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1) The temperature of n-mol ideal gas has changed from 

€ 

T1 to 

€ 

T2 degrees. Determine the 
entropy change for 1) under constant pressure and 2) under constant volume.    

Under constant pressure, heat is given by 

€ 

Q = nCPΔT  or 

€ 

˜ d Q = nCPdT . Entropy change is then 
given by  

€ 

ΔS =
˜ d Q
TT1

T2∫ = nCP
dT
T

=T1

T2∫ nCP ln T2

T1  
Similarly for the constant volume, we obtain  

€ 

ΔS =
˜ d Q
TT1

T2∫ = nCV
dT
T

=T1

T2∫ nCV ln T2

T1 . 
Those relations can also be obtained from the entropy change for the general case 

€ 

ΔS = nCV ln
T2
T1

+ nR lnV2
V1  

 shown before. If the volume is constant, 

€ 

V1 =V2  and  

€ 

ΔS = nCV ln
T2
T1  

If the pressure is constant, from 

€ 

PV = nRT , it follows that  

€ 

V1
T1

=
V2
T2

= nRT
 

and 

€ 

ΔS = nCV ln
T2
T1

+ nR lnV2
V1

= n CV + R( ) lnT2T1
= nCP ln

T2
T1  

 
 
2) Figure below is the V -P diagram of a heat engine with 1 mol of a diatomic molecule ideal 

gas. At point A, it is at STP (273 K and 1 atm). Points B and C are on the isothermal line at 
T = 423 K. The process A-B is with a constant volume and A-C with a constant pressure.  

  
 a) Obtain the volume, pressure and temperature for the state B and C. 
  
 The initial state A is given by  

 

€ 

A T = 273 K, P =1.013 ×105  N m2, V =
nRT
P

= 2.24 ×10−2  m3⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



 The temperature of the state B is given as T=423 K, and it is on the isovolumetric line with 
A, we have  and  

 

  The state C is on the isobaric line with A, i.e. , and on the isothermal line with B, 
i.e. , thus we have  

 

 
 b) Which is the path to generate the work, A-B-C or A-C-B, and why?  
 
 By noting that no work is done in A→B or B→A, since they are isovolumetric processes, 

the work done for the cycle A→B→C→A is given by the area below B-C minus the area 
below A-C on the V-P diagram, which is positive. The work done for the cycle 
A→C→B→A is given by the area below A-C minus the area below B-C, which is 
negative. Therefore A→B→C→A is the cycle generates the work. 

 
 c) What is the efficiency, ε, of the engine where ε = W / Q (positive)?  
 
 The work done in the isothermal path, B→C, is given by 

 

 and C→A 
 

 Therefore the total work, i.e. net-work done, is 

€ 

W =WB→C +WC→A =1539 J −1246 J = 293 J  
 For the heat, processes with positive heat are A→B and B→C. Using the molar specific 

heat under constant volume is given by 

€ 

CV = nfR 2, where the number of degrees of 
freedom,  for a diatomic molecule, the heat for A→B is given as   

€ 

QA→B = nCVΔT =1 mol ×
5
2
× 8.314 J mol⋅ K × 423 − 273( )  K = 3118 J . 

 No change in the internal energy is generated in B→C, thus  
 

 making to total positive heat into the system to be 
𝑄in = 𝑄A→B + 𝑄B→C = 4657 J 

 Thus the efficiency of the engine is given by  

𝜀 =
𝑊
𝑄in

= 0.063 

 i.e. about 6%. 
 
 d) Show that total heat minus total work is zero.  
 

€ 

VB =VA

€ 

B T = 423 K, P =
nRT
V

=1.57 ×105  N m2, V = 2.24 ×10−2  m3⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

PC = PA

€ 

TC = TB

€ 

C T = 423 K, P =1.013 ×105  N m2, V =
nRT
P

= 3.47 ×10−2  m3⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

WB→C = nRT ln
VC

VB
=1 mol × 8.314 J mol⋅ K × 423 K × ln

3.47 ×10−2

2.24 ×10−2 =1539 J

€ 

WC→A = PA VA −VC( ) =1.013 ×105  N m2 × 2.24 − 3.47( ) ×10−2  m3 = −1246 J

€ 

nf = 5

€ 

QB→C =WB→C =1539 J



 Using the molar specific heat under constant pressure, CP =CV + R , the heat for C→A is 
given by  

QA→B = nCPΔT =1 mol× 7
2
×8.314 J mol ⋅K× 273− 423( )  K = −4365 J

 
 Therefore, the sum of the total heat and work is given by 

QA→B +QB→C +QC→A −WB→C −WC→A = 0 J within the rounding error( )  
 
 
3) We consider now a similar heat engine starting from A as defined above, but the B-C path 

is done adiabatically. The temperature of B is kept at T = 423 K and on the isovolumetric 
line with A.  The state C remains on the isobaric line with A.  

 
 a) Obtain the volume, pressure and temperature of C.  
 
