
General Physics II: Tutorial Material 10 
1) Let us consider an isothermal change of the state A

€ 

Va,  Pa,  T0( )→B

€ 

Vb,  Pb,  T0( )  in 
a closed system, where Va <Vb . 
a) Calculate work and heat of the system taking this path.  
b) The system now takes another path for A to B, namely an isovolumetric 

process from A to D Va ,  Pb ,  Td( )  first, followed by an isobaric process from D 

to B. Calculate the work and heat for the two processes. Is the total heat of the 
path equal to the total work of the path? Is the result what one expects?  

 

 
 
 
 

a) From the ideal gas law,  

P = nRT0
V

 

the work for the isothermal process is given by  

W = PdV
Va

Vb∫ =
nRT0
V

dV
Va

Vb∫ = nRT0
dV
VVa

Vb∫ = nRT0 lnV ⎤⎦Va
Vb = nRT0 ln

Vb
Va

> 0
 

 Note that from the ideal gas law, Pa > Pb . Since no change in the temperature 
between A and B, there is no change in the internal energy and the first law of 
thermodynamics gives ΔEint =Q −W = 0 , thus 

Q =W = nRT0 ln
Vb
Va

 

 
b) Since no change is made in volume for A to D,  



𝑊!" = 0. 
The temperature of B is given by the ideal gas law to be  

𝑇! =
𝑉!𝑃!
𝑛𝑅  

and since  

𝑇! =
𝑉!𝑃!
𝑛𝑅  

  𝑇! > 𝑇!, i.e. the temperature decreases. The temperature difference is given by  

Δ𝑇 = 𝑇! − 𝑇! =
𝑉! 𝑃! − 𝑃!

𝑛𝑅  

and heat by  

𝑄!" = 𝑛𝐶VΔ𝑇 =
𝑉! 𝑃! − 𝑃!

𝑅 𝐶V 

For D to B, the work is given by  
𝑊!" = 𝑃!Δ𝑉 = 𝑃! 𝑉! − 𝑉!  

and heat 

𝑄!" = 𝑛𝐶PΔ𝑇 =
𝑃! 𝑉! − 𝑉!

𝑅 𝐶P 

Therefore, the total work is given by  
𝑊 =𝑊!" +𝑊!" = 𝑃! 𝑉! − 𝑉!  

and total heat 
𝑄 = 𝑄!" + 𝑄!" = 𝑃! 𝑉! − 𝑉!  

where 𝐶! = 𝐶! + 𝑅 and 𝑃!𝑉! = 𝑃!𝑉! = 𝑛𝑅𝑇! are used. The result shows that 
𝑄 =𝑊 as expected, since the change in the internal energy does not depend 
on the path, but given only by the difference in the internal energies of the 
final and of the initial states.   

  
 
2) Lets us considers a very large heat reservoir at a temperature 

€ 

TR , and a small 
thermal system at 

€ 

TS. The specific heat of the small system is C. By putting them 
into thermal contact, they reach a thermal equilibrium at 

€ 

TR , since the heat 
reservoir has such a large heat capacity and stays at the same temperature.  

 a) Calculate the entropy changes of the heat reservoir. 
 b) Calculate the entropy changes of the small system.  
 c) Calculate the entropy changes of the total system.   
 b) Show that the change of the entropy of the total system is 

€ 

ΔS ≥ 0 .  
  
 Heat of the small system and that of reservoir are given by 

€ 

Qsystem = C TR −TS( )  
and 

€ 

Qreservoir = −Qsystem , respectively. So the thermal energy flows from the 
reservoir to the small system when 

€ 

TR > TS. Process of the transferring of thermal 
energy from the heat reservoir itself can be considered as a reversible process 
since the process can be reversed by attaching another system with a temperature 
of 2TR −TS . A similar argument can be valid for the system, since the process can 

be reversed by attaching the system to another heat reservoir with a temperature 



of TS . However, the combined process of the heat reservoir and the system is 
irreversible.  

 
 a) Since the process of the heat reservoir alone is reversible, entropy change of 

the heat reservoir is given by 

€ 

ΔSreservoir =
Qreseroir
TR

= C
TS −TR( )
TR  

 thus change of the reservoir entropy is negative when 

€ 

TR > TS. 
 b) Since the process of the system alone is reversible, entropy of the small 

system is given by  

€ 

ΔSsystem = C dT
TTS

TR∫ = C ln TR
TS  

 thus change of the system entropy is positive when 

€ 

TR > TS. 
 c) Entropy of the total system is given by  

€ 

ΔS = ΔSreservoir + ΔSsystem = C
TS −TR( )
TR

+C ln TR
TS  

 d) Let us rewrite the change of the entropy as  

€ 

ΔS = C TS
TR

−1− ln TS
TR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
 

 For  

€ 

TS TR = 0  we obtain ΔS = +∞, for 

€ 

TS TR =1 ΔS = 0. From the derivative,  

€ 

dΔS
d TS TR( )

