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Thermodynamic (8th week) 
Heat, Work, Entropy and Internal Energy  
In general, heat, Q, is incoming flow of thermal energy associated with a temperature change ΔT and 
given by  

Q =m ⋅c ⋅ ΔT  
c is a specific heat and m mass of the object. For an infinitesimal change in the temperature dT, it 
leads to  

!dQ =m ⋅c ⋅dT  
and Q is obtained by  

Q = !dQ
initial

final
∫ =m c ⋅dT

Tinitial

Tfinal∫  

 
When a gas changes its volume by ΔV  under a constant pressure P, work is given by   

W = P ⋅ ΔV  
For a more general case, we consider that the volume of the gas changes only an infinitesimally small 
amount, dV , quasistatically, and during this period P can be considered as unchanged and  

!dW = P ⋅dV  
The total work is then given by   

W = !dW
initial

final
∫ =m P ⋅dV

Vinitial

Vfinal∫  

where P = P V( ) . The first law of thermodynamics can then leads to  
ΔEint =Q−W  ⇒  dEint = !dQ− !dW,  ΔEint = dEintinitial

final
∫  

Similarly for the entropy changes in a reversible process, we have  

ΔS = Qreversible

T
 ⇒  dS =

!dQreversible

T
,  ΔS = dS

initial

final
∫ =

!dQreversible

Tinitial

final
∫  

 
For a process with a constant volume, W=0, and from the first law of thermodynamics  
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for an n-mol gas. 
Let us select T and V  as state variables describing a gas state, it follows that  

dEint =
∂Eint
∂T

⎛

⎝
⎜

⎞

⎠
⎟
V=const

dT + ∂Eint
∂V

⎛

⎝
⎜

⎞

⎠
⎟
T=const

dV  

Since the internal energy is a function of T only,  

dEint =
∂Eint
∂T
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dT = nCVdT  

For a process with a constant pressure, work is not 0 and we have 



∂Eint
∂T

⎛

⎝
⎜

⎞

⎠
⎟
P=const

=
!∂Q
∂T
⎛

⎝
⎜

⎞

⎠
⎟
P=const

−
!∂W
∂T

⎛

⎝
⎜

⎞

⎠
⎟
P=const

≡ nCP −
!∂ PV( )
∂T

⎛

⎝
⎜

⎞

⎠
⎟
P=const

 

For the ideal gas case, PV=nRT, it follows that  
∂Eint
∂T
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Therefore, for the case of selecting P and T, we obtain as before  
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Entropy changes for heat cycles 
Consider a reversible cycle of n-mol ideal gas. After one cycle, the internal energy comes back to the 
original state,  

dEint = 0!∫  

Using dEint = TdS −PdV  we obtain  
dEint
T

= dS − P
T
dV  

Using dEint = nCVdT , it follows that  
dEint
T!∫ = nCV

dT
T!∫ = 0  

Similarly, using the ideal gas law, 
PdV
T!∫ = nR dV

V!∫ = 0  

Therefore,  

dS!∫ =
dEint
T

+ PdV!∫!∫ = 0  

i.e. the entropy increase on the cycle is 0.  



Heat Engine  
A heat engine takes heat, 

€ 

Q1 > 0 , from a reservoir with temperature 

€ 

T1, and coverts to work. The fact 
that the work, W , done by change the state of the system depends on the path it takes, is used to 
extract the work. In order to extract work continuously, the path has to come back to the original state 
making a cycle. Since the state of the heat engine comes back to the original one, the entropy of the 
heat engine remains unchanged after the cycle. On the other hand, the Entropy change of the heat 
reservoir after one cycle is given by  

€ 

ΔS1 =
−Q1
T1

< 0  

and the total entropy change is given by  

€ 

ΔStotal = ΔS1 =
−Q1
T1

< 0  

which does not agree with the second law of thermodynamic, 

€ 

ΔStotal ≥ 0 . In order to fulfil the second 
law, we need to introduce another heat reservoir with a temperature 

€ 

T2, where 

€ 

T2 < T1 and the engine 
ejects heat, 

€ 

Q2 < 0 , to the second reservoir. The entropy change of the second reservoir is then  

€ 

ΔS2 =
−Q2
T2

> 0  

 
In this case, the first law gives, 

€ 

ΔE int =Q1 +Q2 −W = 0, i.e.  

