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2018-2019 SS: Lecture; Wed 17:15-19:00 and Thu 8:15-9:00, Special session; 9:15-10:00
Exercise; Thu 10:15-12:00

Special Relativity (2nd week)

Time Dilatation and Length Contraction

Time Dilatation
Proper time is defined as the time interval between two events took place at the same space
coordinate. The same events seen in a different frame S’ do not happen at the same space coordinate.

For example, consider a case where a particle is at rest in the S frame. We call the time interval
between the creation of the particle and its decay as “decay time”. In the S frame, the decay time is a
proper time, since the two events happened at the same space coordinate. Now we consider S’ frame
which is moving with a constant speeded v in x direction. In the S’ frame, the particle moves
backward in x direction with a velocity v. Therefore, the two events do not happen at the same space
coordinates in the S’ frame.

It turns out that the decay time measured in S’ frame, i.e. the decay particle of a moving particle, is
longer than that measured in the S frame where particle was at rest, i.e. the time associated to the
moving frame evolves slower when compared to the time of the frame where the clock is at rest.
Gedanken Experiment

We consider Event-1 to be the emission of the light. The light is reflected with a mirror and seen by a
detector, which is called Event-2. In the S frame, the emitter and detector are at the same coordinate,

as shown in the figure below.
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Experimental set up seen in S frame.
Since the two events, Event-1 and Event-2, take place at the same coordinate, the time interval
between the two is a proper time and given by
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In S°, frame which is moving with a constant velocity, v, in x direction with respect to S frame, the
light emitter, mirror and detector are moving with a constant velocity, v, in the backward direction of
x, as seen in the figure below.
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Experimental setup seen in S’ frame.
In S’ frame, the time interval between the two events A¢' can be derived from
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Le. time interval between the two events measured in the frame where the setup is at rest, A7, is
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smaller than that measured in the frame where the set-up is moving.

This effect can be shown more formally using the Lorentz transformation. This will be for your
exercise.

Directionality: Time dilatation happens when the object moves in any direction.

Length Contraction
Length: spatial distance between the two space points, which are stationary relatively, or distance

between the two spatial points measured at the same time.
Proper length: length between the two space points measured in the frame where the two points are
at rest.

Assume that in the S frame the earth and moon are at rest. In the S frame, a space ship travels with a
velocity, v. We then have the following definitions:
* Event £ (?E, t ) the space ship leaves the earth where 7, and ¢/ are the coordinate of the
earth and the departure time respectively in S frame.
* Event EZ(FM, t;) the space ship arrives at the moon, where ?M and 7, are the coordinate of
the moon and the arrival time respectively, measured in the S frame.
Then the spatial distance and time interval of the two events in the S frame are given by
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which is the proper length from the definition.

We then consider S’ frame, which is moving with a constant velocity with respect to S frame so that
the space ship is at rest in that frame: i.e. the earth and moon are moving with a velocity, v, in
opposite direction respect to the direction of the S’ movement respect to S. In S’ frame, the space
ship departure is given by El(FW, tl) where 7, and #, are the coordinate of the space ship and the
time when the position of the moving earth overlaps with that of the space ship, respectively.
Similarly the arrival at the moon is given by £, (FW, tz) is in S’ frame where ¢, is the time when the
position of the moving moon overlaps with that of the space ship,. Since in the S’ the space ship is at

rest. Hence the tine interval between the two events,

At =t -1,
is a proper time. The time interval of the two events S is then given by
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Using the time interval between the two events and their common velocity, the distance between the
earth and the moon in S’ is given by
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The distance between the earth and moon mea in—S’ frame where the earth and moon are
moving with a common velocity v is shorter by 1—(v/ 0)2 than the that measured in S frame where
the earth and moon are at rest: i.e. the length of a moving object is contracting compared to the
proper length.

The length can be shown in a more formal way using Lorentz transformation. This is demonstrated in
the special session.

Directionality: Contraction occurs only along the direction of motion. The length perpendicular to
the direction of motion is unchanged.

