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1) Heat pump is used to warm up a room at temperature 

€ 

T1 by transferring thermal energy 
from outside at temperature 

€ 

T2, where 

€ 

T1 > T2 i.e. the outside is colder than the room, using 
work done to the heat pump. Show that a heat pump is more economical than heating the 
room directly with the work by computing the efficiency of the heat pump using the Carnot 
cycle.  

If we operate the Carnot cycle in the reversed order, A→D→C→B→A, heats for D→C and 
B→A, 

€ 

Qdc and 

€ 

Qba, respectively, are given by  

€ 

Qdc = nRT2 ln
Vc
Vd

> 0  and 

€ 

Qba = nRT1 ln
Va
Vb

< 0  

and similarly for the work, A→D, D→C, C→B, and B→A 
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PbVb
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Wba = nRT1 ln
Vd
Vc

. 

The total work is then given by  

€ 

W total =Wad +Wdc +Wcb +Wba = nR T2 −T1( ) lnVbVa
 

The efficiency of a heat pump given as  

€ 

εheat pump =
thermal energy given to the heat reservoir with T = T1

total work given to the heat pump 
 

leads to  

€ 

εheat pump =
−Qba

−W total
=

−nRT1 ln
Va

Vb

−nR T2 −T1( ) lnVb

Va

=
T1

T1 −T2
>1. 

Since 

€ 

εheat pump >1, heat pump works more efficient than converting directly the work given to 
the heat pump, 

€ 

W total , directly to the thermal energy to heat the room.    
 
 
 
2) In the Otto cycle, the volume ratio in the expansion, C→D, is identical to that for the 

compression, A→B, and is given by 

€ 

Va Vb . Some hybrid cars use Atkinson cycle where 
the volume ratios are different. This is realised by changing the timing of exhaust or/and 
intake and also called Miller cycle. In order to compare its performance with the Otto cycle, 
we consider the Miller cycle to use the same volume of air-gasoline mixture gas, 

€ 

Va , for 
the adiabatic compression and the condition for ignition, i.e. the adiabatic compression of 
the air-gasoline mixture starts at 

€ 

A(Pa ,Va ,Ta).  
 The Miller cycle shown in the P-V plot below is the following:  
 i) At A, the piston is somewhere in the middle of the cylinder. The volume, 

€ 

Va , is filled 
with the air-gasoline mixture and all the valves are closed.  

 ii) The piston moves up to the top (B) and the gas is ignited and explodes (B→C).  
 iii) The piston is pushed down (C→D') and reaches the lowest position of the cylinder (D').  



 iv) The piston goes up to exhaust the burnt gas (exhaust valve open) and goes down to take 
in the air-gasoline mixture (intake valve open), which corresponds to the isovolumetric 
reduction of the pressure, D'→A', where at A' the cylinder is back at the lowest position.  

 v) When the piston starts to move up, the intake valve is still open, thus isobaric 
compression starts till arriving at A where the in-take valve closes.  

 vi) Back to the original state and ready for the next cycle.  
 Figure below is the P-V plot for a Miller cycle, together with an equivalent Otto cycle.  

 
 Show that an engine with Miller cycle (A→B→C→D'→A'→A) is more efficient than that 

with Otto cycle (A→B→C→D→A).   

The figure above shows the P-V plots for the Miller cycle (A→B→C→D'→A'→A) and Otto 
cycle (A→B→C→D→A) to be compared. Since the initial volume and pressure of the air-
gasoline mixtures are same, we assume that the two cycles star with the same amount of gas 
molecule from A.   
As discussed previously, the area surrounded by a cycle on the P-V plane gives the total work. 
Therefore, the total work for the Otto cycle, 

€ 

W total
Otto , is less than that of the Miller cycle, 

€ 

W total
Miller , 

i.e. 

