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Problem 1 
Boltzmann factor gives that the number of gas molecules with an energy E, for a gas at an absolute 
temperature T to be ∝ 𝑒!! !", where k is the Boltzmann constant. A gas molecule on the earth gains 
potential energy mgh, where h is the altitude of the molecule position measured from the sea level, m 
the mass of the gas molecule and g gravitational constant.  By assuming that the energy of the gas 
molecule is totally given by the earth gravity (a reasonable assumption since the earth atmosphere 
does not escape to the outer space) and the temperature does not depend on the altitude:  
1) Obtain the number of gas molecules for a unit surface with an infinitesimally small thickness at 

an altitude of h, 𝑛 ℎ , using 𝑛!, which is the number of gas molecules per unit surface with an 
infinitesimally small thickness at ℎ = 0. 

2) Assuming that the gas is an ideal gas, obtain the pressure of the gas, 𝑃 ℎ , at an altitude h from 
𝑛 ℎ .  

3) Show that the gas pressure at the sea level is equal to the gravity force acting on the total mass of 
the gas molecules (altitudes from 0 to ∞) per unit surface. 

 
 
 
Solutions: 
1)  By combining the Boltzmann factor, 𝑒!! !", energy of a gas molecule at an altitude h, mgh, and 
knowing that 𝑛 0 = 𝑛!, 𝑛 ℎ  is given by  

  

2)  Since the gas follows the ideal gas law, 𝑃𝑉 = 𝑛𝑘𝑇, and 𝑛 𝑉 is the particle density, P for an 
infinitesimally thin slice of the gas volume at a height, h, can be given as 

P h( ) = n
V

 at h
⎛

⎝
⎜

⎞

⎠
⎟kT = n h( )kT = n0kTe−mgh kT  

 
3)  From 1), P at the sea level, ℎ = 0, is given by  

P 0( ) = n0kT  

n h( ) = n0e−mgh kT
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The total umber of gas molecules, N, contained in an infinitely high column with a unit surface 
bottom is given by  

N = n h( )dh0

∞

∫ = n0 e−mgh kT dh
0

∞

∫ =
n0kT
mg

 

and the total mass for those molecules, M, is given by  

 

thus n0kT =Mg , leading to  
P 0( ) = n0kT =Mg ,  

i.e. the pressure at the sea level is equal to the gravitational force acting on the mass of the gas 
molecule per unit surface. 
 
  

M =mN =
kTn0
g
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Problem 2 
We consider a system of two solid bodies, A and B, with their masses, 𝑚! and 𝑚!, and specific heats 
per mass, 𝑐! and 𝑐!, respectively. And their initial absolute temperatures are 𝑇! and 𝑇!. Now the two 
bodies are put together under thermal contact while the system is thermally isolated from the 
environment.    
1) Using the 1st law of thermodynamics, calculate the temperature 𝑇!, when the system has reached 

thermal equilibrium.  
2) Show that 𝑇! is always in between 𝑇! and 𝑇!. 
3) Calculate the entropy changes for A and B, ∆𝑆! and ∆𝑆! , between the initial and the final thermal 

equilibrium states.  
4) From ∆𝑆! and ∆𝑆! obtained above, show that the total entropy change, ∆𝑆! + ∆𝑆!, is always ≥ 0.  

 

 
 
Solutions 
1) Heats for A and B for reaching thermal equilibrium are given by 𝑄! = 𝑚!𝑐! 𝑇! − 𝑇!  and 
𝑄! = 𝑚!𝑐! 𝑇! − 𝑇! , respectively. There is no heat from the outside since the system is thermally 
isolated, and there is no work, thus 𝑄! + 𝑄! = 0, i.e. 𝑚!𝑐! 𝑇! − 𝑇! +𝑚!𝑐! 𝑇! − 𝑇! =0. This 
leads to  

Tf =
mAcATA +mBcBTB
mAcA +mBcB

 

2) By introducing 𝑇! − 𝑇! = 𝛿, 𝑇! can be written as  

Tf =TA −
mBcBδ

mAcA +mBcB
=TB +

mAcAδ
mAcA +mBcB

 

where clearly  

0 <
mBcB

mAcA +mBcB
<1 and 0<

mAcA
mAcA +mBcB

<1 

 
Thus, if 𝑇! − 𝑇! = 𝛿 > 0, 𝑇! < 𝑇! and 𝑇! > 𝑇!, and if 𝑇! − 𝑇! = 𝛿 < 0, 𝑇! > 𝑇! and 𝑇! < 𝑇!, i.e.  
𝑇! is always in between 𝑇! and 𝑇!. 
 
