Physique Générale : Fluides et électromagnétisme (MA) — Prof. C. Theiler

22 Juin 2021

Reéglement de I'examen

Il est strictement interdit de consulter I'énoncé de 'examen avant le signal de début!

— Avant de commencer un exercice, lire attentivement tout I'énoncé. Certaines remarques, in-
dications, et hypothéses importantes peuvent étre a la fin de I'énoncé.

— Il'y a quatre exercices. Les points attribués a chaque exercice sont indiqués.

— L'’utilisation du crayon a papier et du stylo rouge est interdite sur les feuilles rendues pour
correction.

— Ecrire nom, prénom et numéro de table sur toutes les feuilles rendues, par exemple :

Andri Ragettli, MA XYZ

oll XYZ est le numéro de table noté sur le post-it posé au coin de votre table.

— L'utilisation de téléphones portables, smartwatch, calculatrice, ou tout autre appareil électro-
nique est strictement interdite.

— L’examen dure en tout 3h a partir du signal de début.

— Mettre votre carte CAMIPRO en évidence sur la table.

— |l n’est pas possible de quitter |a salle avant 8h45, méme si I'examen a été rendu. De maniére
générale, il n'est pas permis de quitter la salle sans autorisation.

— Un formulaire manuscrit d’'une page A4 recto-verso ainsi que le formulaire du cours sont
autorisés durant I'examen.

Bon travail |
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Exercice 1: Vidange d’'une baignoire et siphon (9 points)

Vous avez fini de prendre un bain dans votre baignoire et vous laissez couler I'eau (liquide incompres-
sible de densité pr), qui passe a travers un tube de section carrée constante (de coté 2a) vers une
canalisation, comme indiqué dans la figure a gauche. La baignoire a une longueur L, une largeur K,
et est initialement remplie d'eau & une hauteur H. La pression de |'air dans votre salle de bain est
po- La pression de |'air dans la canalisation est pean.

Remarques : Les points A, B, et C dans la figure se trouvent au milieu de la section du tube. Vous
pouvez négliger les effets de capillarité dans cet exercice et considérer I'eau comme un fluide parfait.

ligne de
p K courant p K
0 0
g
H ~r2a H ~= 2a
o P>p, \ I
® \ ®/1 ligne hachurée
] baignoire -
h, \/ﬂx h, ¥
h, h;
h, ©\ canalisation h,
i N L)Y / v \
pcan pcan
oo

(a)

(b)
(c)

En utilisant le Théoréme de Bernoulli, trouvez la vitesse de I'eau a I'entrée de la canalisation
(point C' dans la figure) en fonction des paramétres donnés dans le texte et la figure. Vous
pouvez supposer que L - K est beaucoup plus grand que la section du tube, de sorte que la
vitesse a la surface du liquide peut étre négligée dans ce calcul.

Quelle est la pression de I'eau aux points A et B?

En supposant que pcan = po, combien de temps faudra-t-il pour que la baignoire soit vidée ?

On considére maintenant la baignoire vide, et I'on est dans la situation indiquée dans la figure a
droite, avec pg = pcan- Le siphon (partie du tube en forme de «U») est rempli d'eau comme indiqué
et permet d’isoler votre salle de bain du gaz et des odeurs de la canalisation.

(d)

Maintenant, la pression dans la canalisation augmente. Quelle est la surpression pean — po mMaxi-
male admissible pour éviter que I'air de la canalisation puisse entrer dans la salle de bain?
Supposez que cela sera le cas dés que la surface d’eau dans la partie droite du siphon se situera
a une hauteur plus basse que la ligne rouge hachurée dans le dessin de droite. Supposez que
les dimensions du tube sont telles que I'eau dans la partie gauche du siphon ne remonte pas
jusqu'au point A. Faire un dessin de la situation.