€ 

W total
Otto <W total

Miller .  
Now we consider the entropy. Entropy changes for A→B, C→D and C→D' are zero, for B→C, 
D→A and D'→A', 

€ 

ΔSbc = nCV ln Tc

Tb
,  ΔSda = nCV ln Ta

Td
,  Δ ʹ S da = nCV ln ʹ T a

ʹ T d
 

and for A'→A, 

€ 

Δ ʹ S aa = nCP ln
Ta
ʹ T a
 

Since 

€ 

Pb < Pc, and from 

€ 

PV = nRT  we have 

€ 

Tb < Tc, thus 

€ 

ΔSbc > 0 . Similarly, from 

€ 

Pa < Pd, 

€ 

Pa < ʹ P d  and 

€ 

Va < ʹ V a  we obtain 

€ 

Ta < Td , 

€ 

ʹ T a < ʹ T d  and 

€ 

Ta < ʹ T a , thus 

€ 

ΔSda < 0 , 

€ 

Δ ʹ S da < 0  and

€ 

Δ ʹ S aa < 0 . From 

€ 

PV γ =  constant  in the adiabatic process and 

€ 

PV = nRT  lead to 

€ 

Ta < Tb and 

€ 

Td < Tc. It follows that the S-T plots for the Otto cycle (A→B→C→D→A) and Miller cycle 
(A→B→C→D'→A'→A) can be drawn as  

P

V

A’: (Pa, V’a, T’a)
A: (Pa, Va, Ta)

adiabatic

adiabatic

isovolumetric

isovolumetric

B: (Pb, Vb, Tb)

C: (Pc, Vb, Tc)

D’: (P’d, V’a, T’d)

D: (Pd, Va, Td)

isobaric



 
 
The thermal energy flow into the engine, 

€ 

Qin , is the positive heat in the system given by the 
area below the B→C line for both Otto and Miller cycles, thus 

€ 

Qin
Otto =Qin

Miller .  
The efficiency of an engine is given by  

€ 

ε =
W total

Qin
 

From 

€ 

W total
Otto <W total

Miller  and 

€ 

Qin
Otto =Qin

Miller , the Miller cycle is more efficient.  
 

 

3) Two questions related to thermal conductivity and Fourier’s law for the heat flow rate 

 
I) Let us consider a wall consisting of two plates, A and B: both plates have a thickness d 

with thermal conductivities, kA and kB , respectively, and kA > kB . We use this wall for 
a house and can make i) surface A facing inside of the house and ii) surface B facing 
inside of the house. In winter when the outside temperature, Tout , is lower than the 
room temperature Tin , i.e. Tin >Tout .  

a. Calculate the heat flow rate from the room to outside through wall with 
configuration i).  

b. Calculate the heat flow rate from the room to outside through wall with 
configuration ii). 

c. Are the temperature profiles through the wall from the inside to the outside 
surface for the two configurations same or different? Which configuration loses 
more thermal energy to outside?   
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!Q ≡
dQ
dt

= −kA dT
dx



 
 

Fourier’s law for a surface area A, can be written as 

!Qdx = −kAdT .  
Place the inner surface of the wall at x = 0 and denote the temperature at the 
boarder of the two layers to be Tm .  

a) For Configuration i), integrations of the above equation over x for the left side 
and T for the right side give, for the first layer and second layer, to be  

 !Q dx
0

d
∫ = -kaA dT

Tin

Tm∫  and !Q dx
d

2d
∫ = −kbA dT

Tm

Tout∫  
and leads to 

!Q =
−kaA Tm −Tin( )

d
 and !Q =

−kbA Tout −Tm( )
d

 

Since the two heat rates must be identical, Tm  can be obtained as  

ka Tm −Tin( ) = kb Tout −Tm( )
Tm ka + kb( ) = kaTin + kbTout

Tm =
kaTin + kbTout
ka + kb

 

Inserting this to the expression of Q, we obtain 

!Q = −
kakb
ka + kb

A
d
Tout −Tin( )  

Note that for ka = kb ≡ k , it gives 

!Q = −
kA Tout −Tin( )

2d
 

i.e. identical to a 2d thick wall with a thermal conductivity k.  

 

b) In a similar manner, we obtain for the Configuration ii)  

Tm =
kbTin + kaTout
ka + kb

 

and 



!Q = −
kakb
ka + kb

A
d
Tout −Tin( )  

 

c) The temperature at the border of the two layers, Tm , is different for the two 
configurations, thus the temperature profiles in the wall are different. Since ka > kb  
and Tin >Tout , the Tm  is higher for the Configuration i), i.e. the temperature drops 
slower in the first layer in Configuration i) than in ii). However, the heat rates are 
identical for the two configurations. Therefore, the loss of thermal energy in the 
two configurations are identical.  

