ E(r) = 0 (3)

où on a utilisé le fait que l'intégrale sur les 2 faces aux extrémités du cylindres est nulle, car

~er · ~dS = 0, ce qui permet de garder uniquement la face "circulaire". Dans le cas de r > a :

∫
Σ

~E · ~dS =

∫
Σcirc

E(r)~er · dS ~er =
2πaLσel

ε0

E(r)2πLr =
2πaLσel

ε0
(4)

⇒ E(r) =
σel
ε0

a

r
(5)

(b) En toute généralité, ~F = q ~E. Comme les charges sont distribuées sur la surface de la

barre, il faudrait intégrer sur toute la surface. Par symétrie, on peut voir que la force sur la

barre sera uniquement selon ~ex, i.e. les composantes selon ~ez s'annulent. Comme l� a, on
peut dire, avec une bonne approximation, que le champ E généré par la barre 1 varie très

faiblement à travers la surface de la barre 2, et est donné par E(l). Une partie de la barre

2 de longueur L contient une charge

QL = 2πaLσel (6)

La force par longueur résultante est donc répulsive et donnée par

F (l)

L
= 2πaE(l) =

2πa2σ2
el

ε0l
(7)

(c) Dans le bilan des forces, il y a la force électrique ainsi que 2 fois la force de surface (interface

en haut et en bas de la barre) :

∑
~F = 0 = ~Fel + 2 ~Fγ

=
2πa2σ2

elL

ε0l
− 2γlgL (8)

⇒ γlg =
πa2σ2

el

ε0l
(9)

(d) Pour déterminer le potentiel électrique, il faut considérer les 2 champs électriques, celui de

la barre 1 et celui généré par la barre 2. Ainsi, le champ électrique total résultant des 2

barres selon l'axe x entre le point A et B est donné par

~Etot = ~E1 + ~E2 =
σela

ε0x
~ex −

σela

ε0(l − x)
~ex (10)

La di�érence de potentiel est dé�nie par
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VB − VA = −
∫ B

A

~Etot · ~dl (11)

et en insérant les champs des deux barres, on obtient

VB − VA = −
∫ l−a

a

aσel
ε0

(
1

x
− 1

l − x

)
dx

= −
∫ l−a

a

aσel
ε0

(
1

x
+

1

x− l

)
dx

= −aσel
ε0

[ln(x) + ln(x− l))]l−aa (12)

= −aσel
ε0

[
ln

(
l − a
a

)
+ ln

(
−a
a− l

)]
= −aσel

ε0
ln

(
(l − a) · (−a)

(a− l) · a

)
= −aσel

ε0
ln (1) = 0 (13)

(e) Le champ ~E1(x) généré par la barre 1 le long de l'axe ~ex et pour x > a est ~E1(x) = σela
ε0x

~ex. Le

champ ~E2(x), généré par la barre 2 le long de l'axe ~ex et pour x > l+a, est ~E2(x) = σela
ε0(x−l) ~ex.

Ainsi on a que

VD − VC = −
∫ D

C
( ~E1 + ~E2) · ~dl (14)

= −
∫ d+l+a

l+a

aσel
ε0

(
1

x
+

1

x− l

)
dx

= −aσel
ε0

[ln(x) + ln(x− l)]d+l+a
l+a = −aσel

ε0
[ln(x · (x− l))]d+l+a

l+a

= −aσel
ε0

(ln((d+ l + a)(d+ a)− ln((l + a) a))

=
aσel
ε0

ln

(
(l + a) a

(d+ l + a)(d+ a)

)
(15)
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Exercice 4: Induction dans une boucle tournante (11 points)
Un �l conducteur forme une boucle fermée de largeur a et de longueur b, comme montré dans la
�gure. Cette boucle est �xée sur une poignée isolante et tourne autour de l'axe vertical à la fréquence
ν = ω/(2π), où ω est la pulsation. La lampe dans la partie supérieure de la boucle a une résistance R,
beaucoup plus grande que la résistance du reste du �l. Les deux bobines ont chacune une inductance
L, beaucoup plus grande que l'auto-inductance du reste du circuit. La boucle fermée est plongée
dans un champ magnétique constant dans l'espace et le temps, donné par ~Bext = Bext ~ey.

(a) Quel est le �ux du champ magnétique externe ~Bext à travers la boucle fermée pour les quatre
instants t = 0, 1/(4ν), 2/(4ν) et 3/(4ν) montrés dans la �gure. Choisir l'orientation de l'élément
vectoriel de surface d

−→
S comme indiqué dans la �gure.

