
General Physics II: Tutorial Material 3 
1) An unstable particle is at rest and suddenly decays into two fragments. No external 
forces act on the particle or its fragments. One of the fragments has a velocity of 
0.60c and a mass of 

€ 

4 GeV c2 , while the other has a mass of 

€ 

1 GeV c2 . What is the 
speed of the less massive fragment? 
 The momenta of the lighter and heavier particles in the rest frame of the  
 initial particle are denoted by 

€ 

p1 and 

€ 

p2 , respectively, and 

€ 

p1 = p2, i.e.   

 

€ 

m1u1

1− u1 c( )2
=

m2u2

1− u2 c( )2
  →   u1

2 =
F

m1
2 + F c2 ,   F =

m2
2u2

2

1− u2 c( )2  

 Thus.  
 

€ 

u1
2 = 0.9 c2, i.e. 

€ 

u1 ≈ 0.95 c . 
 
2) The rest mass of an electron is 

€ 

me = 500 keV/c2 . What is the velocity of an 
electron, 

€ 

ue (in the unit of the speed of light), whose momentum is 

€ 

pe = 375 keV/c? 
What is the kinetic energy, 

€ 

Ke , of this electron? 
  The momentum of the electron is given by  

 

€ 

p =
m0u

1− u c( )2
, thus 

€ 

u2 =
p2c2

p2 +m0
2c2

, giving, 

€ 

ue
2 = 0.36 c2, i.e. 

€ 

ue ≈ 0.6 c . 

 The total energy is given by  

 

€ 

E =
m0c

2

1− u c( )2
= 625 KeV, and kinetic energy 

€ 

Ke = E −mc2 =125 KeV  

 
3) A particle was created in a laboratory.  

i) It took time, t, to move a distance, L, which is usually called flight length, and 
then decayed. How long did the particle live in the frame where the particle was 
at rest?  

 The time particle lived in the frame, 

€ 

t0 , where the particle is at rest is clearly  
 the proper time interval. Therefore, it is related to that measured in the  
 laboratory frame, t, as  

  

€ 

t =
t0

1− u c( )2
 

 where u is the velocity of the particle in the laboratory frame. At the same  
 time, the velocity of the particle in the laboratory frame is given by 

€ 

u = L t .  
 It follows that  

  

€ 

t0 = t 1− L
ct
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

 

 
ii) In a real experiment, we measure the energy, E, the momentum, p, and the flight 

length, L, in the laboratory. Calculate how long the particle lived in the frame 
where the particle was at rest. 



 Let us denote 

€ 

βu = u c , where u is the velocity of the particle in the laboratory 
 frame and 

€ 

m0 to be the rest mass. From the relativistic definition of energy  
 and momentum 

  

€ 

E =
m0c

2

1− βu
2
, p =

m0u
1− βu

2
 

 we obtain 

  

€ 

βu =
cp
E

 

 and the time the particle lived in the laboratory frame is given by 

€ 

t = L cβu( ).  
 It follows that  

  

€ 

t0 = t 1− βu
2 =

LE
c2p

1− cp
E

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

=
L
c2p

E 2 − c2p2  

 where 

€ 

t0  is the time the particle at rest lived.    
 
4) A beam of protons is injected to the Large Hadron Collider at CERN with a 

kinetic energy of 450 GeV and accelerated to 4.5 TeV, i.e. the kinetic energy is 
increased by a factor of 10. What is the increase of the velocity? Is it as much as 
the kinetic energy? If not, why?  

 From  

 

€ 

T =
m0c

2

1− u c( )2
−m0c

2  

 we can derive  

 

€ 

u
c
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
2

=
T 2 + 2Tm0c

2

T 2 + 2Tm0c
2 +m0

2c4
 

 Since the kinetic energy is much higher than the rest energy,  

 

€ 

u
c
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
2

=
T 2 + 2Tm0c

2

T 2 + 2Tm0c
2 +m0

2c4
≈1− m0

2c4

T 2 + 2Tm0c
2 ≈1−

m0
2c4

T 2
 

 thus 

 

€ 

u
c
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ ≈1−

1
2
m0
2c4

T 2
 

 For the kinetic energy of 450 GeV, we have 

€ 

u c = 0.9999975, and for 4.5 TeV 
 

€ 

u c = 0.999999975, i.e. the velocity is increased by only 1.0000025. The  
 kinetic energy is used to increase the mass, not the velocity.   
 
