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General Physics II at EPFL  
(2017-2018 SS, Wed 17:15-19:00 and Thu 9:15-10:00, Exercise Thu 10:15-12:00) 
 
Special Relativity (4th week) 
Lorentz Invariance and Causality 
As shown before, the Lorentz transformation of the space-time in the x-direction: 
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It follows that 

c2 ʹt 2 − ʹx 2 − ʹy 2 − ʹz 2 = γ 2 ct −βx( )
2
−γ 2 x −βct( )

2
− y2 − z2

= c2t2 − x2 − y2 − z2
 

Therefore, four dimensional interval between the two events, 

€ 

E1 t1,  x1,  y1,  z1( ) and 

€ 

E2 t2,  x2,  y2,  z2( ) , 
defined as 

€ 

Δs2 = c2Δt2 − Δx2 − Δy 2 − Δz2  
where 

€ 

Δt = t2 − t1 , 

€ 

Δx = x2 − x1 , 

€ 

Δy = y2 − y1 , and 

€ 

Δz = z2 − z1 , remains invariant under Lorentz 
transformation.  
 Note that for 

€ 

Δx = Δy = Δz = 0 , 

€ 

Δt ≡ Δt0  is the time interval for events occurring at the same 
space point, i.e. proper time and  

€ 

Δs2 = c2Δt0
2, i.e. 

€ 

Δt0 =
Δs2

c
 

Thus, proper time is identical to the space-time distance between the two events (divided by c), if 

€ 

Δs2 ≥ 0. For two events with 

€ 

Δs2 < 0, proper time becomes imaginary thus cannot be defined. Note 
that proper time of a particle corresponds to the time measured with a clock attached the particle.  
 Length, l, can considered as the spatial distance between the two space points that are relatively 
at rest, measured simultaneously, i.e. 

€ 

Δt = 0:  

€ 

Δs2 = −Δx2 − Δy 2 − Δz2 = −l2 , i.e. 

€ 

l = −Δs2  
Thus l, identical proper length, can be meaningful only when 

€ 

Δs2 ≤ 0 .  
 Let us imagine a two dimensional space-time, ct and x. Such a space can be illustrated by a two 
dimensional Cartesian coordinate system (ct, ix). From a given point, 

€ 

E1 t1,  x1( ), light propagates as a 
straight line,  

€ 

t − t1 = ±
1
c
x − x1( )  

Any points 

€ 

Ei ti,  xi( )  that is 

€ 

t2 − t1 ≥
1
c
x2 − x1  

in the area shown in Figure 7, can be reached from 

€ 

E1 by moving with a velocity  

€ 

v =
x2 − x1
t2 − t1

≤ c .  

Those points are referred as time-like. Proper time is then for events which are time like.  
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 In order to reach any point out side of the area, one needs to move faster than light, and referred 
as space-like. From the fact 

€ 

γ =1 1− v c( )2  becomes imaginary for 

€ 

v > c , one can already 
speculate that no one can move faster than the speed of light. In this case, two space-like events are 
causally unrelated, i.e. one cannot influence the other, since any interaction between the two points 
cannot propagate faster than light. So only the time-like events can be causally related.  
 

 
 

 

Energy Momentum Four Vector and Lorentz Transformation 
We introduce a quantity τ as 

τ =
1
c

c2t2 − x2 − y2 − z2  

which then invariant under the Lorentz transformation as discussed in the previous section and has a 
dimension of time. It follows that  

dτ = 1
c

c2dt2 − dx2 − dy2 − dz2  

thus,  
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Let us consider a quantity, d!x dτ . It follows that 
d!x
dτ

=
d!x
dt

dt
dτ

=
!u

1− u c( )2
 

Therefore, the relativistic momentum derived before 

  

€ 

! p = m0
" u 

1− " u c( )2  
can be written as  
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 !p =m0
d!x
dτ

 

Similarly for the energy, we can derive 
E
c
=m0

d ct( )
dτ

=
m0c

1− u c( )2
. 

