
General Physics II: Tutorial Material 8 
1) In our outer space, the density of matter is 1 atom per 

€ 

cm3. It is dominated by the 
hydrogen atom and at a temperature of 2.7 K. What is the rms-speed of those 
hydrogen atoms? What is the pressure there in the unit of atm?  

 
 The mass of the hydrogen atom is 

€ 

1 u =1.66 ×10−27  kg, and the number of the 
hydrogen atom in the universe per 

€ 

m3 is 

€ 

106 . From the Boltzmann's equation, the 
rms-speed is given by  

€ 

vrms = 3 kT
m

= 31.38 ×10−23 J K × 2.7 K
1.66 ×10−27  kg

= 259 m s 

 The pressure is given by the ideal gas law as 

€ 

P =
NkT
V

=
106 ×1.38 ×10−23 J K × 2.7 K

1 m3 = 3.726 ×10−17  Pa  

 Using the conversion factor, 

€ 

1 atm =  1.01×105  Pa , we obtain 

€ 

P = 3.726 ×10−17  Pa = 3.726 ×10−17

1.01×105 = 3.7 ×10−22  atm 

 
 
2) The lowest pressure attainable using the best available vacuum technique is about 

10!!" Nm!!. At such a pressure, how many molecules are there per  at 0° C? 
 
 Assuming the ideal gas law is valid, the number of molecules is given by  

 

 where k is the Boltzmann constant, . For 
P =10!!" Nm!!, V , and T = 273 K, we obtain the number of 
molecule per cubic cm to be  

 

 
 
3) Show that the rms-speed of gas molecules is given by 

€ 

vrms = 3P ρ , where P 
and ρ are the pressure and density of the gas respectively.  

 
 From the Maxwell's distribution, the rms-velocity is given by  

€ 

vrms = 3 kT
m

 

 where k is the Boltzmann's constant and m is the mass of the gas molecule. The 
ideal gas law in terms of the Boltzmann's constant is given by 

€ 

PV = NkT  where 
N is the number of molecule. It follows that  

€ 

kT
m

=
PV
Nm

=
P

Nm V
=
P
ρ

 

€ 

cm3

€ 

N =
PV
kT

€ 

=1.38 ×10−23 J K =1.38 ×10−23 Nm K

€ 

=1 cm3 =10−6  m3

€ 

N =
10−12  Nm−2 ×10−6  m3

1.38 ×10−23 NmK−1 × 273 K
= 265



 where 

€ 

ρ ≡ Nm V  is the density of the gas. It follows that  

€ 

vrms = 3 kT
m

= 3P
ρ

 

 
 
4) How many joules and kilocalories are generated when the breaks are used to stop 

the car running at 95 km/h and weight 1200 kg. 
 
 The kinetic energy of the car is given by  

€ 

Ekinetic =
mv2

2
=

1200 kg
2

95 km h( )2
=

1200 kg
2

95000
3600

m
s

 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

= 4.18 ×105  J  

 From the conversion factor, 1 cal = 4.186 J, this corresponds to  
4.18×105

4.186
≈1×102  kcal  

 This amount of energy will be generated when the breaks are used to stop the car.  
 
 
5) An ideal gas is kept in a container with rigid walls. How can we reduce the 

pressure of the gas? How much work the gas will do during that process?  
 
 Seeing from the ideal gas law,  

€ 

P =
nRT
V

 

 the pressure can be reduced by lowing the temperature of the gas. Since the gas is 
in a container with rigid walls, the volume does not change. Therefore no work is 
done. 

 
 
6) There are N indistinguishable gas molecules uniformly distributed in a box with a 

volume V. Consider a small region in the box with a volume 

€ 

V1.  

a) What is the probability to find any one but only one molecule in this region? 

b) What is the probability to find any n molecules in this region?  

c) What is the average number of molecules, 

€ 

n , and its standard deviation 

€ 

Δn ≡ n2 − n 2 , where 

€ 

n2  is the average of 

€ 

n2 , in this region?  

d) If N is of the order of the Avogadro number, i.e. about 

€ 

1024, and the volume of 
the considered region is about 1% of the total volume, how large is 

€ 

Δn n ? 
What does it mean? 

 

NB: Following formula might be useful:  



€ 

(p + q)M =
M!

m! M −m( )!m=0

M

∑ pmqM −m  

€ 

m M!
m! M −m( )!m=0

M

∑ pmqM −m = Mp(p + q)M −1 

€ 

m2 M!
m! M −m( )!m=0

M

∑ pmqM −m = Mp(p + q)M −1 + M M −1( )p2(p + q)M −2  

 
 

a) Since molecules are uniformly distributed in a volume V, the probability to 
find one particular molecule in a volume 

€ 

V1, p, must be proportional to 

€ 

V1. 
When  

€ 

V1 =V , this probability must be p=1. By combining the two facts, we 
get   

€ 

p =
V1
V

 

 and equally for the probability to find it outside of the volume 

€ 

V1, q, is 

 

€ 

q =
V −V1
V

=1− V1
V

=1− p  
 thus  

€ 

p + q =1,  
 i.e. the probability to find one particular molecule inside or outside of the 

volume is one, which is logical. The probability for out of N molecules to have 
one particular molecule in the volume and all the other N−1  molecules 
outside of the volume is given by  

€ 

pqN−1 =
V1
V
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1−

V1
V

⎛ 

⎝ 
⎜ 

⎞ 
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⎟ 
N−1

 

 The probability for out of N molecules to have any one but only one molecule 
in the volume, 

€ 

P 1( ) , is then given by  

€ 

P 1( ) = N V1
V
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1−

V1
V

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
N−1

 

 since the one particle in the volume can be any of the N molecules. 

b)  By generalising 1) and using the number of combinations to select n 
molecules out of N molecules, the probability to find n indistinguishable 
molecules in the region, 

€ 

P n( ) , is given by  

€ 

P n( ) =
N!

n! N − n( )!
V1

V
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
n

1− V1

V
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
N−n

 

c) The average, 

€ 

n , and squared average, 

€ 

n2 , are given by  



n = nP(n)
n=0

N

∑ = n N !
n! N − n( )!n=0

N

∑ V1

V

⎛

⎝
⎜

⎞

⎠
⎟

n

1−
V1

V

⎛

⎝
⎜

⎞

⎠
⎟

N−n

= N V1

V

⎛

⎝
⎜

⎞

⎠
⎟  

 and 

n2 = n2P(n) =
n=0

N

∑ n2 N !
n! N − n( )!n=0

N

∑ V1

V

⎛

⎝
⎜

⎞

⎠
⎟

n

1−
V1

V

⎛

⎝
⎜

⎞

⎠
⎟

N−n

= N V1

V

⎛

⎝
⎜

⎞

⎠
⎟+ N N −1( ) V1

V

⎛

⎝
⎜

⎞

⎠
⎟

2

 

 respectively. It follows that  

€ 

n2 − n 2 = N V1
V
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + N N −1( ) V1

V
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− N 2 V1
V
⎛ 
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2

= N V1
V
⎛ 
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V
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 and the standard deviation is given by  

€ 

Δn = N V1
V
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1−

V1
V

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

d) The ratio, 

€ 

Δn n , is given by  

€ 

Δn
n

=
1
N

V
V1

−1 

 and for 

€ 

N ≈1024  and 

€ 

V V1 ≈10
−2, we have  

€ 

Δn
n
≈10−11 

 i.e. the relative statistical fluctuations of the number of molecules from the 
average number is very small. 

 