On revient dans la situation décrite par la figure de droite (po = pcan). Avant de partir de
chez vous pour une longue période, et pour éviter que I'eau dans le siphon ne s'évapore, vous
versez un peu d'huile alimentaire dans la baignoire. Cette huile (densité pg = 0.9p1) va flotter
sur la surface de I'eau du c6té gauche du «U» du siphon, formant une couche d'épaisseur AZ.
Dessinez la situation finale. Quel volume d’eau est parti dans la canalisation lors de cette action ?
Supposez que I'huile se trouve uniquement dans la partie verticale du tube.
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Solution:

(a)

En utilisant le théoréme de Bernoulli (%pv2 + pgz + p =constant le long d’une ligne de
courant) sur un point sur la surface et en C, on obtient :

sur la surface : %pw% + mg(H + h1) + Py =~ pig(H + h1) + Py = const, car vy =~ 0

en C: %plv% + pighc + Po = %plvzc + P.qn = const (on a utilisé que hg = 0 et Po = Pegp)
et donc, en simplifiant,

l

P - Pcam

On compare le point C avec A, et on obtient par le théoréme de Bernoulli :

1 1
5/)1’031 + pigha + Pa = 5011% + pghc + Pc.

En tenant compte de la conservation du flux, on a que v4 = v, on trouve
pigha + Pa = pighc + FPe.
Et, en utilisant Po = Pegn, ho = 0 et h4a = h1 on obtient

’PA:Pcanfplghl‘ (2)
De la méme facon, en comparant le point C avec B, on trouve
’PB:Pcan_plgh?)‘ (3)

On peut aussi trouver P4 (et aussi Pg) en partant de la surface.
L L o
SPwat+ pigha + Pa = 5wy + pigho + o,
- lpl 2P0 — Pean
2 P

et donc, en réarrangeant :

+2g9(H + hl)] + pigh1 + Pa = pg(h1 + H) + P,

Py = Pean — nghl-

Comme dans cette partie Pe, = Py, équation 1 se simplifie en ve = /2g(H + hi1). En
considérant la conservation du flux entre la surface et le point C (vgAy = vcAc), on
obtient I’expression de la vitesse de la surface ou le flux du volume par le point A :

2

a
29(H+h 4
o = 50/ ) (@
ou du flux du volume :
¢ = 4a*/2g(H + hy). (5)
On procéde en réarrangeant et en intégrant I'expression de la vitesse dlﬁt) = —vy(t) :

/ B 4(12 /2g Atdt
g vVH +h LK J
—2VH + % = L} t4
4 2
H+hy =22 V gAt

At=— f(m Vi) (6)
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(d) On commence par calculer la hauteur Az de liquide déplacée par la pression de

Az

Az

FIGURE 1 — Pression maximale dans la canalisation

la canalisation. De la figure 1, en tenant compte des dimensions du tube, on peut voir que
AZ:hg—hQ—Qa (7)

quand l'interface eau-air dans la partie droite du siphon arrive & la position de la ligne
rouge hachurée, en utilisant la loi de la pression hydrostatique, nous pouvons calculer la
pression :

Pean = Py + p1g2Az

ce qui, avec I’équation 7, nous donne le résultat

Pean — Py = p1g(2hs — 2hs — 4a)| (8)

Comme on voit dans la figure 2, la colonne d’huile de hauteur Az va déplacer un volume
d’eau de hauteur zo — z; dans la canalisation. Pour trouver zo — 21, on commence par égaliser
la pression & gauche et a droite de la ligne au bas du siphon (voir la figure) :

P, = plg(21 — hg) + prgAz + Py = plg(ZQ — hQ) + Py = Pgp

22— 2 Ph
= = —
Az Pl

=2 — 2 = Ph A,
Pl

Donc, pour le volume d’eau parti dans la canalisation, on trouve

AV = 4a2AzP0 9)
Pl
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FIGURE 2 — Huile dans le siphon
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Exercice 2: Ecoulement (9 points)
On considére un écoulement stationnaire d'un fluide parfait et incompressible (p = py = const.). Le
champ de vitesse du fluide, en coordonnées cylindriques et pour 7 = /22 + y2 > Ry, est donné par :
c
i (7) = up(r)é, + &, 7> Ro
r

ol ¢ est une constante. La figure suivante définit les systémes de coordonnées (cartésiennes et
cylindriques) utilisés.