Cette exercice continue sur la prochaine page.
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(b) Calculez la f.é.m εind(t) induite dans le circuit par le champ magnétique externe ~Bext.

(c) Pendant que la boucle tourne, la lampe clignote. À quels moments montrés dans la �gure la
lampe est allumée, et à quels moments est-elle éteinte, dans le cas où L = 0 ? (on suppose que
l'auto-inductance du circuit reste négligeable même si L = 0). Justi�ez votre réponse.

(d) On reprend le cas général L 6= 0. Écrivez la loi des mailles pour la boucle fermée. Dé�nissez la
direction positive du courant en accord avec la dé�nition de ~dS (donc dans le sens des aiguilles
d'une montre dans la �gure à t = 0). Si vous n'êtes pas sûr du signe avec laquelle εind(t)
apparaît dans la loi des mailles, faites un choix à ce moment.

(e) En notation complexe, on peut écrire la f.é.m induite comme

ε̃ind(t) = ε̃meiωt

où ε̃m ∈ C est une constante et ∼ indique des grandeurs complexes. Déterminez ε̃m. Puis,
injectez cette expression de ε̃ind(t) dans l'equation trouvée dans la partie d) et cherchez une
solution pour le courant dans le circuit de la forme Ĩ(t) = Ĩ0eiωt et déterminez Ĩ0.

(f) À partir du résultat de e), trouvez la forme réelle I(t).

(g) Maintenant, si L > 0, qu'est-ce qui change concernant le clignotement de la lampe par rapport
au résultat de la partie c) ?

(h) Discutez si la direction du courant trouvée, et donc le signe de la f.é.m. choisi dans la partie d),
est correcte ou non. Justi�ez votre réponse.

Solution:

(a) Le �ux du champ magnetique à travers la boucle est,

ΦB =

∫ ∫
boucle

~Bext · d~S. (1)

Le champ magnétique est orienté selon ~ey, la direction de d~S varie au cours du temps.

� A t = 0, Bext et d~S sont parallèles, et le �ux est donné par abBext.
� A t = 1

4ν , Bext et d
~S sont perpendiculaires, et le �ux est donc zéro.

� A t = 2
4ν , Bext et d

~S sont anti-parallèles, et le �ux est donné par −abBext.
� A t = 3

4ν , Bext et d
~S sont perpendiculaires, et le �ux est donc zéro.

(b) La fem induite par un changement de �ux magnétique est,

εind = − d

dt
ΦB(t). (2)

On doit donc trouver une forme génerale pour le �ux magnétique à travers la boucle à tout

temps.

On peut écrire d~S(t) comme dS cos(ωt)~ey − dS sin(ωt)~ex. Donc, la forme génerale pour le

�ux magnétique est,

ΦB(t) =

∫ ∫
boucle

Bext~ey · (cos(ωt)~ey − sin(ωt)~ex)dS =

∫ ∫
boucle

Bext cos(ωt)dS (3)

= Bext cos(ωt)

∫ ∫
boucle

dS = Bextab cos(ωt) (4)

A partir de cette forme, on peut calculer la fem induite,

εind = − d

dt
(Bextab cos(ωt)) = ωBextab sin(ωt). (5)
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(c) La lampe clignote. Donc, elle est certainement allumée quand le courant est maximal et

éteinte quand le courant est égal à zéro. Comme on néglige ici l'auto-inductance, le courant

est maximal quand εind est maximale et le courant est zéro quand εind = 0.

Le courant est maximal pour εind = ±ωBextab, qui correspond à sin(ωt) = ±1. On peut

donc dire que la lampe sera allumée pour,

ωt = (n+
1

2
)π → t =

(n+ 1/2)π

ω
=

(2n+ 1)π

2ω
=

2n+ 1

4ν
, (6)

ou n est un nombre entier (positif ou négatif).

Le courant est zéro quand εind = 0, qui correspond à sin(ωt) = 0. Donc, la lampe sera

éteinte pour

ωt = nπ → t =
nπ

ω
=

2nπ

2ω
=

2n

4ν
, (7)

ou n est encore un nombre entier (positif ou négatif).

Alors, pour t = 0 et t = 2/4ν, la lampe sera éteinte, et pour t = 1/4ν et t = 3/4ν, la lampe

sera allumée.

