
## General Physics II: Tutorial Material 13

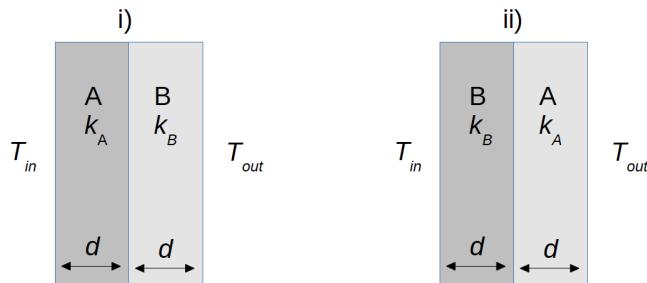
- 1) Heat pump is used to warm up a room at temperature  $T_1$  by transferring thermal energy from outside at temperature  $T_2$ , where  $T_1 > T_2$  i.e. the outside is colder than the room, using work done to the heat pump. Show that a heat pump is more economical than heating the room directly with the work by computing the efficiency of the heat pump using the Carnot cycle.
- 2) In the Otto cycle, the volume ratio in the expansion, C→D, is identical to that for the compression, A→B, and is given by  $V_a/V_b$ . Some hybrid cars use Atkinson cycle where the volume ratios are different. This is realised by changing the timing of exhaust or/and intake and also called Miller cycle. In order to compare its performance with the Otto cycle, we consider the Miller cycle to use the same volume of air-gasoline mixture gas,  $V_a$ , for the adiabatic compression and the condition for ignition, i.e. the adiabatic compression of the air-gasoline mixture starts at A( $P_a, V_a, T_a$ ).

The Miller cycle shown in the  $P$ - $V$  plot below is the following:

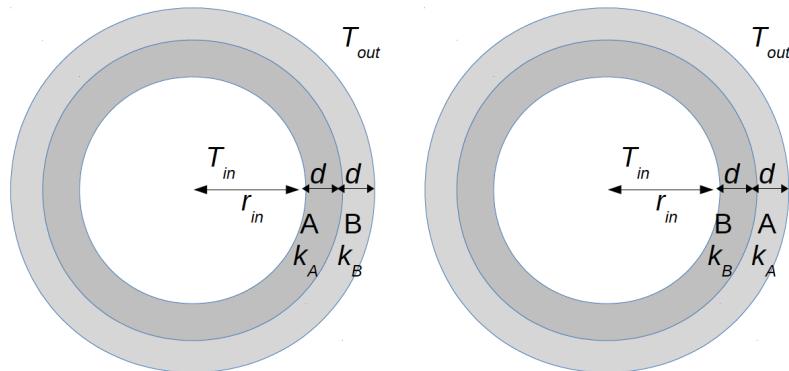
- i) At A, the piston is somewhere in the middle of the cylinder. The volume,  $V_a$ , is filled with the air-gasoline mixture and all the valves are closed.
- ii) The piston moves up to the top (B) and the gas is ignited and explodes (B→C).
- iii) The piston is pushed down (C→D') and reaches the lowest position of the cylinder (D').
- iv) The piston goes up to exhaust the burnt gas (exhaust valve open) and goes down to take in the air-gasoline mixture (intake valve open), which corresponds to the isovolumetric reduction of the pressure, D'→A', where at A' the cylinder is back at the lowest position.
- v) When the piston starts to move up, the intake valve is still open, thus isobaric compression starts till arriving at A where the in-take valve closes.
- vi) Back to the original state and ready for the next cycle.

Figure below is the  $P$ - $V$  plot for a Miller cycle, together with an equivalent Otto cycle.




Show that an engine with Miller cycle (A→B→C→D'→A'→A) is more efficient than that with Otto cycle (A→B→C→D→A).

3) Two questions related to thermal conductivity and Fourier's law for the heat flow rate (\*)


$$\dot{Q} \equiv \frac{dQ}{dt} = -kA \frac{dT}{dx}$$

I) Let us consider a wall consisting of two plates, A and B: both plates have a thickness  $d$  with thermal conductivities,  $k_A$  and  $k_B$ , respectively, and  $k_A > k_B$ . We use this wall for a house and can make i) surface A facing inside of the house and ii) surface B facing inside of the house. In winter when the outside temperature,  $T_{out}$ , is lower than the room temperature  $T_{in}$ , i.e.  $T_{in} > T_{out}$ .

- Calculate the heat flow rate from the room to outside through wall with configuration i).
- Calculate the heat flow rate from the room to outside through wall with configuration ii).
- Are the temperature profiles through the wall from the inside to the outside surface for the two configurations same or different? Which configuration loses more thermal energy to outside?



II) A pipe consists of the two layers of material with a same thickness  $d$ . The inner radius of the pipe is  $r_{in}$ . Two material A and B with thermal conductivities,  $k_A$  and  $k_B$ , respectively, are available for the layers where  $k_A > k_B$ . This pipe is used to transport hot water with a temperature  $T_{in}$  through cold outside with a temperature of  $T_{out}$ , where  $T_{in} > T_{out}$ . Figures below show the cross-sections of the pipes.



- Calculate the heat rate from the water to outside for a pipe where the inner layer with material A.

- b. Calculate the heat rate from the water to outside for a pipe where the inner layer with material B.
- c. Are the radial temperature profiles different between the two configurations? Which configuration loses more thermal energy to outside?