Q\’)
+
k/*\fl,x*
+
Vi
A
QIVé _ (lelo)
= ——2 7
VX2 +y?

-
/

= x2 + y2

(a) Montrer que w () satisfait I'équation de continuité si u,(r) = c1/r, ol c¢; est une constante.
On supposera par la suite que ¢y = cg =c¢ > 0.

(b) Dessiner les vecteurs vitesse pour r = Ry, 7 = 2Ry, r = 3Ry et 0 =0, 0 = w/4, 0 = 7/2
(donc, en neuf points de I'espace au total). Puis, dessiner qualitativement les lignes de courant.

(c) Calculer le flux massique (masse par unité de temps) a travers une surface en forme de cylindre
de hauteur H et de rayon r.,; = 2Ry. L'axe principal du cylindre est orienté selon €, et passe par
le point (x = 0,y = 0). Méme question pour 7¢,; = 3Ry. Les flux sont-ils égaux ? Commenter.

(d) Donner I'expression de i (') dans le systéme de coordonnées cartésiennes (x,y,z) tel que défini
dans la figure.

(e) Calculer, en coordonnées cartésiennes, la composante = de accélération d'un élément fluide en

un point (x, y, z) avec \/aﬁy2 > Ro.

Solution:
(a) L’écoulement étant stationnaire et incompressible, ’équation de continuité est satisfaite si
V -4 =0. On a, en coordonnées cylindriques,

10(ru;)  10up  Ou,

Vo= r Or r 00 0z
_ 10(ruy)
- r Or

car u, = 0 et ug ne dépend pas de 6. On a alors

19(ruy) 1

V-ii=0 < =0 < ru, = cst < U, xX —
r  Or r
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et donc u, = <+ = ¢ satisfait bien I’équation de continuité.

(b) La figure ci-dessous montre les vecteurs vitesse demandés (fleches rouges) et la forme des
lignes de courant (lignes bleues).

5 v |
R0=1 /\,b&
4" C=1 4 & A
’Qs//
3F N // -
Vs

2F \ J /'/ -
1} ’ ]
1k 4
2k 4
3k 4
4t 4
-5

-5 0 5

X

(¢) Un cylindre de hauteur H et de rayon r = 2Ry est composé de trois faces :
— Les deux faces aux extrémités, dont le vecteur surface est orienté selon €, et —¢.
— La face “circulaire”, dont le vecteur surface est orienté selon €, et §’exprime ds = dse,.
Le flux massique ® passant & travers la surface du cylindrique est donné par

@:m/ﬁd§
S

Pour les deux faces aux extrémités, le flux sera nul car 4 L €,. Il ne nous reste qu’a calculer
le flux sur la face “circulaire”, Scirc,

Scirc
c_, c_ -
= Po/ (767“ + 769) -dSe;
Scirc r r
~ o / ‘45
Scirc r

€pPo
= gs
2 RO ‘/Scirc

€pPo
= —2m2RgH
2R,
= 2mpocH
De la méme fagon, on a, pour un cylindre de rayon 3Ry,

(I)/ = 27Tp()CH

On constate que ® = ®’. Les flux sont égaux, ce qui n’est pas surprenant car I’écoulement est
incompressible : il ne peut pas y avoir “d’accumulation” de masse entre les deux cylindres.
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(d) Le passage entre coordonnées cartésiennes et cylindriques peut étre effectué en utilisant que

{é} = cos 0€; + sindg,

€p = — sin e, + cos e,

On peut donc réecrire

u(F) = ¢ (cos b€, + sinBe,)) + ¢ (—sin fée, + cos 0¢€))
r

”
= ; (cos@ —sinb) e, + ; (sin@ + cos ) €,

et comme 7 = /22 +y2, cos = x/r et sinf = y/r, on a

C

ﬁ(ﬂ:m(l’—y)e}—l— (y+z)éy

c
x2+y2

(e) La composante selon x de 'accélération d’un élément fluide est donnée, en régime station-

naire, par

Du, Oouy o Oug
Dt Yoz Y oy

Calculons chacun de ces termes

uz@uzzc(ﬂf—y) 0 ( c (z—y))

ox 22+ 42 Oz \ 22 + 12

-y 0 (a—y
2?4 y? Oz \ 2?4 y?