Values of y
% 0 001lc 0.10c 0.50c 0.90c 0.99¢
Y 1.000 1.000 1005 1.15 23 7.1

NB: 0.01¢ = 3000 km/sec



Relativistic Momentum

Momentum is given in Newtonian mechanics by
p=mu
where m is the mass of the object and u velocity. Let us consider an elastic collision of the two
objects, A and B, in two-dimensional space, x-y. In the S' fame, they are moving with a velocity
ut =(u;A, u’yA) and w” =(u;cB, u’yB) and making an elastic collision symmetrically i.e. the y-
component of the velocity for A becomes —u’yA and B, —u’yB , thus after the collision, their velocity
become (u’A - u’A) and (u;B, - u’yB). If the two objects have an identical mass, m, the y-component

X y
of the total momentum before the collision is mu’yA + mu’yB and after the collision is —mu’yA - mu’yB .
Momentum conservation leads to mu’yA + mu’yB = —mu;A - mu’yB ie.
A _ B
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Now introduce another inertial frames, S, where at ¢ = 0, the two systems overlap each other, and S'
moves with a constant velocity, v, in a positive x direction. Galilean transformation of velocity gives
no change in the y-component of the velocity, hence the momentum conservation holds in S.
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The velocity v is chosen such that the object B is moving only in y-direction in S i.e.
it = (uA u;“ ) and u° = (O, u]ys). As seen before, the y-component (non boosted) of the velocity is
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also affected in the special relativity. Lorentz transformation for velocity gives the velocities for A
and B before the collisions to be
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where f§=v/c. Since u’yA = —u’yB,
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ie. u;‘ # —uf . If momentum is defined as p =mu, pf = mu;‘ # —mu;9 = —pf , and the momentum
conservation law is not valid in S. Let us assume that A and B have different masses in S, such that
momentum conservation is reinstalled: pf =m Auf =—my uf =- pf .
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thus the mass appears to be different for different velocities. The mass of the object at rest, B, is often
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called as "rest mass" and we refer this as m,,.
0

Since the collision is symmetric in S', we have u;A = —u;B =v,l.e.
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The velocity v is then given by

Thus
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For infinitesimally small uf , we have uf = ‘ﬁA ,and
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In conclusion, relativistic momentum is given by
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Newton's second law is also given by
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where F is the force. It follows that
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By introducing the acceleration, d = dﬁ/ dt , it follows that
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The Ultimate Speed

When the speed of the object, u, approaches to that of light, we have 4/1 — (u/ c)2 —0 and the mass of
the object given by
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gets larger an larger, thus more and more difficult to accelerate further. In the limit of u = c, we have
m = and one needs infinite energy to further accelerate the object. Therefore, nothing can travel

m =

faster then the speed of light.



Special Session

Length contraction and Lorentz Transformation
Place a bar at rest in the frame S along the x-axis. The two end points of the bar in S are given by
(x,, 0, 0) and (x,, 0, 0). Since the bar is at rest, x, = x,(¢) and x, = x,(¢) are independent of time, z.
Therefore, for the proper length of the bar,[, = x2(t2) - xl(tl), t, and ¢, can be different. The two
end pints seen by the frame S' are no longer stationary and changing as functions of time, #', but the
relative velocity between the two is zero, thus have a fixed distance. The Lorentz transformation
gives

X ==yPet, +yx,  cty =yet, = ypx,

Xy ==yt +yx,  cty =yct, —ypx,
and the length of the bar is given by [/ = x’z(t’z) - xl(tj) , where the both coordinates must be measured
at the same time, #] = #, = t;, since they are moving. It follows that

[=x)-x)= (}’xz —}’ﬁaz) - (Vx1 - VﬁCtl) = V(xz - xl) - Vﬁc(tz - tl)
Using ct, = yety + yBx; and ct, = yety +yfxs, we have c(t, —1,) =yp(xs - x}), thus/ =yl —-y*B. Tt
follows that
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leads to
vl = Yo
In conclusion, the length, /, of a moving object by a velocity v scales as
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where proper length, /, is the length of the object at rest, which is the length contraction.



