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Thermodynamic (8th week)
Heat, Work, Entropy and Internal Energy

In general, heat, Q, is incoming flow of thermal energy associated with a temperature change AT and

given by
QO=m-c-AT
c is a specific heat and m mass of the object. For an infinitesimal change in the temperature d7, it
leads to
(~1Q =m-c-dT
and Q is obtained by

o= i“""“ dg=m| TT c-dT

nitial

When a gas changes its volume by AV under a constant pressure P, work is given by
W=P-AV
For a more general case, we consider that the volume of the gas changes only an infinitesimally small
amount, dV, quasistatically, and during this period P can be considered as unchanged and
dW = P-dVv
The total work is then given by

final ~ Viinal
W = dw =m f P-dv
initial Vinitial

where P = P(V) . The first law of thermodynamics can then leads to
AE, =Q-W = dE, =dQ-dW, AE,, =

final dE
initial | int

Similarly for the entropy changes in a reversible process, we have

AS - Qrev]e:sible = dS = ertf]v—‘ersible , AS = final dS = final ereversib]e

initial initial T

For a process with a constant volume, W=0, and from the first law of thermodynamics
E. F]
(a int ) = @ = nCV
oT V=const oT V=const
for an n-mol gas.

Let us select T and V as state variables describing a gas state, it follows that

dEim=(aEim) dT+(aEi“‘) av
a V=const av T=const

Since the internal energy is a function of 7 only,

dE, =(‘9Eim) dT = nC,dT
aT V=const

For a process with a constant pressure, work is not 0 and we have



IE, J oW
( int ) — _Q | = nCP -
aT P=const a T P=const aT P=const

For the ideal gas case, PV=nRT, it follows that

(aEint) =n.CP_nR(_) =n(CP_R)=nCV
JaT P=const P=const

Therefore, for the case of selecting P and 7', we obtain as before

dEim - (aEim ) dT + (%) dP = nCVdT
oT P=const J T'=const

P=const

Entropy changes for heat cycles
Consider a reversible cycle of n-mol ideal gas. After one cycle, the internal energy comes back to the
original state,

ngEim =0

Using dE, =TdS - PdV we obtain

9B _gs-Lay
T

Using dE,, =nC,dT , it follows that
fﬁdEim c, dT

Similarly, using the ideal gas law,

Therefore,
dE.
jﬂdS=j§Tlm+45PdV=0

i.e. the entropy increase on the cycle is 0.



Heat Engine

A heat engine takes heat, O, >0, from a reservoir with temperature 7;, and coverts to work. The fact
that the work, W, done by change the state of the system depends on the path it takes, is used to
extract the work. In order to extract work continuously, the path has to come back to the original state
making a cycle. Since the state of the heat engine comes back to the original one, the entropy of the
heat engine remains unchanged after the cycle. On the other hand, the Entropy change of the heat
reservoir after one cycle is given by

T,

1
and the total entropy change is given by

AStotal = ASI = _TQI <0

1
which does not agree with the second law of thermodynamic, AS,, =0. In order to fulfil the second

law, we need to introduce another heat reservoir with a temperature 7,, where 7, <7, and the engine
ejects heat, O, <0, to the second reservoir. The entropy change of the second reservoir is then

AS, = % >0
T,
Q:>0
W>() | iy
" QZ<O

In this case, the first law gives, AE, =0, +0, -W =0, 1i.e.

Q,=-0,+W
and the total entropy change is given by
L T
From the second law, we have
AStotal = _% _% =0.
L T,
leads to
T.
%s—%, ie %s——z

L L0 T



The efficiency of the heat engine is given by

=E=M=1+%51__2
Ql Ql Ql Tl
While a perfect engine has € =1, a real engine has efficiency less than 1, 1.e.
T,
esl-—<l1.
T

Carnot Cycle

To demonstrate the argument above, Carnot cycle, a combination of isothermal and adiabatic
processes, was invented. There is no real engine using the Carnot cycle, but it can be used to
demonstrate the second law of thermodynamic, with four states, A, B, C, and D,
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A(Va, P,, Tl): A cylinder with an ideal gas is attached to a heat reservoir with a temperature 7;.

A—B: Isothermal expansion with a constant temperature 7, heat Q, >0 into the cylinder
from the reservoir, and work W, >0 being done.

B (Vb, Py, Tl): The cylinder is removed from the heat reservoir and thermally isolated.

B—C: Adiabatic expansion (Q = 0) till the temperature drops to 7, and work done, W, >0

C (VC, P, Tz): The cylinder is attached to another heat reservoir with a temperature 7.

C—D: Isothermal compression with a constant temperature 7,, heat O, <0 out of the
cylinder to the reservoir, and work W, <0 being done.

D (Vd, Py, T2): The cylinder is removed from the heat reservoir and thermally isolated.

D—A: Adiabatic compression (Q = 0) till the temperature raise to 7; and work, W, <0,
done from the outside.