  The states A and B are given as before  

 

 and  
 

  The state C is still on the isobaric line with A, i.e. , but now on the adiabatic line 
with B, i.e. . By recalling that , we obtain 

 

 and 

 

 For the diatomic ideal gas, we have  and , leading to   
1
γ
=
CV
CP

= 0.714 	

 i.e. 
C T = 373.2!  K,  P =1.013×105  N m2,  V = 3.063×10−2  m3( )  

 
 b) Calculate the efficiency.  
 
 As for the previous engine, nor work for A→B and for C→A  

 
 For the work in B→C, using the adiabatic relation, , it follows that  

𝑊!→! = 𝑃d𝑉
!

!
= 𝑉!

!𝑃! 𝑉!!d𝑉
!

!
=
𝑉!
!𝑃!

1− 𝛾 𝑉
!!!

!!

!!

=
𝑉!
!𝑃!

1− 𝛾 𝑉!
!!! − 𝑉!

!!!  

 and  giving 𝑊B→C = 1034 J. The total work is then 
𝑊 =𝑊B→C +𝑊C→A = 204 J	

€ 

A T = 273 K, P =1.013 ×105  N m2, V = 2.24 ×10−2  m3( )

€ 

B T = 423 K, P =1.57 ×105  N m2, V = 2.24 ×10−2  m3( )

€ 

PC = PA

€ 

VC
γPC =VB

γPB

€ 

VA =VB

€ 

VC =VB
PB
PC

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 γ

=VA
PB
PA

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 γ

€ 

TC =
PCVC
nR

=
PAVA
nR

PB
PA

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1 γ

€ 

CV = 5R 2

€ 

CP = CV + R = 7R 2

€ 

WC→A = PA VA −VC( ) =1.013 ×105  N m2 × 2.24 − 3.06( ) ×10−2  m3 = −830 J

€ 

V γP = constant =VB
γPB

€ 

1−γ = −0.4



 For the heat,  is unchanged from the previous case, but no heat in B→C 
since it is an adiabatic process. Therefore, total positive heat is 𝑄in = 𝑄A→B = 3118 J and 
efficiency  

𝜀 =
𝑊
𝑄in

= 0.065 

  
 

4) Calculate the change of the total entropy of the Carnot cycle after one cycle, i.e. that of the 
Carnot engine plus the two heat reservoirs.  

 
  

 As described in the lecture note, thermal energy flows into the engine from the two heat 
reservoirs are given by   

€ 

Q1 =Wab = nRT1 ln
Vb
Va

> 0 and 

€ 

Q2 =Wcd = nRT2 ln
Vd
Vc

< 0  

in the two isothermal processes at 

€ 

T = T1 and 

€ 

T = T2 , respectively. The entropy changes of 
the engine after one cycle is given by  

€ 

ΔSengine =
Q1
T1

+
Q2
T2

= nR lnVb
Va

+ nR lnVd
Vc

. 

For an ideal gas, equation of the states

€ 

PV = nRT  and adiabatic relation, 

€ 

PV γ = constant , 
leads to 

€ 

Vb Va =Vc Vd
 
 and it follows that   

€ 

ΔSengine = nR lnVb
Va

+ lnVa
Vb

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0. 

Similarly, the entropy changes of the two heat reservoirs are given by 

€ 

ΔS1 = −Q1 T1  and 

€ 

ΔS2 = −Q2 T2 . Thus the total entropy is given by  

€ 

ΔS = ΔSengine + ΔS1 + ΔS2 = 0. 

 

5) For the Otto Cycle shown in the figures below, calculate the efficiency of the Otto cycle 
engine and compare with that of the Carnot cycle engine, 

€ 

εCarnot =1−Ta Tc , where 

€ 

Ta  and 

€ 

Tc , the lowest and highest temperature of the system, respectively. Which one of the two 
engines is more efficient?  

