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Thermodynamics



Problem 1

Boltzmann factor gives that the number of gas molecules with an energy E, for a gas at an absolute

temperature T to be o< e £ /KT 'where k is the Boltzmann constant. A gas molecule on the earth gains

potential energy mgh, where h is the altitude of the molecule position measured from the sea level, m

the mass of the gas molecule and g gravitational constant. By assuming that the energy of the gas

molecule is totally given by the earth gravity (a reasonable assumption since the earth atmosphere
does not escape to the outer space) and the temperature does not depend on the altitude:

1) Obtain the number of gas molecules for a unit surface with an infinitesimally small thickness at
an altitude of h, n(h), using ny, which is the number of gas molecules per unit surface with an
infinitesimally small thickness at h = 0.

2) Assuming that the gas is an ideal gas, obtain the pressure of the gas, P(h), at an altitude A from
n(h).

3) Show that the gas pressure at the sea level is equal to the gravity force acting on the total mass of
the gas molecules (altitudes from O to %) per unit surface.

Temperature T’
Infinitesimally small dh
h+dh
h
n(h) —
=0 Unit surface
Solutions:
—E/KT

1) By combining the Boltzmann factor, e
knowing that n(0) = ny, n(h) is given by

n(h) = noe""’gh/kT

, energy of a gas molecule at an altitude &, mgh, and

2) Since the gas follows the ideal gas law, PV = nkT, and n/V is the particle density, P for an
infinitesimally thin slice of the gas volume at a height, /, can be given as

P(h)= (% at h)kT = n(h)kT = n kTe

3) From 1), P at the sea level, h = 0, is given by
P(0)=nkT



The total umber of gas molecules, N, contained in an infinitely high column with a unit surface
bottom is given by

I _ = menfkr g KT
N= [ n(h)dh=n,[ e dh= -
g
and the total mass for those molecules, M, is given by
T
M =mN = KT,
g

thus n kT = Mg , leading to
P(0)=nkT = Mg,

i.e. the pressure at the sea level is equal to the gravitational force acting on the mass of the gas
molecule per unit surface.






Problem 2

We consider a system of two solid bodies, A and B, with their masses, m, and mp, and specific heats

per mass, ¢4 and cp, respectively. And their initial absolute temperatures are T4 and Tg. Now the two

bodies are put together under thermal contact while the system is thermally isolated from the

environment.

1) Using the 1+ law of thermodynamics, calculate the temperature Ty, when the system has reached
thermal equilibrium.

2) Show that Ty is always in between T, and Tg.

3) Calculate the entropy changes for A and B, AS, and ASg, between the initial and the final thermal
equilibrium states.

4) From AS, and ASp obtained above, show that the total entropy change, AS, + ASg, is always > 0.
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Solutions

1) Heats for A and B for reaching thermal equilibrium are given by Q, = myc, (Tf - TA) and
Qp = mpcp (Tf - TB), respectively. There is no heat from the outside since the system is thermally
isolated, and there is no work, thus Q4 + Qg = 0, ie. mACA(Tf - TA) + mBCB(Tf — TB):O. This
leads to

me T +mye,T,

Tf=

mAcA+chB

2) By introducing Ty — Tg = &, Tr can be written as

T o7 mc,0 . mc 0
s A B
m.c, +my, m.c, +my;c,
where clearly
m,c m.c
0<—28 <land O<—244L <1
m.c, +mgyc, m.c, +myc,

Thus,if Ty =T =6 > 0,Tf <Tpand Ty > Tg,andif Ty —Tg =6 < 0,T; > Ty and T < Tp, i.e.
Tr is always in between T, and Tj.

3) The process can be reversed by introducing another solid bodies with appropriate temperatures to
restore the original temperatures for A and B. Therefore, the entropy change can be calculated as
AS = [dQ/T,ie.

: dT T, : dT T
ASA=fZ%=mAcAInFJ andASB=f;’%=chBlnT—f

A B

4) The total change of entropy is given by AS;,; = AS, + ASg. By introducing x = Ty /T, where the
range of x is from O to %,
7o UG T MCX e MC,  mCyX
! 4 B
mec, +myc, (mAcA+chB)x




thus
£=mAcA+chBx andi m.c, +myo.x
T, mc,+mgc, T, (mAcA+chB)x

and AS;,; can be written as

m,.c, +chBx

ASmt=(mAcA+chB)ln -myc,Inx

m.c, +my;,

atx = 1,1e.T, = Ty, AS;,: = 0 that makes sense since if there is no temperature difference between
A and B, they are already in thermal equilibrium and nothing happens. By taking derivative of AS;,;
respect to x, we obtain

dAS m.c myc, (x—l)

tor _

dx (mAcA +chBx)x

leading to dAS;,;/dx < 0 for x<1 and dAS;,;/dx > 0 for x>1, ie. from x=0 to 1 AS;, is
monotonically decreasing and reach to 0 at x=1, then monotonically increasing from x=1 to c°.
Therefore AS;,; = 0.



Problem 3

Consider an isolated system with a 10 kg ice block in 20 kg of water, which is in a thermal
equilibrium state. In the following, assume that the specific heat and heat of fusion of the ice are
0.5 kcal/(kg . C) and 80 kcal/kg , respectively, and specific heat of the water is 1 kcal/(kg : C) .

1) What is the temperature of the system?

2) If we add 20 kg of water at 90" C to the system, what will be the temperature of the system after
reaching its equilibrium and what are the constituents of the system?

““’ 20 kg of 90° C water

&

10 kg of ice

o d

20 kg of water

Solutions:

1) Since the water and ice are in thermal contact and in equilibrium, their temperatures are identical.
The ice melts above 0° C and the water freezes below 0° C . Since they coexist, the temperature of
the system must be at 0° C .

2) In order to melt the entire ice,
Q.. =80 @x 10 kg =800 kcal
kg
of thermal energy is needed. If 20 kg of water at 90° C is cooled down to 0" C,
kcal o
0, =1 kg—_cxzo kgx(90-0) C=1800 kcal

is released, which is more than the thermal energy needed to melt the ice. Therefore, the system after
reaching the thermal equilibrium consists of water only. For the 20 kg of water at 90° C to provide
the necessary thermal energy to melt the ice, its temperature should go down by

0. =(800)0 C—10° C
keal x20 kg 20
kg-C
i.e.to 50° C. Now we have 30 kg of water at 0° C and 20 kg of water at 50° C . By denoting 7 to be
final temperature by mixing the two,

keal 30 kexT C=1 <L 420 kgx(50-T) C
kg-C kg-C

1

1




leading to 7'=20" C. In conclusion, the equilibrium state is 50 kg of water at 20" C.