€ 

Q2 = −Q1 +W  
and the total entropy change is given by  

€ 

ΔStotal = ΔS1 + ΔS2 =
−Q1
T1

+
−Q2
T2

 

From the second law, we have 

€ 

ΔStotal = −
Q1
T1

−
Q2
T2

≥ 0 . 

leads to  

€ 

Q2

T2
≤ −

Q1

T1
,  i.e. Q2

Q1
≤ −

T2

T1
 

 



The efficiency of the heat engine is given by  

€ 

ε =
W
Q1

=
Q1 +Q2
Q1

=1+
Q2
Q1

≤1− T2
T1

 

While a perfect engine has 

€ 

ε =1, a real engine has efficiency less than 1, i.e.  

€ 

ε ≤1− T2
T1

<1. 

 
Carnot Cycle 
To demonstrate the argument above, Carnot cycle, a combination of isothermal and adiabatic 
processes, was invented. There is no real engine using the Carnot cycle, but it can be used to 
demonstrate the second law of thermodynamic, with four states, A, B, C, and D,  

 
A

€ 

Va,  Pa,  T1( ) : A cylinder with an ideal gas is attached to a heat reservoir with a temperature 

€ 

T1. 
A→B: Isothermal expansion with a constant temperature 

€ 

T1, heat 

€ 

Q1 > 0  into the cylinder  
 from the reservoir, and work 

€ 

Wab > 0 being done. 
B

€ 

Vb,  Pb,  T1( ) : The cylinder is removed from the heat reservoir and thermally isolated. 
B→C: Adiabatic expansion (Q = 0) till the temperature drops to 

€ 

T2 and work done, 

€ 

Wbc > 0 
C

€ 

Vc,  Pc,  T2( ) : The cylinder is attached to another heat reservoir with a temperature 

€ 

T2. 
C→D: Isothermal compression with a constant temperature 

€ 

T2, heat 

€ 

Q2 < 0  out of the 
 cylinder to the reservoir, and work 

€ 

Wcd < 0 being done. 
D

€ 

Vd,  Pd,  T2( ): The cylinder is removed from the heat reservoir and thermally isolated. 
D→A: Adiabatic compression (Q = 0) till the temperature raise to 

€ 

T1 and work, 

€ 

Wda < 0,  
 done from the outside.   
As done previously for the isothermal process, we have  

€ 

Wab = PdVVa

Vb∫ = nRT1
dV
VVa

Vb∫ = nRT1 ln
Vb
Va

 

and 

€ 

ΔE int = 0, leading to 

€ 

ΔE int =Q −W = 0 , leading to 

€ 

Q1 =Wab = nRT1 ln
Vb
Va

> 0 

Equally,  

€ 

Q2 =Wcd = nRT2 ln
Vd
Vc

< 0  

In the adiabatic expansion, we have

€ 

PV γ = PbVb
γ , thus the work between B→C is given by  



€ 

Wbc = PdVVb

Vc∫ = PbVb
γ V −γdVVb

Vc∫ =
PbVb

γ

1−γ
V 1−γ ]Vb

Vc
=
PbVb

γ

1−γ
Vc
1−γ −Vb

1−γ( ) =
PbVb
1−γ

Vc
Vb
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Equally for the adiabatic compression, the work for D→A is given by  

€ 

Wda = PdVVd

Va∫ = PaVa
γ V −γdVVd

Va∫ =
PaVa

γ

1−γ
V 1−γ ]Vd

Va
=
PaVa

γ

1−γ
Va
1−γ −Vd

1−γ( ) =
PaVa
1−γ

1− Vd
Va
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For the isothermal processes, we have 

€ 

PaVa = PbVb and 

€ 

PcVc = PdVd. And for the adiabatic processes 
it follows that 

€ 

PbVb
γ = PcVc

γ  and 

€ 

PaVa
γ = PdVd

γ . Furthermore, the ideal gas law gives  

€ 

PaVa
T1

=
PbVb
T1

=
PcVc
T2

=
PdVd
T2

. 

It follows that  

€ 

PbVb
γ = PcVc

γ

PbVb
γ T1
PbVb

= PcVc
γ T2
PcVc

Vb
γ −1T1 =Vc

γ −1T2

T1
T2

=
Vc
Vb
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γ −1

 

and  

€ 

PaVa
γ = PdVd

γ

PaVa
γ T1
PaVa

= PdVd
γ T2
PdVd

Va
γ −1T1 =Vd

γ −1T2

T1
T2

=
Vd
Va
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giving  

€ 

Wbc +Wda =
PbVb
1−γ

Vc
Vb
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i.e. the adiabatic parts of works cancel each other. This conclusion can be reached in a much simpler 
way. As indicated before, 

