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Thermodynamic (6th week)
Entropy and the second and third Laws of Thermodynamics

Reversible and irreversible process

Consider an isothermal expansion of an n-mol ideal gas at 7 =7, changing its state from
A(Va, P,, TO) to B(Vb, P, TO) through a quasi-static path (see Lecture Note Thermodynamics 5*
week). This process follows the line given by PV =nRT, on the V-P plane. Since there is no
temperature change, AE,, =0 and from the first law of thermodynamics, O = W where work W is
given by
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Once the system is at the state B, we can make the system to follow the same path back to A by
applying -Q, .z and -W, _5, just reversing the sign. Any process that can be reversed by changing
the sign of Q and W is called reversible.

Now consider a process where a thermally isolated container with a volume V, is divided into
two by a tight thermally isolating wall. One section is filled with an n-mol ideal gas at A(Va, P,, TO)
and the other vacuum. Now we remove the wall and let the gas to expand into the whole volume.
Since the container is thermally isolated, Q = 0, since gas expands without moving anything, W = 0.
The first law of thermodynamics leads to AE;, =0. The final state is B(Vb, P, TO). Since the
internal energy depends only on temperature, no change of temperature in this process. The process
cannot be shown as a quasi-static path on the V-P plane. Clearly, this process cannot be reversed by
simply changing the sign of Q and W. Any process that cannot be reversed by changing the sign of Q
and W is called irreversible.
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Entropy
For a reversible process, entropy changes of a system, AS, for a change of its state from A to B with
heat Q and at a constant temperature 7', is given by

AS=g
T

where the temperature is in Kelvin. If the temperature of the system is not constant, AS is given by

AS = [7dS = deQ

where the integral follows a quasi-static path from A to B. Note that Q/T of infinitesimally small
step on the path is given by (~1Q/ T. It can be shown that AS is independent of the path, unlike the heat.
Thus the entropy, S, is a state variable such as volume and temperature and AS = S(B) — S(A).

We demonstrate the fact that AS does not depend on the path, by calculating AS explicitly for a
change of state A(V,, P, T,) to B(V,, P,, T,) for an n-mol ideal gas in two different reversible
paths. As demonstrated above, the state from A to B can be achieved through isothermal expansion,
where heat is given by

_ Ve
Q =nRT, lnva .
Since the temperature does not change in the process, the entropy change is then given by
AS, = Q = annﬁ .
0 |4
We then consider reaching B in two steps, first decreasing the pressure under constant volume to
reach D(V;, F, Td) , followed by increasing the volume under constant pressure (see again Lecture
Note Thermodynamics 5" week). For the heat, we have:
A—D Q,, =nC,dT and D—B Q, =nC,dT

which lead to

AS,, =nC f dd—T—nC ln£ for A— D and AS,, =nC fTOd—T—n +R)ln5 forD—B.
T, T,
The total entropy change is given by
AS!, =AS , +AS, =nC, ln£+n(CV + R)lnﬁan Inlo
T, T T,
Using the gas low, PV=nRT, we obtain,
T, _Vih
T, VR,
which follows that
L_Y
7, V.

showing that the two different paths give same AS. Since V, <V, , we have AS > 0.
Considered paths can be indeed reversed, i.e. C—A, by changing the sign of Q and W, with
negative entropy —AS. Therefore, entropy change for a loop such as A>B—C—A,
d
S, +ASy +AS,, = 957Q -
i.e. it is always 0. We conclude that AS does not depends on the path, thus S is a state variable.
For irreversible process, it turns out



_ B E'iQreversible B aQirreversible
AS = f A T > f A T
For the state change of A(V,, P,, T;) to B(V,, F,, T,) discussed above, indeed we have
fB ereversible = nRY‘O h’lﬁ > 0 and fB inreversible = O .
A T ‘/d A T

Therefore, we can write,

where the equal sign holds only for reversible processes, i.e. entropy change is given by

- f%2

only for the reversible process. If we consider a thermally isolated system, no heat for any process,

ie. AS=0.

Entropy Second and third laws of thermodynamics

The second law of thermodynamic is: In any process in which a thermally isolated system goes from

one state to another state, the entropy cannot be decreased; i.e. AS =0.

The third law of thermodynamic is: The entropy of a system converges to a constant value S, =0 for

T —0 independent of all the other properties for the particular system.