= C 1− TR
TS

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 we learn that ΔS is monotonically decreasing function of 

€ 

TS TR  for 

€ 

TS TR = 0  to 

€ 

TS TR =1. For TS TR =1 to 

€ 

TS TR = ∞ , ΔS is monotonically increasing as a 
function of 

€ 

TS TR . Therefore, we can conclude that 

€ 

ΔS ≥ 0 , and it is 0 when 

€ 

TR = TS. 
 
 

3) Show that the entropy difference of an n-mol ideal gas, ΔS, when the state 

€ 

A P1,  V1,  T1( ) is changed to 

€ 

B P2,  V2,  T2( )  quasi-statically, is given by  

€ 

ΔS = nCV ln
T2
T1

+ nR lnV2
V1 . 

 Show that this leads to ΔS=0 for an adiabatic process, as expected from the 
definition.    

 
 From the first law of the thermodynamics, 

€ 

Q = ΔE int +W , where W = PΔV, and 
with the ideal gas law, 

€ 

PV = nRT  and 

€ 

ΔE int = nCVΔT , heat can be written as  	

€ 

Q = ΔE int + PΔV = nCVΔT +
nRT
V

ΔV
 

 For an infinitesimal quasi-static change of the state, this leads to  

€ 

˜ d Q = nCVdT +
nRT
V

dV
, 



 and the change in the entropy becomes 

€ 

dS =
˜ d Q
T

=
nCV

T
dT +

nR
V

dV
 

 The entropy change for A to B is now given by 

€ 

ΔS = dSA
B∫ . 

 thus 

€ 

ΔS = nCV
dT
T

+ nR dV
V

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ A

B∫ = nCV lnT + nR lnV[ ]A
B

= nCV ln
T2
T1

+ nR lnV2
V1  

For an adiabatic process, we have PV γ = constant . Using PV=nRT, we have 
V1

γ−1T1 =V2
γ−1T2  

thus 

ln
T2
T1
= ln

V2
V1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

γ−1

= γ −1( ) lnV1V2
=
CP −CV
CV

ln
V1
V2

=
R
CV
ln
V1
V2

 

It follows that 
ΔS = 0  

which makes sense since Q=0 in the adiabatic process. 
 
 

4) An n-mole ideal gas with a volume 

€ 

V1 expands adiabatically (Q = 0) into the 
vacuum (free expansion) and its volume becomes 

€ 

V2. Is this process reversible 
process? Show that the entropy change is positive, i.e. 

€ 

ΔS > 0 . Is this result 
paradoxical? How can we explain this?  
 
The free expansion of the gas into vacuum is not reversible process since it 
cannot be controlled to proceed through a succession of many infinitesimally 
small quasi-statistical paths. Thus, the entropy change cannot be obtained by  

€ 

ΔS =
˜ d Qreverse

T∫
.
 

 On the other hand, the final state is well defined: Since it is an adiabatic process, 
Q = 0. The pressure of the vacuum is zero, thus no work is done during the 
expansion and W = 0. It follows that 

€ 

ΔE int =Q −W = 0 , 
 thus no change in the temperature during the expansion: Thus the final state has 
the same temperature, T, as the initial state with a volume 

€ 

V2 .  
 Since the entropy difference between the two states does not depend on the path, 
ΔS calculated between the initial and final states with a reversible isothermal 
expansion of volume 

€ 

V1 →V2 is identical to ΔS for the free expansion process. 
Therefore, we can use the previous solution with 

€ 

T1 = T2. It follows that   

€ 

ΔS = nR lnV2
V1

. 

 Since 

€ 

V1 <V2 , we have 

€ 

ΔS > 0 , increase of the entropy.  



 From a usual expression of ΔS = Q/T, one wants to conclude ΔS = 0 for the free 
expansion. However, with the exact formula  

€ 

ΔS =
˜ d Qreversible

TA
B∫ >

˜ d Qirreversible

TA
B∫  

 we have  

€ 

˜ d Qirreversible

TA
B∫ = 0  

 but not ΔS.  
 
  