As done previously for the isothermal process, we have

v, v, dV V
Wa = [, PdV = nRTlfVu7 = nRT, 1117b

a

and AE;, =0, leading to AE,, =Q-W =0, leading to
Vi
0, =W, =nRT, 1r17b >0

a

Equally,

C

In the adiabatic expansion, we have PV" = P,V//, thus the work between B—C is given by



1=y
PV v. PV PV, |V
o = fVV°PdV - PbeVfVV“V‘VdV - MVI—V] - M(VCI—V —Vbl‘y) _ b’ (_c) 1
b b -y Vo 1-y -y [\V,
Equally for the adiabatic compression, the work for D—A is given by
1=y
PV! v, PV/! JAA V.
Wy, = [ PdV = PVI [V dy = iy ] 220k (vl _y ) o —(—d)
‘ ‘ -y Voo 1=y 1-y Va

For the isothermal processes, we have PV, = PV, and PV, = P,V,. And for the adiabatic processes

it follows that PV = P,V! and P,V] = P,V]. Furthermore, the ideal gas law gives
PaVa _Pbe _Pch _PdVd
L L L, L,

It follows that
PVy =PV!
T
=PV — T
PV, PV,

Vg 1Tl =ch sz

5 (v.)"
T2 Vb

PV§

and
PV, = PV{
T T,
PV’ =PV]
PV, PV,
Vay IT]=V§' sz
L (V)"
T2 Va
giving
pv (v pv.| (v,
I-y \V, 1-y V.,
PV |T
LA ——1+1-=
I—V_T 2
=0

i.e. the adiabatic parts of works cancel each other. This conclusion can be reached in a much simpler
way. As indicated before, AE;, = nC,, AT and for an adiabatic process, Q =0 leads to AE;, =-W .

It follows that
Wy = =AED = —nCy(T, - T;) and Wy, = —~AE®% = -nCy(T; - Ty),

nt
which leads to
Wbc + de = O .

The total work is now given by
Vi Vy Vi V.
W =W, +W,, = nRT,In—2 + nRT, In— = nRT,In—> - nRT, In—=
V. V V. Vy

a C a

Note that the first law of thermodynamic is valid and W = Q, + Q,. Using



we obtain
V. V
—< -4 je. & = L
Vb Va Va Vd
thus

W =Wy, + W =nR(T, —Tz)ln%

and the efficiency is given by

W nR(T, - T,)InV, |V, .5
0~ nRT,InV, )V, T,
i.e the Carnot cycle gives the maximum efficiency allowed by the second law of thermodynamic.

E =

Carnot cycle and 7-S plot

In the previous section, Carnot cycle was drawn on the pressure (P) versus volume (V) plane. From
the relation, dw = PdV , valid for a reversible process, the area surrounded by the Carnot cycle,
A—B—C—D, on the P-V plane gives the total work of the Carnot engine. By recalling the
expression, EZQ =TdS , for a reversible process, let us draw the Carnot cycle on the temperature (7)
versus entropy () plane. On this plane, an isothermal process, T constant, is a horizontal line and an
adiabatic process, Q = 0 thus S constant, is a vertical line. Therefore, a Carnot cycle is a rectangular
box on the 7-§S plane. Similar for the work, the area surrounded by A—B—C—D on the 7-S plane
give the total heat of the Carnot engine.
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As introduced in “Entropy and the first law of thermodynamic”, the infinitesimal change in the
internal energy can be given from the first law of thermodynamics as
dE,  =TdS - PdV
By recalling that the internal energy depends only on the temperature, i.e.
dE, = (%)dT —nC,dT,
oT

it follows that



ds = YEm P 24V =nC, a gV
T T %

For a change of state from (P, V;, T}) to (Pz, V,, T,), the change of the entropy, AS, is given by the
integration as

AS =nC f ndT Rfv’d_v_nc In22 4 nRIn 22
T, v,
The entropy change for the isothermal expansion A—B, AS ,is given by
AS =nR lnﬁ
V,

a

thus the area of the rectangular box is given by

Qtotal =ASX(]1 _7-'2)=}’1R(7w1 —Tz)ln_b

in agreement with the analysis before without using the entropy.

Refrigerators

The operation principle of refrigerators and heat pumps are the reverse of a heat engine, transferring
heat from a cool environment to a warm environment by work. In order to demonstrate how the
refrigerator works, we operate the Carnot cycle in the reversed order: A—D—C—B—A. In this case,
the upper and lower limits for the integration in the heat and work calculations must be exchanged,
thus the sign of the heat and work should be flipped. The efficiency of a refrigerator is defined as

thermal energy extracted from the heat reservoir with 7 =T,
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From the Carnot engine calculations, heats for A—D and B—A, Q,. and Q,,, respectively are given
by

\% \%
Q4. =nRT,In—->0 and Q,, =nRT;In—* <0
Vi Vo
and similarly for the work, A—D, D—C, C—B, and B—A



1-y 1-y
PV |V, V PV, V
Wy =25 -1|, W =nRTIn—%, W, =—22]1-| =% ,Wba=nRTlln&.
The total work is given by

W

total

V
=W+ W + W, + Wy, = nR(T, - T])an—C
d
The thermal energy extracted from the heat reservoir with 7' =7, is given by Q,., and the work given

to the refrigerator is —W .,

Thus the efficiency is then given by
V
nRT,In—*
Qdc Vd T2

grefrigerator = = \Y = .
“Wiorl nR(Tl _Tz)ln‘TC I -T,

d