:Cﬂwy)(ﬁ+y2%ﬂww>

x? +y? (22 + y2)?
c? (x—y) , o 2
S @y VTR

et

u JR—
Y oy 2 +y2 Oy \ a2 +y?

Aty 0 (ac—y)

dus _clz+y) 0 <c(x_y))

22 +y? Oy \ a2+ y?
:cwx+y)<ﬂﬁ—y2—%Mw—w>
22 + 92 (22 + y2)?
A (z+y)

(y2 —z? - 2a:y)

(22 +y2)°
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et donc

Du, _ c*(z—y)
Dt (22 +42)°

02

T @212 [(z —y) (v° — 2 + 229) + (z +v) (v — 2% — 22y)]
02
T
62

= m [—2953 — 2xy2]
—2¢2

“@r )
—2¢2

2 e
(z2 +y?)

(22 +y2)°

(y2 — 224 2:(:y) + (y2 g2 Qxy)

?—a2® + 2% — P +ya® —2ay’ oy — 2P — 227y + P — 2ty — 2xy2]
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Exercice 3: Barres chargées et mesure de la tension superficielle (9 points)

On considére deux barres rectilignes, infinies, paralléles, a une distance [ I'une de I'autre, et de rayon a
(voir figure). Les deux barres portent une densité de charge de surface constante, donnée par o, > 0.
Entre les deux barres, un film de liquide est suspendu, d’épaisseur 2a et également avec une extension
infinie le long de la dimension y. Le liquide est un isolant et sa susceptibilité électrique est négligeable.

Film de
. . +00
+0<: liquide +oo .
\ \ IZa
\
Barre 2
Barre 1
Z
X
y\ A B L 3 C De —>
<4 <
-00 -00 -C0 d
d
& L2

(a)

Déterminer le champ E généré par la barre 1 pour r = V22 + 22 < a et r = V22 + 22 > a, en
fonction des paramétres donnés.

Déterminer maintenant la force par longueur de barre que la barre 2 ressent a cause du champ
électrique généré par la barre 1. On peut supposer que a < I. Pourquoi cela simplifie le calcul 7
Quelle est la direction de cette force?

Le systéme est en équilibre et on ne considére pas la force de gravité. En déduire la tension
superficielle du liquide, ;.

Déterminer la différence de potentiel électrostatique entre les points A et B.

Déterminer la différence de potentiel électrostatique entre les points C et D séparés par la
distance d le long de I'axe x.

Solution:

(a)

Selon la loi de Gauss, le flux du champ électrique E & travers une surface fermée ¥ est
proportionel a la charge contenue dans cette surface, tel que

by

€0

Il est important de voir que le liquide isolant n’affecte pas le champ électrique, car g <
1=¢€ ~1= €e ~ €. Par symétrie de la barre 1, on peut voir que le champ électrique
généré par cette barre a uniquement une composante radiale, i.e. E = E(r)é,. On définit
donc comme surface ¥ un cylindre de rayon r et de longueur L en direction €, avec 'axe
principale de ce cylindre égal & celui de la barre 1. Pour le cas de r < a, aucune charge
n’est contenue et ainsi :
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= E(r)=0 (3)

ol on a utilisé le fait que 'intégrale sur les 2 faces aux extrémités du cylindres est nulle, car
e -dS =0, ce qui permet de garder uniquement la face "circulaire”. Dans le cas de r > a :

S5 o 2mal
/E-dS:/ E(r)é; - dSe, = 2=%¢l

Z Zm"rc 60
oral,

E(r)2nLr = ~102%d (4)
€0
Ol Q

= B(r) =242 5

(r) g (5)

