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2018-2019 SS: Lecture; Wed 17:15-19:00 and Thu 8:15-9:00, Special session; 9:15-10:00
Exercise; Thu 10:15-12:00

Special Relativity (1st week)
Galilean-Newtonian Relativity

Inertial Frames: frames where Newton's first law is valid (frame is where observer sits)

- Object at rest remains at rest

- Object moving with a constant velocity keep moving with a constant velocity
Figure 1
Case I: Object and observer are in the train and at rest

Velocity of the object seen by the observer: ii = (0, 0, 0)
Case II: Object in the train moving with a constant velocity U= (O, 0,10 m/sec)

Velocity of the object seen by the observer outside of the train: i’ = (0, 0, 10 m/sec) = @i + U
Case III: Train is on the Earth moving with a constant velocity V= (0, 0, 250 m/ Sec)

Velocity of the train U' = (0, 0, 260 m/sec) =U+V

Velocity of the object seen by the observer outside of the earth:

W=u+V=u+U+V =(0, 0, 260 m/sec)

Assumed: distance and time interval unchanged for Case I — Case II — Case III

For all three cases, Newton's first low is valid

Any frames moving with constant velocities respect another inertial frame are also inertial frames.
There is no absolute inertial frame = Galilean-Newtonian relativity

NB: The velocities of an object are different from one frame to another frame, but the accelerations
are the same.

Case I: Object accelerated from i, = (0, 0, 0) to #, = (0, 0, 2 m/sec) in At =1 sec. Acceleration is
i = (i, - ,) /At = (0, 0, 2 m/sec?)

Then move to Case 11

Object accelerated from i} = i, + U = (0, 0, 10 m/sec) to @i, =i, + U = (0, 0, 12 m/sec) in Az =1 sec.
Acceleration is a' = (ﬁ’z - ﬁj)/At =(0, 0, 2 m/sec?) = a.

Acceleration is unchanged.

Intuitively, mass and force would be unchanged between different inertial frames. Since the
acceleration is also unchanged, F' = ma is valid in all the inertial frames.

Move to more general definition of the Galilean-Newtonian relativity, i.e. in all the inertial frames,
laws of physics are unchanged, three Newton's laws and the laws of gravity.

Case I': Object at 7, = (0, 0, O) with a velocity u, = (0, 0, O) ,at t =0, starts to fall with gravitation
with a constant acceleration toward the z-direction, i.e. a = (0, 0, 9 m/secZ) .
Case II': Object is in the train moving with a constant velocity
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Postulation of the Special Relativity Theory

1. The laws of physics have the same form in all inertial frames.
2. Light propagates through the vacuum with a definite speed ¢ independent of the speed of the
source or observer: — Information cannot propagate faster than c.

Simultaneity

Event: something that happens at a particular place at a particular time:

Two events El(fl, tl), E2(72, t2) are simultaneous if ¢, =¢,.

This can be easily examined if the two events occur at the same place (7; =7,). If not, how can we
know whether the two events are simultaneous?

1) Light was emitted from the emitter A and B at tg‘ and tg respectively and a light detection system
is in the half way between A to B with a distance / from the each. An observer is standing at next to
the detection system. The arrival times of the light from A and B are given by t* and 8 ,
respectively:

t* — 1 =l, ® —t5 L

c c
It follows
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Thus if the two lights arrives at the same time, ie. t* =¢°, ) =#; and two events happened
simultaneously.
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2) The whole set-up is in the train moving a constant speed and an observer is outside of the train
watching the train and set-up moving. The light was emitted from A and B simultaneously at
i =72 =0: by denoting 7* and 7° as arrival times of A and B seen by the outside observer, we
have
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Note that the length between the light emitters and the detector might be different between the two
observers. It follows that
7A ! . 4
c+v c—-v

thus 7 =% , while the observer on the train sees ¢ = 2.

If it were a ball with a velocity, u, the observer outside of the train sees the velocity of the ball
moving from A to the detector becoming u—v, and for the ball from B, u+v. In this case, =18 =1 '[u
(however not [/u).
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Galilean and Lorentz transformation

A frame is defined by a coordinate system: e.g. a Cartesian coordinate system characterised by a set
of three coordinate axes, x, y, and z, which are orthogonal to each other, describing our three
dimensional space. Every inertial frame has its own coordinate systems and space points can be
specified in different inertial frames.

Let us consider two inertial frames, S with its coordinate system (x, y, z) and S' with (x', y', Z').
At =0, the two systems overlap each other, and S' moves with a constant velocity, v, in a positive x
direction. One considers that S' corresponds to an observer in the train watching a object, while S
corresponds to an observer outside of the train watching both observer and object moving together
with the train with a constant velocity, v.