5) Consider a case where a particle A, which is mass less, moves along the z-axis 

with a momentum 

€ 

pA  collides with a particle B at rest, whose rest mass is 

€ 

mB . 
After the collision, Particle A moves with a momentum 

€ 

ʹ p A  into a direction 

€ 

ʹ θ A, ʹ φ A( ), and B with 

€ 

ʹ p B  and 

€ 

ʹ θ B, ʹ φ B( ), where 

€ 

θ  and 

€ 

φ  are the polar and azimuth 
angles, respectively.  



 
 1) From the momentum conservation in the x- and y- components between before 

and after the collision, show that 

€ 

ʹ φ A − ʹ φ B = π , i.e. the momentum vectors of the 
two particles are in the same plane, and that it leads to 

€ 

ʹ p Asin ʹ θ A − ʹ p Bsin ʹ θ B = 0 .  

The x-, y-, and z-components of the momentum and energy for A and B 
before are given by  

€ 

px
A = 0, py

A = 0, pz
A = pA, EA = pAc

px
B = 0, py

B = 0, pz
B = 0, EB = mBc

2
 

thus the components of the total momentum and energy before the collision 
are  

€ 

px
Before = 0, py

Before = 0, pz
Before = pA, EBefore = mBc

2 + pAc . 
Similar for the after the collision, for A and B,  

€ 

ʹ p x
A = ʹ p Asin ʹ θ Acos ʹ φ A, ʹ p y

A = ʹ p Asin ʹ θ A sin ʹ φ A, ʹ p z
A = ʹ p Acos ʹ θ A, ʹ E A = ʹ p Ac

ʹ p x
B = ʹ p Bsin ʹ θ Bcos ʹ φ B, ʹ p y

B = ʹ p Bsin ʹ θ B sin ʹ φ B, ʹ p z
B = ʹ p Bcos ʹ θ B, ʹ E B = mB

2c4 + ʹ p B
2c2

 
and for the total 

€ 

px
After = ʹ p Asin ʹ θ Acos ʹ φ A + ʹ p Bsin ʹ θ Bcos ʹ φ B, 

py
After = ʹ p Asin ʹ θ A sin ʹ φ A + ʹ p Bsin ʹ θ B sin ʹ φ B, 

pz
After = ʹ p Acos ʹ θ A + ʹ p Bcos ʹ θ B

E After = ʹ p Ac + mB
2c4 + ʹ p B

2c2

. 

The energy momentum conservation between the before and after the 
collision leads to  

€ 

ʹ p Asin ʹ θ Acos ʹ φ A + ʹ p Bsin ʹ θ Bcos ʹ φ B = 0
ʹ p Asin ʹ θ A sin ʹ φ A + ʹ p Bsin ʹ θ B sin ʹ φ B = 0
ʹ p Acos ʹ θ A + ʹ p Bcos ʹ θ B = pA

ʹ p Ac + mB
2c4 + ʹ p B

2c2 = pAc + mBc2

. 

The first two equations correspond to the conservation of x and y momentum 
components. By multiplying the first equation by 

€ 

sin ʹ φ B  and second by 

€ 

cos ʹ φ B , they become 

€ 

ʹ p Asin ʹ θ Acos ʹ φ A sin ʹ φ B + ʹ p Bsin ʹ θ Bcos ʹ φ B sin ʹ φ B = 0
ʹ p Asin ʹ θ A sin ʹ φ Acos ʹ φ B + ʹ p Bsin ʹ θ B sin ʹ φ Bcos ʹ φ B = 0

. 

By subtracting one from the other, it follows that 



€ 

ʹ p Asin ʹ θ A cos ʹ φ A sin ʹ φ B − sin ʹ φ Acos ʹ φ B( ) = − ʹ p Asin ʹ θ A sin ʹ φ A − ʹ φ B( ) = 0  

thus 

€ 

sin ʹ φ A − ʹ φ B( ) = 0 , i.e. 