(b) En toute généralité, F = ¢E. Comme les charges sont distribuées sur la surface de la
barre, il faudrait intégrer sur toute la surface. Par symétrie, on peut voir que la force sur la
barre sera uniquement selon €3, i.e. les composantes selon €, s’annulent. Comme [ > a, on
peut dire, avec une bonne approximation, que le champ E généré par la barre 1 varie trés
faiblement a travers la surface de la barre 2, et est donné par E(l). Une partie de la barre
2 de longueur L contient une charge

QL =2waLog (6)

La force par longueur résultante est donc répulsive et donnée par

)

2 2 2
= 2maB(l) = 2 % l”el (7)
€0

(c¢) Dans le bilan des forces, il y a la force électrique ainsi que 2 fois la force de surface (interface
en haut et en bas de la barre) :

> F=0=F,+2F,

2rao2 L
= ld - 2’7lgL (8)
€0
ralo?
= Ng = 670161 (9)

(d) Pour déterminer le potentiel électrique, il faut considérer les 2 champs électriques, celui de
la barre 1 et celui généré par la barre 2. Ainsi, le champ électrique total résultant des 2
barres selon 'axe = entre le point A et B est donné par

OelQ _, OelQ N

E;otzﬁl+ﬁ2: £ €x — €x
€0T eo(l — x)

(10)

La différence de potentiel est définie par
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B
Vi — V= — / Fry - di (11)
A

et en insérant les champs des deux barres, on obtient

l—a
aoe]
VB_VA:_/ .
a

€ (i'_zix)dx
_ _/al—a a::l <316 n xl—l> du
_ _a;’od In(x) + In(z — 1)) (12)
< () ()
:_f?m<a&?bt?>:—f?mu):o (13)

() Le champ E) (z) généré par la barre 1 le long de I'axe €, et pour z > a est B (z) = Zedtey. Le

champ Eg(:ﬂ), généré par la barre 2 le long de ’axe € et pour x > [+a, est Eg(x) = Eo‘zgﬁl) €q.

Ainsi on a que

D
C
d+l+a
o / ace <1+ L )m
l+a €0 x z -1
aoe, a age “
— %% ln(a) + nfe — DI =~ e - (2 - DI
_ _ajel (In((d + 1+ a)(d + a) — In(( + a) a))
0
aael (l +a)a
_ ! 15
€0 n<(d+l+a)(d+a)> o)

13/18



Exercice 4: Induction dans une boucle tournante (11 points)

Un fil conducteur forme une boucle fermée de largeur a et de longueur b, comme montré dans la
figure. Cette boucle est fixée sur une poignée isolante et tourne autour de I'axe vertical a la fréquence
v =w/(2m), ol w est la pulsation. La lampe dans la partie supérieure de la boucle a une résistance R,
beaucoup plus grande que la résistance du reste du fil. Les deux bobines ont chacune une inductance
L, beaucoup plus grande que I'auto-inductance du reste du circuit. La boucle fermée est plongée
dans un champ magnétique constant dans 'espace et le temps, donné par Byt = Beyiéy.

(a) Quel est le flux du champ magnétique externe éezt a travers la boucle fermée pour les quatre
instants t = 0, 1/(4v), 2/(4v) et 3/(4v) montrés dans la figure. Choisir 'orientation de I'élément

vectoriel de surface d S comme indiqué dans la figure.

1
t = t=—
Lampe de iRy,
resistance R
Z B;x@ ® Q/@) ® §9XEX> ® ® ®
X ~r
Y ® ® ® ® ® ® ® ®
b das
® (L® ©® oL( [® ® ® ® ®
as
® ® ® ® ® ® ® ®
® ® ® ®
® ® ® ®
a
2 3
t=— t =—
4v 4v
e 0Qe o e Qe o
® ® ® & ® ® ® ®
o ds
® ® . ® ® ® ® ® ®
as
® ® ® ® ® ® ® ®
® ® ® ® ® ® l ® ®

Cette exercice continue sur la prochaine page.
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(b)
(c)

(d)

Calculez la f.&.m €;,4(t) induite dans le circuit par le champ magnétique externe Beut.

