

General Physics II: Tutorial Material 4

1) In an inertial frame S , two objects, a with its rest mass m_a and b with its rest mass m_b , are moving with velocity vectors \vec{v}_a and \vec{v}_b , respectively, with θ being the angle between the two vectors. After colliding each other, a and b got stuck each other and became one object x with its rest mass M and velocity \vec{V} .

a) Write down the relativistic energy-momentum relations among a , b and x .

Energy and momentum relations among the three objects are given by

$$E_x = E_a + E_b \text{ and } \vec{p}_x = \vec{p}_a + \vec{p}_b$$

where relativistic energies and momenta are

$$\begin{aligned} E_a &= \sqrt{m_a^2 c^4 + p_a^2 c^2} & \vec{p}_a &= \frac{m_a \vec{v}_a}{\sqrt{1 - \beta_a^2}} \\ E_b &= \sqrt{m_b^2 c^4 + p_b^2 c^2} \text{ and } \vec{p}_b = \frac{m_b \vec{v}_b}{\sqrt{1 - \beta_b^2}} \\ E_x &= \sqrt{M^2 c^4 + p_x^2 c^2} & \vec{p}_x &= \frac{M \vec{V}}{\sqrt{1 - \beta_V^2}} \end{aligned}$$

Note that the following notations are used: $\vec{\beta} = \vec{v}/c$, $\beta = (|\vec{v}|/c)$ and $p = |\vec{p}|$.

b) Calculate M as a function of m_a , m_b , $|\vec{v}_a|$, $|\vec{v}_b|$ and θ .

From the energy momentum relations

$$E_x^2 = E_a^2 + E_b^2 + 2E_a E_b \text{ and } p_x^2 = p_a^2 + p_b^2 + 2p_a p_b \cos \theta$$

and relativistic energy

$$E_x^2 = M^2 c^4 + p_x^2 c^4$$

it follows that

$$\begin{aligned} M^2 &= \frac{1}{c^4} (E_x^2 - p_x^2 c^2) \\ &= \frac{1}{c^4} (E_a^2 + E_b^2 + 2E_a E_b) - \frac{1}{c^2} (p_a^2 + p_b^2 + 2p_a p_b \cos \theta) \end{aligned}$$

where θ is the angle between \vec{v}_a and \vec{v}_b as defined previously. It follows that

$$\begin{aligned} M^2 &= m_a^2 + m_b^2 + 2m_a m_b \sqrt{1 + \frac{p_a^2}{c^2 m_a^2}} \sqrt{1 + \frac{p_b^2}{c^2 m_b^2}} - \frac{2p_a p_b}{c^2} \cos \theta \\ &= m_a^2 + m_b^2 + \frac{2m_a m_b}{\sqrt{1 - \beta_a^2} \sqrt{1 - \beta_b^2}} - \frac{2m_a m_b \beta_a \beta_b}{\sqrt{1 - \beta_a^2} \sqrt{1 - \beta_b^2}} \cos \theta \\ &= m_a^2 + m_b^2 + \frac{2m_a m_b}{\sqrt{1 - \beta_a^2} \sqrt{1 - \beta_b^2}} (1 - \beta_a \beta_b \cos \theta) \end{aligned}$$

c) Show that when $\vec{v}_a = \vec{v}_b$, we have $M = m_a + m_b$.

If $\vec{v}_a = \vec{v}_b \equiv \vec{v}$ and $\theta = 0$, which leads to

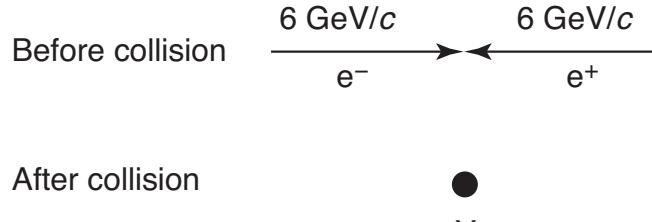
$$\begin{aligned} M^2 &= m_a^2 + m_b^2 + \frac{2m_a m_b}{1 - \beta^2} (1 - \beta^2) \\ &= (m_a + m_b)^2 \end{aligned}$$

where $\beta = |\vec{v}|/c$, thus, $M = m_a + m_b$.

d) Explain the result obtained for 3), from the principle of relativity.

If we move to a new inertial frame, S' , which is moving with a velocity \vec{v} respect to S , in S' two objects, a and b , are both at rest, thus also c . Energies of the three bodies in the S' frame are given by their rest mass, which leads to $M = m_a + m_b$.

2) An electron, e^- , and its anti-particle, a positron, e^+ , collide head-on with an equal momentum $p_0 = 6 \text{ GeV}/c$. The rest masses of the electron and positron are equal and about $0.0005 \text{ GeV}/c^2$. Therefore, they are totally negligible in the energy $E = \sqrt{m_0^2 c^4 + p^2 c^2}$, leading to $E^- = p_0 c = 6 \text{ GeV}$ and $E^+ = p_0 c = 6 \text{ GeV}$ for e^- and e^+ energies, respectively.