3) The process can be reversed by introducing another solid bodies with appropriate temperatures to 
restore the original temperatures for A and B. Therefore, the entropy change can be calculated as 
Δ𝑆 = 𝑑𝑄 𝑇, i.e.  

ΔSA =
mAcAdT
TTA

Tf∫ =mAcA ln
Tf
TA

 and ΔSB =
mBcBdT
TTB

Tf∫ =mBcB ln
Tf
TB

 

 
4)  The total change of entropy is given by Δ𝑆!"! = Δ𝑆! + Δ𝑆!. By introducing 𝑥 = 𝑇! 𝑇!, where the 
range of x is from 0 to ∞,  

Tf =
mAcA +mBcBx
mAcA +mBcB

TA =
mAcA +mBcBx
mAcA +mBcB( ) x

TB  
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thus 
Tf
TA

=
mAcA +mBcBx
mAcA +mBcB

 and 
Tf
TB

=
mAcA +mBcBx
mAcA +mBcB( ) x

 

and Δ𝑆!"! can be written as 

ΔStot = mAcA +mBcB( ) lnmAcA +mBcBxmAcA +mBcB
−mBcB ln x  

at 𝑥 = 1, i.e. 𝑇! = 𝑇!, Δ𝑆!"! = 0 that makes sense since if there is no temperature difference between 
A and B, they are already in thermal equilibrium and nothing happens. By taking derivative of Δ𝑆!"! 
respect to x, we obtain 

dΔStot
dx

=
mAcAmBcB x −1( )
mAcA +mBcBx( ) x

 

leading to 𝑑Δ𝑆!"! 𝑑𝑥 < 0  for x<1 and 𝑑Δ𝑆!"! 𝑑𝑥 > 0  for x>1, i.e. from x=0 to 1 Δ𝑆!"!  is 
monotonically decreasing and reach to 0 at x=1, then monotonically increasing from x=1 to ∞. 
Therefore Δ𝑆!!" ≥ 0.  
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Problem 3 
Consider an isolated system with a 10 kg ice block in 20 kg of water, which is in a thermal 
equilibrium state. In the following, assume that the specific heat and heat of fusion of the ice are 
0.5 kcal kg ⋅C( )  and 80 kcal kg , respectively, and specific heat of the water is 1 kcal kg ⋅C( ) . 

1) What is the temperature of the system?  

2) If we add 20 kg of water at 90!  C to the system, what will be the temperature of the system after 
reaching its equilibrium and what are the constituents of the system? 

 
 
 
 

Solutions: 
1)  Since the water and ice are in thermal contact and in equilibrium, their temperatures are identical. 
The ice melts above 0!  C  and the water freezes below 0!  C . Since they coexist, the temperature of 
the system must be at 0!  C .  
 

2)  In order to melt the entire ice,  

Qice = 80 kcal
kg

×10 kg = 800 kcal  

of thermal energy is needed. If 20 kg of water at 90!  C is cooled down to 0!  C ,  

Q90 =1 kcal
kg ⋅C

×20 kg× 90−0( )
!
 C =1800 kcal  

is released, which is more than the thermal energy needed to melt the ice. Therefore, the system after 
reaching the thermal equilibrium consists of water only. For the 20 kg of water at 90!  C to provide 
the necessary thermal energy to melt the ice, its temperature should go down by  

Qice

1 kcal
kg ⋅C

×20 kg
=

800
20

⎛

⎝
⎜

⎞

⎠
⎟ !  C=40!  C  

i.e. to 50!  C . Now we have 30 kg of water at 0!  C  and 20 kg of water at 50!  C . By denoting T to be 
final temperature by mixing the two,   

1 kcal
kg ⋅C

×30 kg×T !  C =1 kcal
kg ⋅C

×20 kg× 50−T( )
!
 C  

20 kg of water

10 kg of ice

20 kg of 90° C water
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leading to T = 20!  C . In conclusion, the equilibrium state is 50 kg of water at 20!  C . 
 