Entropy and the first law of thermodynamic

For reversible processes with a fixed temperature, 7', heat, Q, can be obtained from the change of the
entropy, AS as Q= AST or for an infinitesimally small path, dO = TdS . Then, The first law of

thermodynamics can be written as
dE, =Q-W =TdS - PdV

where all the terms consist of state variables, not depending on the path. Therefore, it is valid even

for irreversible process. One may summarise as:

dQ =TdS only for reversible case
dW = PdV only for reversible case
dE,, = dQ - dw always valid

dE,, =TdS - PdV always valid
For irreversible process, we have 7dS = aQ, thus PdV <dW .

Statistical interpretation of Entropy
Once we obtain, dE,, = TdS — PdV , temperature, T, can be given by

1 1 (a8
T (0E . /38), \Ew ),

While deriving the Boltzmann constant during the Thermodynamics 3 lecture, we encounter an

expression:
dinQ(E) 1

dE kT



where, k is the Boltzmann constant, and €2(E) is the number of states with energy E. as an thermal
equilibrium condition. This leads to

dE, oE,

L dinQ(E;, ) ( as )
int int /y
By integrating the both sides, we identify

S =klnQ
which is the definition of entropy in statistical physics: the entropy of a particular macrostate, S, is
given by the formula, § = kIn€Q, where Q is the number of microstates associated to the particular
macrostate. At T =0, there is only one state. Evolution of a thermal system is in the direction from
an "ordered" state to a more "chaotic" state: e.g. vacuum expansion.

Entropy of free expansion a la statistical mechanics

We now try to obtain the entropy change for the free expansion. A total of N ideal gas molecules is
placed in a container with volume V,. In that volume, there are m possible states that the gas
molecule can take. The number of possible configuration taken by the N molecules, €2, is then given
by

m!
Q= Cy =
"N N (m - N)!
and entropy by
|
S=kInQ=kln——
N!(m-N)!

Since we are considering a macroscopic system, both m and N are large, where Inn!=nlnn -n
(Starling's approximation) can be used. This leads to

|
§ = kin———~k[mInm - NInN = (m - N)In(m - N)].

N!(m -N)!
Since we are considering an ideal gas, the gas density must be very small, thus we have m>>N, and
the following approximation holds:

mlnm - NInN —(m — N)In(m - N) = mIn -Nln
m-N m-N
zmln(1+ﬂ)—Nlnﬂ(l+ﬂ)
m m m
zN—Nlnﬂ
m



and
N
Szk(N—Nln—).
m
When the volume of the container is increased to V,,, the number of possible states in the container
also increases from m to xm , where x =V, /V, . Entropy is then given by
N
S = k(N —Nln—)
xm
and entropy change
AS=8-S=kNlnx
Converting it to the mole number, n, and universal gas constant R, it follows that
AS =nR ln&
Va

in agreement with the thermodynamics calculation.

Special demonstration: Entropy of mixing

A thermally isolated container with a volume V is split into two, V; =xVand V, = (1 - x)V where
0 = x =1, by a thermally isolated wall. They are filled with two different ideal gasses of n, = xn-mol
and n, = (1 —x)n—mole, respectively. Both gasses have a same pressure, P, =P, = P, and a same
temperature, 7, =7, =7. Now we remove the wall, and gas-1 expands to volume-2 and gas-2 to
volume-1.

Since there is no temperature difference between the two regions, the temperature remains constant in
this process. The two gasses do not provide any work either, since they have nothing to move when
they expand. Therefore, this process can be dealt as two gasses making free expansion independently.
Then the entropy changes of the two gasses are given by

1%
AS, = xnRIn— and AS, = (1 - x)nRIn

%
xV (1-x)V

and the total entropy change

AS = AS, +AS, = anln% +(1- x)annﬁ = —nR[xInx + (1 - x)In(1 - x)]
E : Entropy diffee;lce for mixing
é / N

As seen from the figure above, AS =0, where AS=0 at x=0 and =1, i.e. with one gas and no
mixing, and maximum at x = 0.5, i.e. mixing of two equal amount of gasses. This makes sense for
two different ideal gasses. Since mixing two different gasses is an irreversible process.



However, if the two gasses are completely identical, i.e. gas molecules are indistinguishable, no
change occurs after removing the wall. The original state can be restored by simply putting back the
wall, thus AS must be = 0, which is not in agreement with the result above. This depends on how to
interpret "distinguishable" and "indistinguishable" and their statistical treatment showing a limitation
of classical thermodynamics description.
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