Galilean transformation
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An event is defined in S' by the time and space coordinate (¢, x', y', z'), The same event is

defined in S as (7, x, y, z) where
r=r

X=x"+vt'=x"+vt

y=)
z=7
called Galilean transformation. In linear algebra, we have
t 1 0 0 0\7
X{_|v 1 0 Offx
y[7(0 0O 1 Ofy[
z 0 0 0 1)z
In a more general form:
t I 0 0 O)yp
X v, 1 0 Ofy
y{Tlv, 0 1 O}y
z) \v. 0 0 1\Z

or more simply
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Similarly for a transformation from S to S":
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Note that
1 0 0 01 O O O 1 0 0 0y (1 0 0 O
v 1 0 Of—v 1 0 O] _|v-v 1 O Of_[0O 1 O O
O 0O1 OO O 1 O]l 0O O1Oo0f71OO 1O
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i.e. two transformation matrices are inverse to each other. In general

(F)-( 7)) =) - )

For a case where P corresponds to the space-time position of a particle, the velocity in the
frame S' is given by

u. | (dx'/dr
u, | =|dy'/dt
u’z dZ’/ dr'

Transformation to the frame S is then given by
dx  d(x'+vt') dx' dv

R — — 14 — 14
v = o —dl,+dﬂt+v—ux+v,uy-uy,uz—uz
since v is constant. Therefore, we have

u, u, +v
uy, | = !
U, :
and in general
u=u+v
This transformation is non relativistic, i.e. if u = ¢, ¢ = ¢ + v, which is contradiction to the special

relativity principle.

Lorentz transformation
In order to obtain the relativistic transformation, let us assume that the coordinate
transformation is changed as

X=x+vt x =y(x' +vt')
y=y (= y=y
z=7 z=7

where y is still to be determined. In the non-relativistic limit, y=1. From the relativity principle,
transformation from S to S' should be given by replacing v to —v

x'=y(x -vt)
y'=y
7'=z

which is a general transformation rule.
For the determination of y, we consider a special case where light is emitted along
the x (x') direction at ¢t = ¢ '= 0, from the origin of S, which identical to the origin of S'. In the S'
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frame, an event where the light arrives at ¢' to the Point P is given by an event (¢', cf', 0, 0). In the S
frame, this event is given by (¢, ct, 0, 0) and the transformation from S' is given by
X=ct= y(x’ + vt’) = }/(ct’ + vt’) = y(c + v)t’

S S
S’ S’
y=y 4 A A
y y
light emitted to
the positive x direction P
x=x’ — o—> - - - -
e} x=ct <—,//
z=7 s s x'=ct’ -
O b4 Z
t=0

From the inverse transformation, S to S'is given by
xX'=ct'= y(x - vt) = )/(ct - vt) = }/(c - v)t
It follows that

" ylc -v)t
C
thus
2 - cr=v3)t
SRR OO (22000 B Cillh
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The y determined here is valid for a general case where the transformation is given by
x=y(x'+vr') x'=y(x-vr)
y=Y and Y=y
z=2 7=z

For the transformation of 7' to ¢ for the general case, using x'= y(x - vt) , it follows that
L x'

v vy

and using x =y (x"+vr)



In summary, we obtain the following general transformation law for x,y, z and ¢
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where
v 1
/3=_9y= 5
c 1-8
And in a matrix form
ct y yB 0 O)\cr
X_|vBy 0 O X
y 0O 0 1 OofY
Z 0 0 0 I\Z
This is called Lorentz transformation. The inverse transformation is given by
-1
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NB: for more general transformation is given by
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Four-Dimensional Space Time

In Galilean-Newtonian relativity, the time interval and the distance in space remain unchanged
between the different inertial frames. However, the Lorentz transformation shows that they are no
longer invariant. It also indicates that the space and time are closely related.

Relativistic Addition of Velocities

The velocity transformation in Special Relativity can be derived from the coordinate transformation,
ct y vB 0 O0)cr

X_|vBy 0 O X
y 0O 0 1 ofY
Z 0O 0 0 1INZ
e.g.
dx d (,+ t’)
U, =—=—ylx'+v
Yoodt dty
By noting
d_dd
dt  dr dt
and
dt dr dr 1

== — =
dr dt dt dt/dr
it follows that

u, = ! (ﬁ+v)— : (u’+v)
“arjar \ar 77 ) " ajar VT

d d (t,+vx’) (1+v /)
_— = — | = — U
ar —ar'\" T )T
w,+v
U, =——-7—
! 1+vu§c/c2

Using

it follows that

In a similar manner,

A R (=0

Y t dl‘/d[’ dr' y(]+vu;/c2) 1+vu;/c2
u, 1—(v/c)2

< 1+vu;/62

Unlike for the case of Galilean transformation, y and z components of the velocity are affected
although the relative velocity between the two frames is along the x component.
When it is for the light,i.e. u' = (c, 0, 0) ,
c+v c+v
ux = =C =
l+v/c c+v

c

u, =u, =0

i.e. the speed of the light remains unchanged in different inertial frames.



