
 1 

General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 8:15-10:00, Exercise Thu 10:15-12:00) 
 
Thermodynamic (6th week) 
Entropy and the second and third Laws of Thermodynamics 
Reversible and irreversible process 
Consider an isothermal expansion of an n-mol ideal gas at 

€ 

T = T0  changing its state from 

€ 

A Va,  Pa,  T0( ) to 

€ 

B Vb,  Pb,  T0( )  through a quasi-static path (see Lecture Note Thermodynamics 5th 
week). This process follows the line given by 

€ 

PV = nRT0  on the V-P plane. Since there is no 
temperature change, 

€ 

ΔE int = 0 and from the first law of thermodynamics, Q = W where work W is 
given by  

€ 

WA→B = PdVA
B∫ = nRT0

dV
VVa

Va∫ = nRT0 ln
Vb
Va

 

 thus 

€ 

Q
A→B

= nRT0 ln
Vb
Va

. 

Once the system is at the state B, we can make the system to follow the same path back to A by 
applying 

€ 

−QA→B  and 

€ 

−WA→B, just reversing the sign. Any process that can be reversed by changing 
the sign of Q and W is called reversible.   
 Now consider a process where a thermally isolated container with a volume 

€ 

Vb is divided into 
two by a tight thermally isolating wall. One section is filled with an n-mol ideal gas at 

€ 

A Va,  Pa,  T0( ) 
and the other vacuum. Now we remove the wall and let the gas to expand into the whole volume. 
Since the container is thermally isolated, Q = 0, since gas expands without moving anything, W = 0. 
The first law of thermodynamics leads to 

€ 

ΔE int = 0. The final state is 

€ 

B Vb,  Pb,  T0( ) . Since the 
internal energy depends only on temperature, no change of temperature in this process. The process 
cannot be shown as a quasi-static path on the V-P plane. Clearly, this process cannot be reversed by 
simply changing the sign of Q and W. Any process that cannot be reversed by changing the sign of Q 
and W is called irreversible.    
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Entropy 
For a reversible process, entropy changes of a system, ΔS, for a change of its state from A to B with 
heat Q and at a constant temperature T, is given by  

€ 

ΔS =
Q
T

 

where the temperature is in Kelvin. If the temperature of the system is not constant, ΔS is given by 

€ 

ΔS = dSA
B∫ =

˜ d Q
TA

B∫  

where the integral follows a quasi-static path from A to B. Note that 

€ 

Q T  of infinitesimally small 
step on the path is given by 

€ 

˜ d Q T . It can be shown that ΔS is independent of the path, unlike the heat. 
Thus the entropy, S, is a state variable such as volume and temperature and ΔS = S(B) − S(A). 
 We demonstrate the fact that ΔS does not depend on the path, by calculating ΔS explicitly for a 
change of state A Va,  Pa,  T0( )  to B Vb,  Pb,  T0( )  for an n-mol ideal gas in two different reversible 
paths. As demonstrated above, the state from A to B can be achieved through isothermal expansion, 
where heat is given by   

Q = nRT0 ln
Vb
Va

. 

Since the temperature does not change in the process, the entropy change is then given by  

ΔSab =
Q
T0
= nR lnVb

Va
. 

We then consider reaching B in two steps, first decreasing the pressure under constant volume to 
reach D Va,  Pb,  Td( ) , followed by increasing the volume under constant pressure (see again Lecture 
Note Thermodynamics 5th week). For the heat, we have: 

A→D Qad = nCVdT  and D→B Qdb = nCPdT  
which lead to  

ΔSad = nCV
dT
T

= nCV ln Td

T0
T0

Td∫  for A→D and ΔSdb = nCP
dT
T

= n CV + R( ) lnT0

Td
Td

T0∫  for D→B . 

The total entropy change is given by  

Δ ʹSab = ΔSad +ΔSdb = nCV ln
Td
T0
+n CV + R( ) lnT0

Td
=nR lnT0

Td
 

Using the gas low, PV=nRT, we obtain,  
T0
Td
=
VbPb
VaPb

 

which follows that  
T0
Td
=
Vb
Va

 

showing that the two different paths give same ΔS. Since Va <Vb , we have ΔS > 0. 
 Considered paths can be indeed reversed, i.e. C→A, by changing the sign of Q and W, with 
negative entropy −ΔS. Therefore, entropy change for a loop such as A→B→C→A,  

€ 

ΔSab + ΔSbc + ΔSca =
˜ d Q
T∫ = 0  

i.e. it is always 0. We conclude that ΔS does not depends on the path, thus S is a state variable.  
 For irreversible process, it turns out  
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ΔS =
!dQreversible

TA

B
∫ >

!dQirreversible

TA

B
∫  

For the state change of A Va,  Pa,  T0( )  to B Vb,  Pb,  T0( )  discussed above, indeed we have  
!dQreversible

TA

B
∫ = nRT0 lnVb

Va

> 0 and 
!dQireversible

TA

B
∫ = 0 . 

Therefore, we can write, 

 

€ 

ΔS ≥
˜ d Q
TA

B∫  

where the equal sign holds only for reversible processes, i.e. entropy change is given by  

ΔS =
!dQ
TA

B
∫  

only for the reversible process. If we consider a thermally isolated system, no heat for any process, 
i.e. 

€ 

ΔS ≥ 0 .  
 
Entropy Second and third laws of thermodynamics 
The second law of thermodynamic is: In any process in which a thermally isolated system goes from 
one state to another state, the entropy cannot be decreased; i.e. 

€ 

ΔS ≥ 0 . 
The third law of thermodynamic is: The entropy of a system converges to a constant value 

€ 

S0 = 0 for 

€ 

T →0 independent of all the other properties for the particular system.  
 