(d) Dé�nissant le courant dans le sens de l'aiguille d'une montre pour la �gure à t = 0, et
prenant εind dans la même direction, on trouve,

−IR− 2L
dI

dt
+ εind = 0. (8)

(e) On peut écrire ε̃ind(t) comme,

ε̃ind(t) = ε̃m(cos(ωt) + i sin(ωt)). (9)

Puis, on voit que la forme réelle est,

εind(t) = <(ε̃m) cos(ωt)−=(ε̃m) sin(ωt). (10)

De la partie (b), on sait que la partie réelle de ε̃ind(t) a la forme,

εind(t) = ωBextab sin(ωt). (11)

En comparaisant ces deux formes, on voit que <(ε̃m) = 0 et =(ε̃m) = −Bextabω, et donc,

ε̃m = −iBextabω et ε̃ind = −iBextabωeiωt (12)

En injectant ce résultat dans l'équation 8, avec Ĩ(t) = Ĩ0e
iωt, on a,

−iBextabωeiωt = Ĩ0e
iωt(R+ 2iωL), (13)

alors, on trouve,

Ĩ0 =
−iBextabω
R+ 2iωL

=
−iBextabω
R+ 2iωL

(R− 2iωL)

(R− 2iωL)
= −Bextabω

(2ωL+ iR)

R2 + 4ω2L2
(14)

(f) On peut écrire Ĩ0 en forme polaire, Ĩ0 = reiθ, où r =
√
<(Ĩ0)2 + =(Ĩ0)2 et, comme =(Ĩ0) < 0

et <(Ĩ0) < 0, θ = π + tan−1(=(Ĩ0)

<(Ĩ0)
),

r =
Bextabω

R2 + 4ω2L2

√
4ω2L2 +R2 =

Bextabω√
R2 + 4ω2L2

(15)
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θ = π + tan−1(
R

2ωL
) (16)

Puis, on trouve,

Ĩ(t) =
Bextabω√
R2 + 4ω2L2

exp

[
i

(
ωt+ π + tan−1(

R

2ωL
)

)]
. (17)

On peut écrire la partie réelle comme I(t) = r cos(θ + ωt),

I(t) =
Bextabω√
R2 + 4ω2L2

cos

[
ωt+ π + tan−1(

R

2ωL
)

]
(18)

On pourrait s'arreter là, mais pour mieux comparer I(t) avec εind(t), on procède de manière

suivante. On utilise cos(a+ π) = − cos(a) = sin(a− π/2),

I(t) =
Bextabω√
R2 + 4ω2L2

sin

[
ωt+ tan−1(

R

2ωL
)− π

2

]
. (19)

Autrement, on aurait pû écrire, comme pour la partie (e),

Ĩ(t) = Ĩ0(cos(ωt) + i sin(ωt)), (20)

I(t) = <(Ĩ0) cos(ωt)−=(Ĩ0) sin(ωt). (21)

Puis, du résultat de la partie (e),

I(t) =
Bextabω

R2 + 4ω2L2
[−2ωL cos(ωt) +R sin(ωt)] . (22)

(g) Selon l'expression trouvée dans l'équation 19, I(t) et εind(t) sont déphasés par φ = tan−1(R/2ωL)−
π/2, qui, pour R > 0 et L > 0, est −π/2 < φ < 0. Cela se voit aussi en notant que

φ = tan−1(2ωL/R). Maintenant, la lampe clignotera avec la même fréquence qu'avant,

mais elle sera retardé par rapport au cas d'avant par un angle |φ| = tan−1(2ωL/R), cor-
respondant à un temps |φ|/(2πν). Donc, on attendra plus de temps avant que la lampe

s'allume pour la première fois.

Alternativement, à partir de l'équation 22, on peut visualiser graphiquement le déphasage,

voir �gure.

−2π −π π 2π

−1

1

R sin(ωt) −2ωL cos(ωt) (R sin(ωt)− 2ωL cos(ωt))

La courbe (R sin(ωt)) (rouge) représente la forme du courant pour L = 0. En ajoutant la

composante au courant dû aux inducteurs, −2ωL cos(ωt) (bleu), on obtient la courbe noire,

qui est retardée au cours du temps.
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(h) De la règle de Lenz, le courant induit dans un circuit dû au changement du �ux du champ

magnétique est dans la direction tel que le champ magnétique qu'il crée lui-même s'oppose

au changement de �ux. On peut simpli�er l'argument en considérant la situation pour

L = 0, représenté par la courbe rouge dans la �gure. A t = 0, le �ux commence à diminuer

car la surface selon ~ey diminue. Alors, un courant est induit pour opposer cette diminution

de �ux. Un courant dans le sens de l'aiguille d'une montre renforcera le champ externe. La

courbe rouge dans la �gure indique en e�et un courant positif juste après t = 0, alors on a

choisi le bon signe de εind dans la loi des mailles dans la partie (d).
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