€ 

ΔE int = nCVΔT  and for an adiabatic process, 

€ 

Q = 0  leads to 

€ 

ΔE int = −W . 
It follows that  

€ 

Wbc = −ΔE int
bc = −nCV T2 −T1( ) and 

€ 

Wda = −ΔE int
da = −nCV T1 −T2( ), 

which leads to 

€ 

Wbc +Wda = 0. 
The total work is now given by  

€ 

W =Wab +Wcd = nRT1 ln
Vb
Va

+ nRT2 ln
Vd
Vc

= nRT1 ln
Vb
Va

− nRT2 ln
Vc
Vd

 

Note that the first law of thermodynamic is valid and 

€ 

W =Q1 +Q2. Using  



€ 

T1
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Vc
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we obtain 

€ 

Vc

Vb
=
Vd

Va
,  i.e. Vb

Va
=
Vc

Vd
 

thus 

€ 

W =Wab +Wcd = nR T1 −T2( ) lnVbVa
 

and the efficiency is given by  

€ 

ε =
W
Q1

=
nR T1 −T2( ) lnVb Va

nRT1 lnVb Va
=1− T2

T1
 

i.e the Carnot cycle gives the maximum efficiency allowed by the second law of thermodynamic.  
 
Carnot cycle and T-S plot  
In the previous section, Carnot cycle was drawn on the pressure (P) versus volume (V ) plane. From 
the relation, 

€ 

˜ d W = PdV , valid for a reversible process, the area surrounded by the Carnot cycle, 
A→B→C→D, on the P-V  plane gives the total work of the Carnot engine. By recalling the 
expression, 

€ 

˜ d Q = TdS , for a reversible process, let us draw the Carnot cycle on the temperature (T) 
versus entropy (S) plane. On this plane, an isothermal process, T constant, is a horizontal line and an 
adiabatic process, Q = 0 thus S constant, is a vertical line. Therefore, a Carnot cycle is a rectangular 
box on the T-S plane. Similar for the work, the area surrounded by A→B→C→D on the T-S plane 
give the total heat of the Carnot engine.  

 
As introduced in “Entropy and the first law of thermodynamic”, the infinitesimal change in the 
internal energy can be given from the first law of thermodynamics as  

€ 

dE int = TdS − PdV  
By recalling that the internal energy depends only on the temperature, i.e.  

dEint =
∂Eint
∂T

⎛

⎝
⎜

⎞

⎠
⎟dT = nCVdT , 

it follows that 
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dS = dEint
T

+
P
T
dV = nCV

dT
T
+ nR dV

V
 

For a change of state from P1,  V1,  T1( )  to P2,  V2,  T2( ) , the change of the entropy, ΔS, is given by the 
integration as 

ΔS = nCV
dT
TT1

T2∫ + nR dV
V

= nCV ln
T2
T1
+ nR lnV2

V1V1

V2∫  

The entropy change for the isothermal expansion A→B, ΔS , is given by 

€ 

ΔS = nR lnVb
Va

 

 thus the area of the rectangular box is given by  

Qtotal = ΔS × T1 −T2( ) = nR T1 −T2( ) lnVb
Va

 

in agreement with the analysis before without using the entropy. 
 
Refrigerators 
The operation principle of refrigerators and heat pumps are the reverse of a heat engine, transferring 
heat from a cool environment to a warm environment by work. In order to demonstrate how the 
refrigerator works, we operate the Carnot cycle in the reversed order: A→D→C→B→A. In this case, 
the upper and lower limits for the integration in the heat and work calculations must be exchanged, 
thus the sign of the heat and work should be flipped. The efficiency of a refrigerator is defined as 

€ 

εrefrigerator =
thermal energy extracted from the heat reservoir with T = T2

total work given to the refrigerator 
	

 
From the Carnot engine calculations, heats for A→D and B→A, 

€ 

Qdc and 

€ 

Qba, respectively are given 
by  

€ 

Qdc = nRT2 ln
Vc
Vd

> 0  and 

€ 

Qba = nRT1 ln
Va
Vb

< 0  

and similarly for the work, A→D, D→C, C→B, and B→A 
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Wba = nRT1 ln
Vd
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The total work is given by  

€ 

W total =Wad +Wdc +Wcb +Wba = nR T2 −T1( ) lnVcVd
 

The thermal energy extracted from the heat reservoir with 

€ 

T = T2  is given by 

€ 

Qdc, and the work given 
to the refrigerator is 

€ 

−W total . Thus the efficiency is then given by  

€ 

εrefrigerator =
Qdc
−W total

=
nRT2 ln

Vc
Vd

nR T1 −T2( ) lnVcVd

=
T2

T1 −T2
. 

 