 

II) A pipe consists of the two layers of material with a same thickness d. The inner radius 
of the pipe is rin . Two material A and B with thermal conductivities, kA  and kB , 
respectively, are available for the layers where kA > kB . This pipe is used to transport 
hot water with a temperature Tin  through cold outside with a temperature of Tout , 
where Tin >Tout . Figures below show the cross-sections of the pipes.   

 
a. Calculate the heat rate from the water to outside for a pipe where the inner layer 

with material A. 

b. Calculate the heat rate from the water to outside for a pipe where the inner layer 
with material B. 

c. Are the radial temperature profiles different between the two configurations? 
Which configuration loses more thermal energy to outside? 

 

For a pipe, i.e. a cylindrical geometry, Fourier’s law becomes  

!Q dr
r
= −2πkldT  

where l is the length of the pipe.  

a) For configuration i), the heat rate for the first layer is given by the integration of 
the above formula as  



!Q dr
rrin

rin+d∫ = −2πkl dT
Tin

Tm∫

!Q =
−2πkal

ln rin + d( ) rin⎡⎣ ⎤⎦
Tm −Tin( )

 

and for the second layer 

!Q dr
rrin

rin+d∫ = −2πkl dT
Tin

Tm∫

!Q =
−2πkbl

ln rin + 2d( ) rin + d( )⎡⎣ ⎤⎦
Tout −Tm( )

 

where Tm  is the temperature at the border of the two layers. Since the two heat rates 
must be identical  

ka
ln rin + d( ) rin⎡⎣ ⎤⎦

Tm −Tin( ) = kb
ln rin + 2d( ) rin + d( )⎡⎣ ⎤⎦

Tout −Tm( )  

and Tm  can be obtained as 

Tm =

kaTin
ln 1+δ( )

+
kbTout

ln 1+ 2δ( ) 1+δ( )⎡⎣ ⎤⎦
ka

ln 1+δ( )
+

kb
ln 1+ 2δ( ) 1+δ( )⎡⎣ ⎤⎦

=
kaTin ln 1+ 2δ( )+ kbTout − kaTin( ) ln 1+δ( )

ka ln 1+ 2δ( )+ kb − ka( ) ln 1+δ( )

 

where δ = d rin . By inserting Tm  to the expression of !Q , we obtain  

!Q = −
2π lkakb

ka ln 1+ 2δ( )+ kb − ka( ) ln 1+δ( )
Tout −Tin( )  

 

b) Similarly for the Configuration ii), we obtain 

Tm =
kbTin ln 1+ 2δ( )+ kaTout − kbTin( ) ln 1+δ( )

kb ln 1+ 2δ( )+ ka − kb( ) ln 1+δ( )

!Q = −
2π lkakb

kb ln 1+ 2δ( )+ ka − kb( ) ln 1+δ( )
Tout −Tin( )

 

 

c) Two configurations have different Tm . Therefore the temperature profiles in the 
radial direction are different for the two different configurations of pipes. The 
difference in the thermal energy lost to outside is given by  



!Q1 − !Q2 =
2π lkakb

ka ln 1+ 2δ( )+ kb − ka( ) ln 1+δ( )
Tin −Tout( )− 2π lkakb

kb ln 1+ 2δ( )+ ka − kb( ) ln 1+δ( )
Tin −Tout( )

= 2π lkakb Tin −Tout( )
kb ln 1+ 2δ( )+ ka − kb( ) ln 1+δ( )− ka ln 1+ 2δ( )+ kb − ka( ) ln 1+δ( )
ka ln 1+ 2δ( )+ kb − ka( ) ln 1+δ( )⎡⎣ ⎤⎦kb ln 1+ 2δ( )+ ka − kb( ) ln 1+δ( )

=
2π lkakb Tin −Tout( ) ka − kb( ) 2 ln 1+δ( )− ln 1+ 2δ( )⎡⎣ ⎤⎦

ka ln 1+ 2δ( )+ kb − ka( ) ln 1+δ( )⎡⎣ ⎤⎦ kb ln 1+ 2δ( )+ ka − kb( ) ln 1+δ( )⎡⎣ ⎤⎦
 

Let us consider a function f δ( ) = 2 ln 1+δ( )− ln 1+ 2δ( ) . At δ = 0  we have 
f 0( ) = 0 . The first derivative of f δ( )  is given by  

df δ( )
dδ

=
2
1+δ

−
2

1+ 2δ

=
2δ

1+δ( ) 1+ 2δ( )

 

which is >0 for δ > 0 , thus f δ( )  is a monotonically increasing function for δ > 0

and we have f δ( ) > 0  for δ > 0 . In conclusion, !Q1 − !Q2 > 0 , i.e. more thermal 
energy is lost to outside for the configuration 1. 


