
General Physics II: Tutorial Material 11 
1)  Let us consider a rigid and hermetic room with a volume of 22.6 

€ 

m3 and filled with air 
with a pressure of 1 atm at   

€ 

0!  C. We assume that air is an ideal gas. In the following, 
assume that   

€ 

0!C = 273!K  and 1 atm =1.013×105 N m2 , and for the air, the molecular 
specific heat Cp = 7cal mole ⋅K( )  and γ =CP CV =1.4  are assumed to be constant. 
Another useful number is 1 Nm=1 J = 2.39×10−4  kcal . 
 
a) The air temperature in the room is quasi-statically increased from   

€ 

0!  to   

€ 

20!  C. Draw 
the P-V  (pressure versus volume) diagram of this process and calculate the heat, Q, 
necessary for this process.  

 
From the values of γ and 

€ 

CP  given in the problem, the universal gas constant can be 
obtained as 

€ 

R = CP −CV = CP 1−1 γ( ) = 2cal mole⋅ K( ) . The mole number, n, for the 
air in the room is given by the ideal gas law as  

€ 

n =
PV
RT

≈1×103 mole  

where 

€ 

P =1 atm =1.013 ×105 N m2 , 

€ 

V = 22.6 m3 and   

€ 

T = 273!K . Since the room is 
hermetic and rigid, the volume and amount of the air does not change, thus from the 
ideal gas law 

€ 

P T  is constant. Therefore, the pressure, P, of the air in the room at the 
temperature   

€ 

T = 20!C = 293!K is given by  

  

€ 

P =1 atp × 293!K
273!K

≈1.073 atp  

Hence the P-V  diagram of the process is given by  

 
Since it is a process under the constant volume, the necessary heat is given by  

€ 

Q = nCVdTT0

T1∫ = nCV dTT0

T1∫ = nCVΔT , where   

€ 

ΔT = 20!  K  and 

€ 

CV = CP γ = 7 1.4 = 5 cal mole⋅ K( ) .  
 It follows that the necessary heat is given by 

€ 

Q = nCVΔT =100 kcal. 
 
b) Fixture of one of the walls is removed and the wall can move freely such that the 

pressure of the air inside can be fixed to 1 atm. However, it is still hermetic so that the 



air inside cannot leak outside. How large is the heat, Q, needed to quasi-statically 
increase the air temperature of the room from 0 to   

€ 

20!  C?   
 

Since the pressure of the air, P, is kept constant and the air stays inside of the room, 
the necessary thermal energy to increase the temperature by 

€ 

ΔT  is given by  

€ 

Q = nCPΔT =140 kcal .  
 
c) Instead of removing the wall fixture, we make a very small hole on the wall, which 

allows the air in the room to escape outside very slowly if required, such that the 
pressure of the air inside the room is always kept at 1 atm. How large is the heat, Q, 
needed to quasi-statically increase the air temperature of the room to   

€ 

20!  C. 
 

When the air temperature increases, part of the air escapes through the hole, thus the 
air has to make work, and the pressure, P, remains constant. Therefore, the amount 
of the air, n, changes in the process. Also the temperature increase is quasi-static and 
the ideal gas law is valid for the air inside of the room and  

€ 

n =
P0V0
RT

 

where 

€ 

P0 =1 atm =1.013 ×105 N m2  and 

€ 

V0 = 22.6 m3 , i.e. n is a function of T. 
Therefore, the thermal energy needed to increase the air temperature from 

€ 

T0 to 

€ 

T1 is 
given by,  

€ 

Q = CPndTT0

T1∫ = CP
P0V0
R

dT
TT0

T1∫ = CP
P0V0
R
ln T1
T0

. 

€ 

P0 =1 atm =1.013 ×105 N m2 , 

€ 

V0 = 22.6 m3,   

€ 

T0 = 273!  K ,   

€ 

T1 = 293!  K  and

€ 

R = 2 cal mole⋅ K( )  lead the equation to 

€ 

Q =135 kcal. 

 
2) We consider a system of a hermetic cylinder with a volume VC  placed in a thermally 

isolated environment. The cylinder is split into two volumes, VA  and VB  with a hermetic 
wall. The volume VA  is filled with an n mol ideal gas with a pressure PA  and volume VB  
kept in vacuum.  

 

 
 



a) The wall is moved quasi-statically so that the volume VA  becomes VC .  
i. What are the pressure and temperature of the gas when it reaches to the volume 

VC ?  
ii. Calculate the entropy change, ΔS, for this process.     