Pendant que la boucle tourne, la lampe clignote. A quels moments montrés dans la figure la
lampe est allumée, et & quels moments est-elle éteinte, dans le cas oo L = 07 (on suppose que
I'auto-inductance du circuit reste négligeable méme si L = 0). Justifiez votre réponse.

On reprend le cas général L # 0. Ecrivez la loi des mailles pour la boucle fermée. Définissez la
direction positive du courant en accord avec la définition de dS (donc dans le sens des aiguilles
d'une montre dans la figure a ¢ = 0). Si vous n'étes pas siir du signe avec laquelle €;,4(%)
apparait dans la loi des mailles, faites un choix & ce moment.

En notation complexe, on peut écrire la f.e.m induite comme

gind(t) = gnLeth

ol &, € C est une constante et ~ indique des grandeurs complexes. Déterminez é,,. Puis,
injectez cette expression de €;,4(t) dans I'equation trouvée dans la partie d) et cherchez une
solution pour le courant dans le circuit de la forme I(t) = Ipe™? et déterminez I,.

A partir du résultat de e), trouvez la forme réelle I(t).

Maintenant, si L > 0, qu’est-ce qui change concernant le clignotement de la lampe par rapport
au résultat de la partie c) ?

Discutez si la direction du courant trouvée, et donc le signe de la f.é&.m. choisi dans la partie d),
est correcte ou non. Justifiez votre réponse.

Solution:

(a)

Le flux du champ magnetique & travers la boucle est,

@B://’ Begt - dS. (1)
boucle

Le champ magnétique est orienté selon €, la direction de dS varie au cours du temps.

— At=0, Byt et dS sont paralléles, et le flux est donné par abBey:.
— A t= 41, B.y et dS sont perpendiculaires, et le flux est donc zéro.

v
— At= %, Be,t et dS sont anti-paralléles, et le flux est donné par —abBey:.
— At= %, Bea et dS sont perpendiculaires, et le flux est donc zéro.

La fem induite par un changement de flux magnétique est,

Pp(t). (2)

€ind — —

dt
On doit donc trouver une forme génerale pour le flux magnétique & travers la boucle a tout
temps.

On peut écrire dS(t) comme dS cos(wt)ey — dSsin(wt)e,. Donc, la forme génerale pour le
flux magnétique est,

B (t) = / /b B - cos(@t), = sin(w)e)dS = / /b Becos@as ()

= Beyt cos(wt) // dS = Beyrab cos(wt) (4)
boucle
A partir de cette forme, on peut calculer la fem induite,
d .
€ind = —%(Bemab cos(wt)) = wBegrabsin(wt). (5)
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()

La lampe clignote. Donc, elle est certainement allumée quand le courant est maximal et
éteinte quand le courant est égal a zéro. Comme on néglige ici 'auto-inductance, le courant
est maximal quand €;,4 est maximale et le courant est zéro quand €;,q = 0.
Le courant est maximal pour €,y = twBegrab, qui correspond a sin(wt) = +1. On peut
donc dire que la lampe sera allumée pour,

(n+1/2)r  (2n+1)m  2n+1

= (n+ S)r -t
wlt = (n — = =
2/ w 2w v

(6)

ou n est un nombre entier (positif ou négatif).
Le courant est zéro quand ¢;,4 = 0, qui correspond a sin(wt) = 0. Donc, la lampe sera

éteinte pour
wtznw%t:n—wz%—ﬂz% (7)
w 2w 4v’
ou n est encore un nombre entier (positif ou négatif).
Alors, pour t = 0 et t = 2/4v, la lampe sera éteinte, et pour ¢t = 1/4v et t = 3/4v, la lampe

sera allumée.