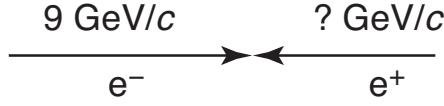
a) When they collide, the electron and positron annihilate and one new particle, Y , is produced. Using the energy-momentum conservation law, calculate the momentum and rest mass of Y in the GeV/c and GeV/c^2 units, respectively.

By choosing the direction of the x -axis to be aligned with the electron direction, momentum vectors for the initial electron and positron are given by $(p_0, 0, 0)$ and $(-p_0, 0, 0)$. Therefore, the total momentum of the initial state is 0 and the total energy $2p_0 c$. From the momentum conservation, Y is produced at rest, thus its energy is given by $E^Y = m_0^Y c^2$ where m_0^Y is the rest mass of Y . From the energy conservation, it follows that $m_0^Y c^2 = 2p_0 c$. Therefore, the rest mass of Y is given by

$$m_0^Y = \frac{2p_0}{c} = \frac{12 \text{ GeV}/c}{c} = \frac{12 \text{ GeV}}{c^2}$$

b) We collide an e^- with a momentum of $9 \text{ GeV}/c$ head-on with an e^+ . What is the momentum of e^+ in order to produce after the collision only one Y particle, identical to that

in a)? In which direction does the particle Y move and how large is $\beta_u = u/c$, where u is the velocity of Y? The rest mass of e^- and e^+ can be neglected in the calculations.



By denoting the momentum of the positron to be p'^+ , the momentum vector of the e^-e^+ initial state is given by $(9 \text{ GeV}/c - p'^+, 0, 0)$ and the energy $9 \text{ GeV} + p'^+c$. Due to the momentum conservation, the y - and z -components of the Y momentum vector are 0 and for x -component, we obtain $9 \text{ GeV}/c - p'^+ = p'^Y$, where p'^Y is the x -component of the Y momentum vector. From the energy conservation, we obtain

$$9 \text{ GeV} + p'^+c = E'^Y = \sqrt{m_0^{Y^2}c^4 + p'^{Y^2}c^2},$$

where E'^Y is the energy of Y. Using the momentum conservation, we obtain

$$\sqrt{m_0^{Y^2}c^4 + p'^{Y^2}c^2} = \sqrt{144 \text{ GeV}^2 + (9 \text{ GeV} - p'^+c)^2}$$

It follows that

$$(9 \text{ GeV} + p'^+c)^2 = 144 \text{ GeV}^2 + (9 \text{ GeV} - p'^+c)^2$$

thus

$$36 \text{ GeV} p'^+c = 144 \text{ GeV}^2$$

leading to the positron momentum to be

$$p'^+ = 4 \frac{\text{GeV}}{c}$$

The momentum and energy of Y is

$$p'^Y = 9 \text{ GeV}/c - p'^+ = 5 \text{ GeV}/c$$

and

$$E'^Y = 9 \text{ GeV} + p'^+c = 13 \text{ GeV},$$

respectively. Therefore, Y moves the direction of the electron.

By recalling the energy and momentum of a particle moving with a velocity of u and with a rest mass of m_0 ,

$$E = \frac{m_0 c^2}{\sqrt{1 - (u/c)^2}}, p = \frac{m_0 u}{\sqrt{1 - (u/c)^2}}$$

it follows that

$$\frac{cp}{E} = \frac{m_0 u c}{\sqrt{1 - (u/c)^2}} \Big/ \frac{m_0 c^2}{\sqrt{1 - (u/c)^2}} = \frac{u}{c}$$

For Y, we then obtain

$$\beta_u = \frac{u}{c} = \frac{cp'^Y}{E'^Y} = \frac{5}{13} = 0.38$$

3) A certain galaxy has a Doppler shift given by $f_0 - f = 0.0987 f_0$. Estimate how fast it is moving away from us.

$$f = 0.9013 f_0 = \sqrt{\frac{c-u}{c+u}} f_0, \quad u = 0.1035c$$

4) Show that when $u \ll c$, the Doppler shift in wavelength is

$$\frac{\Delta\lambda}{\lambda_0} = \frac{u}{c}$$

For $u \ll c$

$$\lambda = \lambda_0 \sqrt{\frac{c+u}{c-u}} = \lambda_0 \sqrt{\frac{1+u/c}{1-u/c}} \approx \lambda_0 \sqrt{1+2u/c} \approx \lambda_0 (1+u/c)$$

thus

$$\frac{\Delta\lambda}{\lambda_0} = \frac{\lambda - \lambda_0}{\lambda_0} \approx \frac{\lambda_0 (1+u/c) - \lambda_0}{\lambda_0} = \frac{u}{c}$$