€ 

ʹ φ A − ʹ φ B = 0  or 

€ 

= π . From the first two equations, 
we also get  

€ 

ʹ p Asin ʹ θ Acos ʹ φ A + ʹ p Bsin ʹ θ Bcos ʹ φ B( )2
+ ʹ p Asin ʹ θ A sin ʹ φ A + ʹ p Bsin ʹ θ B sin ʹ φ B( )2

= ʹ p Asin ʹ θ A( )2
+ ʹ p Bsin ʹ θ B( )2

+ 2 ʹ p A ʹ p Bsin ʹ θ Asin ʹ θ B cos ʹ φ Acos ʹ φ B + sin ʹ φ A sin ʹ φ B( )
= ʹ p Asin ʹ θ A( )2

+ ʹ p Bsin ʹ θ B( )2
+ 2 ʹ p A ʹ p Bsin ʹ θ Asin ʹ θ B cos ʹ φ A − ʹ φ B( ) = 0 . 

Since

€ 

ʹ p Asin ʹ θ A( )2
> 0 , 

€ 

ʹ p Bsin ʹ θ B( )2
> 0 , and azimuth angles are 0 to π, thus 

€ 

ʹ p A ʹ p Bsin ʹ θ Asin ʹ θ B > 0 , it must be 

€ 

cos ʹ φ A − ʹ φ B( ) < 0 . By combining the two 
conditions, we obtain 

€ 

ʹ φ A − ʹ φ B = π , leading to  

€ 

ʹ p Asin ʹ θ A( )2
+ ʹ p Bsin ʹ θ B( )2

+ 2 ʹ p A ʹ p Bsin ʹ θ Asin ʹ θ B( )cos ʹ φ A − ʹ φ B( )
= ʹ p Asin ʹ θ A( )2

+ ʹ p Bsin ʹ θ B( )2
− 2 ʹ p A ʹ p Bsin ʹ θ Asin ʹ θ B

= ʹ p Asin ʹ θ A − ʹ p Bsin ʹ θ B( )2

= 0

 

thus 

€ 

ʹ p Asin ʹ θ A − ʹ p Bsin ʹ θ B = 0 . 

 2) By combining the energy conservation and momentum conservation, show that  

€ 

1
ʹ p A
−
1
pA

=
2

mBc
sin2 ʹ θ A

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

With 

€ 

ʹ φ A − ʹ φ B = π , the energy momentum conservation is now given by  

€ 

ʹ p Asin ʹ θ A − ʹ p Bsin ʹ θ B = 0
ʹ p Acos ʹ θ A + ʹ p Bcos ʹ θ B = pA

⎫ 
⎬ 
⎭ 
                  momentum conservation

ʹ p Ac + mB
2c4 + ʹ p B

2c2 = pAc + mBc2       energy conservation

. 

By rewriting the energy conservation as 

€ 

mB
2c4 + ʹ p B

2c2 = pAc − ʹ p Ac( ) + mBc2, we can remove the √ operation as 

€ 

mB
2c4 + ʹ p B

2c2 = pAc − ʹ p Ac( )2 + mB
2c4 + 2 pAc − ʹ p Ac( )mBc2  

leading to  

€ 

−2 pAc − ʹ p Ac( )mBc2 = pAc − ʹ p Ac( )2 − ʹ p B
2c2 . 

Using the two equations for momentum conservation, 

€ 

ʹ p B  can be expressed 
by 

€ 

pA , 

€ 

ʹ p A , and 

€ 

ʹ θ A , as   

€ 

ʹ p B
2 = ʹ p Asin ʹ θ A( )2

+ pA − ʹ p Acos ʹ θ A( )2

= pA
2 + ʹ p A

2 − 2pA ʹ p Acos ʹ θ A
. 

By combining the two results,    



€ 

−2 pAc − ʹ p Ac( )mBc2 = pAc − ʹ p Ac( )2
− pA

2 c2 − ʹ p A
2c2 + 2pA ʹ p Ac2cos ʹ θ A

= −2pA ʹ p Ac2 1− cos ʹ θ A( )
. 

Using 

€ 

1− cos ʹ θ A =1− cos2 ʹ θ A 2( ) + sin2 ʹ θ A 2( ) = 2sin2 ʹ θ A 2( ) , we obtain 

 

€ 

pA − ʹ p A =
pA ʹ p A
mBc

2sin2 ʹ θ A
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

and by dividing both side by 

€ 

pA ʹ p A,  

€ 

1
ʹ p A
−

1
pA

=
2

mBc
sin2 ʹ θ A

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

 NB: Polar and azimuth angles are defined as 

 
 You may recall 

€ 

sin φ ± θ( ) = sinφ cosθ ± cosφ sinθ  and 

  

€ 

cos φ ± θ( ) = cosφ cosθ ∓ sinφ sinθ . 

 
 