Définissant le courant dans le sens de l'aiguille d’une montre pour la figure a t = 0, et
prenant €;,4 dans la méme direction, on trouve,

dl
IR—2L% e =0
R g T €ind =0 (8)
On peut écrire €;,4(t) comme,
€ind(t) = €m(cos(wt) + isin(wt)). (9)

Puis, on voit que la forme réelle est,
€ind(t) = R(€y) cos(wt) — (€, sin(wt). (10)

De la partie (b), on sait que la partie réelle de €;,4(t) a la forme,

€ind(t) = wBegrabsin(wt). (11)
En comparaisant ces deux formes, on voit que R(€,,) = 0 et I(€,) = —Begrabw, et donc,
€m = —iBegtabw et Eng = —iBegrabwe™? (12)

En injectant ce résultat dans I'équation 8, avec I(t) = Ipe™*, on a,

—iBegrabwe™t = Ipe™* (R + 2iwL), (13)
alors, on trouve,

~ —iBegtabw  —iBegrabw (R — 2iwL) Bab
= = = — aow
"7 R+2iwL R+ 2iwL (R— 2iwl) et

(2w + iR)
R? 4+ 4022

(14)

On peut écrire I en forme polaire, I = ret?, ot r = \/§R(1:0)2 + S(Ip)? et, comme S(lp) <0

et R([p) <0,0=m —I—tan_l(%),

B iabw \/7 B iabw
= 4[24+ R = —— 15
" R2 + 4022 « + VR? + 4022 ( )
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" (16)

0=m+ tanfl(ﬁ
w

Puis, on trouve,

~ Be,.tab
I(t) = et
VR? + 4w?L?

On peut écrire la partie réelle comme I(t) = r cos(f + wt),

exp P <wt+—w-+tan1(zf2)>}. (17)

Begtabw
VR? + 40212

On pourrait s’arreter la, mais pour mieux comparer I(t) avec €;,4(t), on procéde de maniére

I(t) = cos [wt + 7 + tan ™! ( (18)

Mﬂ

suivante. On utilise cos(a + ) = — cos(a) = sin(a — 7/2),
_ Begrabw . 4, R ™
Autrement, on aurait pa écrire, comme pour la partie (e),
I(t) = Ip(cos(wt) + i sin(wt)), (20)
I(t) = R(Ip) cos(wt) — S(Ip) sin(wt). (21)
Puis, du résultat de la partie (e),
Beyiab
I(t) = EE{§Z%;%§[—leAxﬁ@uﬂ-+]%$nQu@]. (22)

(2) Selon l'expression trouvée dans I’équation 19, I(t) et €;,,4(t) sont déphasés par ¢ = tan~!(R/2wL)—

/2, qui, pour R > 0 et L > 0, est —7/2 < ¢ < 0. Cela se voit aussi en notant que

¢ = tan~!(2wL/R). Maintenant, la lampe clignotera avec la méme fréquence qu’avant,

mais elle sera retardé par rapport au cas d’avant par un angle |¢| = tan~'(2wL/R), cor-
respondant & un temps |¢|/(27v). Donc, on attendra plus de temps avant que la lampe
s’allume pour la premiére fois.

Alternativement, & partir de ’équation 22, on peut visualiser graphiquement le déphasage,

voir figure.

—— Rsin(wt) —— —2wL cos(wt) —— (R sin(wt) — 2wL cos(wt))

La courbe (Rsin(wt)) (rouge) représente la forme du courant pour L = 0. En ajoutant la
composante au courant di aux inducteurs, —2wL cos(wt) (bleu), on obtient la courbe noire,
qui est retardée au cours du temps.
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(h) De la régle de Lenz, le courant induit dans un circuit dit au changement du flux du champ
magnétique est dans la direction tel que le champ magnétique qu’il crée lui-méme s’oppose
au changement de flux. On peut simplifier 'argument en considérant la situation pour
L = 0, représenté par la courbe rouge dans la figure. A t = 0, le flux commence & diminuer
car la surface selon €, diminue. Alors, un courant est induit pour opposer cette diminution
de flux. Un courant dans le sens de ’aiguille d’'une montre renforcera le champ externe. La
courbe rouge dans la figure indique en effet un courant positif juste aprés ¢ = 0, alors on a
choisi le bon signe de €;,4 dans la loi des mailles dans la partie (d).
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