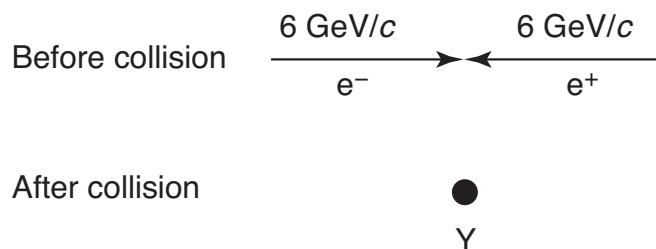


## General Physics II: Tutorial Material 4

1) In an inertial frame  $S$ , two objects,  $a$  with its rest mass  $m_a$  and  $b$  with its rest mass  $m_b$ , are moving with velocity vectors  $\vec{v}_a$  and  $\vec{v}_b$ , respectively, with  $\theta$  being the angle between the two vectors. After colliding each other,  $a$  and  $b$  got stuck each other and became one object  $x$  with its rest mass  $M$  and velocity  $\vec{V}$ .

- Write down the relativistic energy-momentum relations among  $a$ ,  $b$  and  $x$ .
- Calculate  $M$  as a function of  $m_a$ ,  $m_b$ ,  $|\vec{v}_a|$ ,  $|\vec{v}_b|$  and  $\theta$ .
- Show that when  $\vec{v}_a = \vec{v}_b$ , we have  $M = m_a + m_b$ .
- Explain the result obtained for 3), from the principle of relativity.

2) An electron,  $e^-$ , and its anti-particle, a positron,  $e^+$ , collide head-on with an equal momentum  $p_0 = 6 \text{ GeV}/c$ . The rest masses of the electron and positron are equal and about  $0.0005 \text{ GeV}/c^2$ . Therefore, they are totally negligible in the energy  $E = \sqrt{m_0^2 c^4 + p^2 c^2}$ , leading to  $E^- = p_0 c = 6 \text{ GeV}$  and  $E^+ = p_0 c = 6 \text{ GeV}$  for  $e^-$  and  $e^+$  energies, respectively.



- When they collide, the electron and positron annihilate and one new particle,  $Y$ , is produced. Using the energy-momentum conservation law, calculate the momentum and rest mass of  $Y$  in the  $\text{GeV}/c$  and  $\text{GeV}/c^2$  units, respectively.
- We collide an  $e^-$  with a momentum of  $9 \text{ GeV}/c$  head-on with an  $e^+$ . What is the momentum of  $e^+$  in order to produce after the collision only one  $Y$  particle, identical to that in a)? In which direction does the particle  $Y$  move and how large is  $\beta_u = u/c$ , where  $u$  is the velocity of  $Y$ ? The rest mass of  $e^-$  and  $e^+$  can be neglected in the calculations.



- A certain galaxy has a Doppler shift given by  $f_0 - f = 0.0987 f_0$ . Estimate how fast it is moving away from us.
- Show that when  $u \ll c$ , the Doppler shift in wavelength is

$$\frac{\Delta\lambda}{\lambda_0} = \frac{u}{c}$$