 Since ct,  x,  y,  z( )  is a Lorentz vector, τ a Lorentz invariant quantity and m0 a constant, a four 
vector defined as E c,  px,  py,  pz( )  is transformed as a Lorentz vector. Therefore, the energy-
momentum four-vector is called "Lorentz four-vector". Since it is a Lorentz four-vector, the four 
dimensional interval, 

€ 

E 2 c2 − p2, is invariant under the Lorentz transformation; i.e. E and p will 
have different values in different inertial frames, 

€ 

E 2 c2 − p2  remains invariant. From the energy-
momentum relation 

€ 

E 2 = m0
2c4 + p2c2, it follows that  

€ 

E 2 c2 − p2 = m0
2c2  

thus the rest mass, 

€ 

m0 , is a Lorentz invariant quantity, called a Lorentz scalar. The mass given by  

€ 

m0 =
E 2 c2 − p2

c
 

is often called "invariant mass", since it is invariant under the Lorentz transformation.  
 
 
Another way to obtain the result 
This can also be shown by explicitly transforming the energy and momentum of a particle with a 
velocity   

€ 

! u  in a frame S to those given in another frame S', which is moving with a constant velocity v 
respect to S along the positive x direction. The energy and momentum in S is given by  

  

€ 

E
c

=
m0c

1− ! u c( )2
,  " p = m0

! u 

1− ! u c( )2
 

From the velocity transformation, the velocity of the particle in the frame S,   

€ 

! u , is given by the 
velocity in S',  

€ 

! 
ʹ u , as   

€ 

ux =
ʹ u x + cβ

1+ β ʹ u x c
,  uy =

1
γ

ʹ u y
1+ β ʹ u x c

,  uz =
1
γ

ʹ u z
1+ β ʹ u x c

,  where β =
v
c

 and γ = 1
1− β2

, 

which allow to derive the energy and momentum given in S', by inserting those expressions to 

€ 

E  and 

  

€ 

! p  given in terms of   

€ 

! u .  
 For this purpose, we need to calculate 

  

€ 

1− 1
c2

ux
2 + uy

2 + uz
2( ) =1− 1

1+ β ʹ u x c( )2
ʹ u x

c
+ β
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2

γ 2c2
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⎣ 
⎢ 
⎢ 
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⎦ 
⎥ 
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=
1+ β ʹ u x c( )2 − ʹ u x c + β( )2 − 1− β2( ) ʹ u y

2 + ʹ u z
2( ) c2

1+ β ʹ u x c( )2

=
1− β2( ) − 1− β2( ) ʹ u x

2 + ʹ u y
2 + ʹ u z

2( ) c2

1+ β ʹ u x c( )2

=
1− ʹ 
! u 2 c2

γ 2 1+ β ʹ u x c( )2
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It follows that  

  

€ 

1

1− ! u c( )2
=

γ 2 1+ β ʹ u x c( )2

1− ʹ 
! u 2 c2

= γ
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Therefore,  

  

€ 
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and 
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i.e.  

€ 

E
c

= γ ʹ E 
c

+ βγ ʹ p x ,  px = βγ ʹ E 
c

+γ ʹ p x, py, z = ʹ p y, z  

or in a matrix notation  
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which is the Lorentz transformation.  
  



 5 

Doppler Effect 
Doppler effect for sounds 
Figure 10 
Sounds are propagated through media, e.g. the air, and in the rest frame of the media, the speed is 
constant, 

€ 

vsnd . Therefore, it is most convenient to take this as our reference frame. The frequency, f, 
and wave length, λ, are related as  

€ 

λ =
vsnd
f

 

 
 The source is approaching toward the observer with a velocity 

€ 

vsource and at 

€ 

t = 0 , the crest of 
the sound left the source. The next crest leaves the source at 

€ 

t =1 f  and the source has moved 
toward the observer by  

€ 

t × vsource =
vsource
f

= λ
vsource
vsnd

 

Therefore, the distance between the two crests, which is the wave length seen by the observer, 

€ 

ʹ λ , is 
given by  

€ 

ʹ λ = λ − t × vsource = λ 1−
vsource
vsnd

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

i.e. the wavelength gets shorter, and the difference is proportional to the speed of the source. The 
frequency seen by the observer is then 
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€ 