Michelson-Morley Experiment (Special session)

Maxwell's equation & theory of electromagnetism: — light is high frequency electromagnetic waves.
Speed of light in vacuum: ¢ =299,792,458 m / second

If the light is wave, usually we need a medium where the wave propagates.
How the light can propagate in vacuum? = an idea: vacuum is filled with Ether.
How is ¢ defined? (Recall that the velocity is frame dependent.)
The c is measured on the earth and the earth is moving with a constant speed respect to Ether.
= It should depend on the direction of the light propagation.

> A

An example of a boat travels from the starting point S to and back with a velocity, c, to a destination
A (distance S-A, /) that is along the direction of the stream, and B perpendicular to the direction of
the stream (distance S-B, ). The velocity of the stream is v.

P B
STA T ey AT T ey
Lc=v)+L(c+v) .1 1
= = -1
oA TR IS T ) T (ve)
and
2 2 12
(cts—p) = (Vis—p) + 5, 15 = o2 ivz
L, 1
lsop =7 T = Ig>s
€ 41- (v/c)2
L, 1
lyop =2——F7———
€ 41- (v/c)2
The difference in the arrival times is
A 1 L, 1

At =tsop—tsop=2—— 527 T7——

c1-(vfe) ¢ 1-(v/e)’

We rotate the system by 90 degrees, i.e. B along the direction of stream and A perpendicular to the
direction of the stream. The difference in the arrival times is given by
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-~ - ~ [ 1 [ 1
At =Tg ) —Tgop =2 22

¢ \/1—(v/c)2 ¢ 1_(V/C)2

The difference of the two is then derived to be

N ! 1 ! 1 L 1
At - A7 =2+ s-2-=2 -2t ———-2-2

¢ 1-(v/e) c 1—(v/c)2 c 1—(v/c)2 ?1—(v/c)2

=21_1 1 - ! +21—2 ! - 1
c|1-(v/e) \/1_(v/c)2 c|1-(v/c)’ \/1—(v/C)2
2Au+b)|

¢ 1—("/0)2 \/1—(v/c)2
For (v/c)2 <<l
1

m=1+(§)2+0 (E)zn,n>l}, m=l+%(g)2+0

using the Taylor expansion. It follows that

v 2n

(—) ,n>1]
c

2

c
i.e. there should be difference if v=0.
Experiment by Michelson and Morley did not show any difference.
The speed of light is identical in the vacuum for all inertial frames.

Schematic view of the Michelson-Morley Experiment:
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Mathematical note: Approximation using the Taylor expansion
Taylor series of a function F(x) around x = a is given by

1 dF(a) 1 d*F(a) )
F(X)=F(a)+l_!7(x_a)+5! i (x—a) +...=F(a)+
Let us consider the case a =0, i.e.

F(x) = F(O)+ldF(0)x 14°F(0) x*+---=F(0)+ ildnL(O)x"

o n
ht odx

1! dx ¥ 2! dx? ~n! dx"
If [x| is much smaller than 1, i.e. 1>>|x|>>[x]" >>[x] >>---, and if F(O)| ~|d"F(0)/dx"|, the terms
with higher order in x becomes negligible.
As an example, we consider F(x)=1/(1- x). By noting
- dF(X) -2 sz(x) -3 d3F(X) —4
F(x)=(1-x)", == =(1-x)7, =2(1-x)", =6(1-x)",
()= (1-2", (-, S (-0, S 1-)

the Taylor series is then given by

1 1] L] ]
l-x 1-x[_, (1—x)2 o (l—x)3

=l+x+x>+x°-
For small x, say x =0.001, we have
1 1
——=1.001001001:-- and 1+ x =1.001,1ie. —=1+x
1-x 1-x
and we can have a good approximation by neglecting terms that are proportional to x> or with higher
powers in x.
Another example for F(x) =+/1-x, we have
V2, dF (x _ —l(l _x)-l/z’
dx 2

x=0

d*F(x)
dx*

F(x)=(1-x) d°F(x)

= _i(l - x)_3/2,

thus

I=x= .l—x] 0_%\/11_} x_l; xz—i; x4
x= -X B

11, 1 4

=l-—x-—x"=—x"--
2 8 16
and for x =0.001,
1
V1 -x =0.9994999--- and I—Ex =0.9995

i.e. neglecting terms proportional to x> or higher is a good approximation.
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