Entropy and the first law of thermodynamic 
For reversible processes with a fixed temperature, T, heat, Q, can be obtained from the change of the 
entropy, ΔS as 

€ 

Q = ΔST  or for an infinitesimally small path, 

€ 

˜ d Q = TdS . Then, The first law of 
thermodynamics can be written as  

dEint =Q −W =TdS − PdV  
where all the terms consist of state variables, not depending on the path. Therefore, it is valid even 
for irreversible process. One may summarise as: 
 

€ 

˜ d Q = TdS   only for reversible case 
 

€ 

˜ d W = PdV   only for reversible case 
 

€ 

dE int = ˜ d Q − ˜ d W  always valid  
 

€ 

dE int = TdS − PdV  always valid 
For irreversible process, we have 

€ 

TdS ≥ ˜ d Q, thus 

€ 

PdV ≤ ˜ d W .  
 
Statistical interpretation of Entropy 
Once we obtain, 

€ 

dE int = TdS − PdV , temperature, T, can be given by  

€ 

1
T

=
1

∂E int ∂S( )V
=

∂S
∂E int

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

 

 While deriving the Boltzmann constant during the Thermodynamics 3 lecture, we encounter an 
expression: 

€ 

dlnΩ E( )
dE

=
1
kT
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where, k is the Boltzmann constant, and Ω(E) is the number of states with energy E. as an thermal 
equilibrium condition. This leads to  

€ 

k
dlnΩ E int( )
dE int

=
∂S
∂E int

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

 

By integrating the both sides, we identify  

€ 

S = k lnΩ 
which is the definition of entropy in statistical physics: the entropy of a particular macrostate, S, is 
given by the formula, 

€ 

S = k lnΩ, where Ω is the number of microstates associated to the particular 
macrostate.  At 

€ 

T = 0, there is only one state. Evolution of a thermal system is in the direction from 
an "ordered" state to a more "chaotic" state: e.g. vacuum expansion.    

 
 
Entropy of free expansion a la statistical mechanics  
We now try to obtain the entropy change for the free expansion. A total of N ideal gas molecules is 
placed in a container with volume 

€ 

Va . In that volume, there are m possible states that the gas 
molecule can take. The number of possible configuration taken by the N molecules, Ω, is then given 
by 

€ 

Ω=mCN =
m!

N! m − N( )!
 

and entropy by    

€ 

S = k lnΩ = k ln m!
N! m − N( )!

 

Since we are considering a macroscopic system, both m and N are large, where 

€ 

lnn!≈ n lnn − n  
(Starling's approximation) can be used. This leads to  

€ 

S = k ln m!
N! m − N( )!

≈ k m lnm − N lnN − m − N( ) ln m − N( )[ ] .  

Since we are considering an ideal gas, the gas density must be very small, thus we have m>>N, and 
the following approximation holds: 

€ 

m lnm − N lnN − m − N( ) ln m − N( ) = m ln m
m − N

− N ln N
m − N

≈ m ln 1+
N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − N ln

N
m
1+

N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

≈ N − N ln N
m
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and 

€ 

S ≈ k N − N ln N
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . 

When the volume of the container is increased to 

€ 

Vb , the number of possible states in the container 
also increases from m to 

€ 

xm , where 

€ 

x =V2 V1 . Entropy is then given by 

€ 

ʹ S ≈ k N − N ln N
xm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

and entropy change  

€ 

ΔS = ʹ S − S ≈ kN ln x  
Converting it to the mole number, n, and universal gas constant R, it follows that  

 

€ 

ΔS ≈ nR lnVb
Va

 

in agreement with the thermodynamics calculation.  
 
Special demonstration: Entropy of mixing 
A thermally isolated container with a volume V is split into two, 

€ 

V1 = xV and 

€ 

V2 = 1− x( )V  where 

€ 

0 ≤ x ≤1, by a thermally isolated wall. They are filled with two different ideal gasses of 

€ 

n1 = xn -mol 
and 

€ 

n2 = 1− x( )n-mole, respectively. Both gasses have a same pressure, 

€ 

P1 = P2 ≡ P , and a same 
temperature, 

€ 

T1 = T2 ≡ T . Now we remove the wall, and gas-1 expands to volume-2 and gas-2 to 
volume-1.  
Since there is no temperature difference between the two regions, the temperature remains constant in 
this process. The two gasses do not provide any work either, since they have nothing to move when 
they expand. Therefore, this process can be dealt as two gasses making free expansion independently. 
Then the entropy changes of the two gasses are given by   

€ 

ΔS1 = xnR ln V
xV

 and ΔS2 = 1− x( )nR ln V
1− x( )V

 

and the total entropy change 

€ 

ΔS = ΔS1 + ΔS2 = xnR ln V
xV

+ 1− x( )nR ln V
1− x( )V

= −nR x ln x + 1− x( ) ln 1− x( )[ ] 

 
As seen from the figure above, 

€ 

ΔS ≥ 0 , where ΔS = 0 at x = 0 and = 1, i.e. with one gas and no 
mixing, and maximum at x = 0.5, i.e. mixing of two equal amount of gasses. This makes sense for 
two different ideal gasses. Since mixing two different gasses is an irreversible process.  
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However, if the two gasses are completely identical, i.e. gas molecules are indistinguishable, no 
change occurs after removing the wall. The original state can be restored by simply putting back the 
wall, thus ΔS must be = 0, which is not in agreement with the result above. This depends on how to 
interpret "distinguishable" and "indistinguishable" and their statistical treatment showing a limitation 
of classical thermodynamics description.   
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