ʹ f =
vsnd
ʹ λ 

= vsnd λ 1−
vsource
vsnd

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

vsnd
2

λ vsnd − vsource( )
= f vsnd

vsnd − vsource( )
 

 
i.e. the frequency the observer hears is higher than that emitted by the source. If the source is moving 
away from the observer, we need to replace 

€ 

vsource with 

€ 

−vsource. 
 Now, we consider a case where the observer is approaching toward the source with a velocity 

€ 

vobs. The observer sees the sound approaching with a speed 

€ 

vsund + vobs, while the wavelength is 
unchanged. Therefore,  

€ 

ʹ f =
vsnd + vobs

λ
=

vsnd
λvsnd

vsnd + vobs( ) =
f vsnd + vobs( )

vsnd
 

i.e. the frequency the observer hears is higher than that emitted by the source. If the observer is 
moving away from the source, we need to replace 

€ 

vobs with 

€ 

−vobs. 
By combining the two, we get a universal formula for the Doppler shift 

  

€ 

ʹ f = f vsnd ± vobs
vsnd ∓ vsource

 

where the upper signs for the case where the movements decrease the distance between the source 
and observer and the lower signs increase. Note that both observer at rest and source moving, and 
observer at rest and source moving produce a similar effect but and effects are quantitatively not 
identical. Also note that we consider the cases where 

€ 

vsnd > vobs  and 

€ 

vsnd > vsource. 
 
Doppler effect for light 
Unlike the case for the sound, the light propagate without media and the special relativity tells us that 
the velocity of the light, c, is identical for any observers moving with a constant speed respect to each 
other. We consider a case where a light source and a light sensor are approaching to each other with a 
constant velocity, v. We introduce an inertial frame, S', where the observer is at rest and the light 
source approaching with a constant velocity, v. In S' the time interval between the departures of the 
wave fronts is given by 

€ 

Δ ʹ t =1 ʹ f  where 

€ 

ʹ f , is the frequency of the light in S'. The first wave front 
leaves the source at 

€ 

t = 0 . Then the second wave front leaves at 

€ 

t = Δ ʹ t . When the source emits the 
second wave front, it moved toward the observer by 

€ 

vΔ ʹ t . Therefore, the distance between the two 
wave fronts in S' is given by  

€ 

c − v( )Δ ʹ t  
which corresponds to the wavelength of the light measured in S',

€ 

ʹ λ .  
 In another inertial frame, S, where the light source is at rest, the emissions of the wave fronts 
take place at the same space coordinate. Therefore the time intervals between the emissions,

€ 

Δt =1 f  
is proper time, where f is the frequency of the light measured in S. Proper time receives time dilation 
and the time interval in S' is seen as 

€ 

Δ ʹ t =
Δt

1− v c( )2
 

Note that the S' is moving with a constant velocity respect to S.  
 It follows that  
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€ 

ʹ λ = c − v( )Δ ʹ t =
c − v

1− v c( )2
Δt =

c − v( )2

c2 − v2
cΔt =

c − v
c + v

λ  

where λ is the weave length measured in S. For the frequency, we have  
 

€ 

ʹ f =
c
ʹ λ 

=
c + v
c − v

f  

 In conclusion, the source and observer are approaching with a relative velocity, v, the 
frequency and wavelength of the light seen by observer are given by 

€ 

ʹ f =
c + v
c − v

f and ʹ λ =
c − v
c + v ʹ λ  

i.e. the frequency is shifted to higher (blue shift). If two are moving apart 

€ 

fO =
c − v
c + v

fS and λO =
c + v
c − v

λS  

frequency is sifted lower (red shift).  
 Astronomer found that the frequencies of lights from the distant galaxies are shifted toward 
lower frequencies. Thus the distance between the Earth and galaxies are increasing, i.e. our universe 
is expanding.   
 
Transverse Doppler effect 
For the sound, the Doppler effect is purely due to the velocity subtraction and addition between the 
sound velocity and the velocities of the source and observer. If the direction of the sound emitted is 
perpendicular to the direction of the movement of the source or observer, there is no Doppler effect. 
In the relativity, time dilation that does not depend on the direction of the movement, also plays a 
role. Therefore, there is still a Doppler effect even if the light is emitted perpendicular to the direction 
of the source (or the observer) movement.  
 
 