 

Using the ideal gas law, the temperature of the initial state is given by  

TA =
VAPA
nR

 

i. Since the system in thermal isolation, there is no heat. Therefore the process is an 
adiabatic expansion of the system to the volume VC , i.e. PAVA

γ = PCVC
γ , where PC  is 

the pressure of the final state and γ =CP CV , thus  

PC = PA
VA
VC

⎛

⎝
⎜

⎞

⎠
⎟

γ

 

 And using the ideal gas law, the temperature of the final state is then given by  

TC =
VCPC
nR

=
VCPA
nR

VA
VC

⎛

⎝
⎜

⎞

⎠
⎟

γ

 

 

ii.  This process is reversible where entropy difference can be given by  

ΔS = dQ T
initial

final
∫ = 0   

 since there is no heat. 
 
b) Instead of moving the wall quasi-statically, it is removed suddenly to let the gas make 

vacuum expansion for its volume to become VC . After the system reaching equilibrium: 
i. What is the pressure and temperature of the system for the final state? 

ii. Calculate the entropy change for this process.   
 

i. Since the gas expands without pressure, there is no work in vacuum expansion. As 
the system is in thermal isolation, there is no heat. Therefore, the internal energy 
of the system is identical to the initial state after the expansion, i.e. the 
temperature remains unchanged after the expansion. The final state after the 
vacuum expansion has volume VC , and the temperature identical to the initial 
state  

TC = TA =
VAPA
nR

 

 Once the system reach its equilibrium, the ideal gas law can be used and the 
pressure of the final state is given by  

P = nRTA
VC

 



ii. The process of vacuum expansion is not a reversible process, thus  

ΔS = dQ T
initial

final
∫  

 cannot be used to calculate the entropy change. On the other hand, entropy 
depends only on the initial state and final state, but not on the path in between. 
Therefore, a reducible process reaching to the same final state can be used to 
calculate the entropy difference using the above equation. Isothermal expansion 
can bring the initial state to this final state. On the isothermal path, there is no 
change in the internal energy thusW =Q . The entropy change is then given by  

ΔS = dQ T
initial

final
∫ =

1
TA

PdV
VA

VC∫ = nR dV
V

=
VA

VC∫ nR lnVC
VA

 

 
 
3) Gas molecules are moving randomly due to thermal motion. Using the Boltzmann factor, 

, where E is the kinetic energy, k is the Boltzmann constant and T is the temperature 
of the gas, probability for a monoatomic gas molecule has three vector-velocity with a 
value between 𝑣 and 𝑣 + 𝑑𝑣, is given by  

P vx,  vy,  vz( )dvxdvydvz =
m

2πkT
⎛

⎝
⎜

⎞

⎠
⎟

3 2

exp −
m

2kT
vx

2 + vy
2 + vz

2( )⎡

⎣⎢
⎤

⎦⎥
dvxdvydvz . 

a) What is the probability for a molecule to have a velocity in z direction between 𝑣! and 
𝑣! + 𝑑𝑣!, while it can have any values in x and y direction?   

Since 𝑣! and 𝑣! can take any values, the desired probability for 𝑣!, 𝑃 𝑣! 𝑑𝑣!, is given by 
integrating the 𝑃 𝑣! , 𝑣! , 𝑣! 𝑑𝑣! ,𝑑𝑣! ,𝑑𝑣! over 𝑣! and 𝑣! from −∞ to +∞: 

P  vz( )dvz = dvx dvy−∞

+∞

∫−∞
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b) What is the average velocity in z for the atoms moving toward the positive z direction? 

What is the average velocity in z for the atoms moving toward the negative z direction? 

The average value of 𝑣! for 𝑣! > 0, 𝑣! ! is given by  

vz +
= vzP  vz( )dvz0

∞
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Similarly, the average value of 𝑣! for 𝑣! > 0, 𝑣! ! is given by 

€ 

e−E kT



vz −
= vzP  vz( )dvz−∞

0
∫

= −
kT

2πm
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⎝
⎜

⎞

⎠
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c) Would these two velocities be different if the gas molecule were diatomic? Why? 

The kinetic energy of diatomic molecule has additional terms due to rotations. 
However, once they are integrated out in the probability distribution, as done for 𝑣! 
and 𝑣!, the remaining probability distribution for 𝑣! is identical to that of monoatomic 
molecule. Therefore, two velocities are identical to those for the monoatomic 
molecule. 

 