€ 

QA→B = 3118 J



 

 
 
 
Otto cycle consists of four paths combining the two adiabatic and two isovolumetric paths.  
A

€ 

Va,  Pa,  Ta( ): Gas (mixture of gasoline with air) in the cylinder  
A→B: Adiabatic compression of gas (Q = 0, V decreases, P increases, T increases) by 
 the  movement of the piston (W < 0) 
B

€ 

Vb,  Pb,  Tb( ): Ignition with a spark plug (gasoline) or self-ignition (diesel) 
B→C: 

€ 

QH generated, P and T increase at the constant volume.  
C

€ 

Vb,  Pc,  Tc( ) : Pressure reach at their highest points 
C→D: Adiabatic expansion of the gas (Q = 0, V increases,  
 P decreases, T decreases) by pushing down the piston (W > 0).  
D

€ 

Va,  Pd,  Td( ): The volume is at its maximum. 
D→A: 

€ 

QL  to the environment at the constant volume. The burned gas is replaced by 
 the new gas. 
 
The heat in B→C is given by  

€ 

Q1 = nCV Tc −Tb( ) > 0  
and similarly for D→A,  

P

V

A: (Pa, Va, Ta)

adiabatic

adiabatic

isovolumetric

isovolumetric

B: (Pb, Vb, Tb)

C: (Pc, Vb, Tc)

D: (Pd, Va, Td)

Ta

A B

D C

Tb

Td Tc

adiabatic

isovolumetric

air+
gasoline

ignition

gas explosion

expansion of
burnt gas

exhausting 
burnt gas and
in-taking 
air-gasoline mixture



Q2 = nCV Ta −Td( ) < 0  

From the first law of thermo dynamics, 

€ 

ΔE int =Q −W , the work in one cycle is given by  

€ 

W =Q =Q1 +Q2  
thus the efficiency  

€ 

ε =
W
Q1

=1+
Q2
Q1

=1+
Ta −Td
Tc −Tb

 

In the adiabatic processes, we have 

€ 

PaVa
γ = PbVb

γ  and 

€ 

PcVb
γ = PdVa

γ . Using the ideal gas law,  

€ 

PaVa

Ta
=
PbVb

Tb
 and PcVb

Tc
=
PdVa

Td
 

it follows that  

€ 

PaVa
γ = PbVb

γ

PaVa
γ Ta
PaVa

= PbVb
γ Tb
PbVb

TaVa
γ −1 = TbVb

γ −1

 

and  

€ 

PcVb
γ = PdVa

γ

PcVb
γ Tc
PcVb

= PdVa
γ Td
PdVa

TcVb
γ −1 = TdVa

γ −1

 

giving 

€ 

Ta −Td = Tb
Vb
Va

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ −1

−Tc
Vb
Va

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ −1

=
Vb
Va

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ −1

Tb −Tc( ) 

It follows that  

€ 

ε =1+
Ta −Td
Tc −Tb

=1+
Vb
Va

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ −1
Tb −Tc
Tc −Tb

=1− Va
Vb

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1−γ

 

i.e. the efficiency is a function of the compression ratio Vb Va . Since 

€ 

1−γ < 0 , the efficiency is 
higher for an engine with a higher compression ratio.  
From the adiabatic relation for an ideal gas, 

€ 

PaVa
γ = PbVb

γ , we obtain 

€ 

Va Vb( )γ = Pb Pa . The 
equation of the states for an ideal gas, 

€ 

PV = nRT , leads to 

€ 

PaVa Ta = PbVb Tb , thus we have 

€ 

Pb Pa = VaTb( ) VbTa( ) . It follows that  

€ 

Va
Vb

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ

=
Pb
Pa

=
Va
Vb

Tb
Ta  thus 

€ 

Va
Vb

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1−γ

=
Ta
Tb . 

The efficiency can be now written as  

€ 

εOtto =1− Ta
Tb  

By noting that in the isovolumetric process, B→C, we have 

€ 

Pc > Pb, thus 

€ 

Tc = Tb Pc Pb( ) > Tb 
and 

€ 

Ta Tb > Ta Tc . It follows that 

€ 

εOtto =1− Ta
Tb

<1− Ta
Tc

= εCarnot
 

and the Otto engine is less efficient than the Carnot engine. 
 


