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Thermodynamic (Sth week)
Thermodynamical State

A thermodynamic state is described by a set of state variables. Examples of state variables are, P, V,
T, number of moles, E;, etc. They are uniquely defined, independent of how the system arrived at
that particular state. As seen later, heat or work are not state variables since they depend on how the
system reached the particular state. Once a sufficient numbers of variables have bees specified, all
other variables are uniquely determined. The number of variables needed to specify the system
depends on the system.

Example: System of an ideal gas
The gas law for ideal gas PV = NkT shows that a set of three variables out of four,i.e. P, V, T, and N
determines the system.

The First Low of Thermodynamics

Extending the concept of the energy conservation to the thermodynamical system. In a closed system,
we have
AE‘int = Q - W
AE . .; Change of the internal energy, Q: heat into the system, W: work by the system
In the isolated system, no energy transfer can occur,i.e. Q =0 and W=0, hence AE, , =0.

Thermal Processes

There are the following four thermal processes for gas to change its state:
Isothermal (AT = 0): while the state changes, the temperature is kept constant.
Adiabatic (Q = 0): process with no heat, i.e. thermally isolated system or a very fast process.
Isobaric (AP = 0): while the state changes, the pressure is kept constant.
Isovolumetric (AV = 0): while the state changes, the volume is kept constant.

Molecular Specific Heat

Recall the specific heat, ¢, for solid and liquid:
O = mcAT
where the heat Q is in cal, m is the mass in g and AT the temperature difference in degree Celsius.
For the gas, two more variables, volume (V) and pressure (P), are needed in consideration. Therefore,
two kinds of specific heats are introduced:
¢y : specific heat at constant volume
cp: specific heat at a constant pressure.
and they are fairly different.



Specific heats molar specific heats

cal / (g K) cal / (mol K)
Cv Cp Cy Cp G -Cy y=GCp/Cy

Monatomic

He 0.75 1.15 2.98 497 1.99 1.67
Ne 0.15 0.25 2.98 497 1.99 1.67
Diatomic

N, 0.177 0.248 4.96 6.95 1.99 1.40
o, 0.155 0.218 5.03 7.03 2.00 1.40
Triatomic

CO, 0.153 0.199 6.80 8.83 2.03 1.30
H,O (100°C) 0.350 0482 6.20 8.20 2.00 1.32

Similarly, we can have those specific heats for N, gas molecules, where
N, =6.02x10%
N, is the Avogadro number, called molar Specific Heats, C,, and Cp. The heat needed to raise the
temperature of n moles of gas, i.e. with nx N, molecules, by AT in C’ is given by
Oy =nCyAT  volume constant
Op =nC,AT  pressure constant
For a gas with r u molecular mass, mass of the 1 mole of the gas is r g. Therefore,
Cy=r-cy
C,=r- ¢,
By noting that the atomic mass of the He, Ne, N, etc. are given by, ~4 u, ~20 u, ~28 u, etc.,
respectively, the table shows that indeed this relation is valid. The gas is heated very slowly under
1) a constant volume V, or
2) a constant pressure P,
to change the temperature from 7 to 7+AT.
For 1), AV=0,1i.e. no work is done, i.e. from AE, , =Q-W
AE. =0, =nC,AT
all the thermal energy into the system is used to change the internal energy. For an infinitesimally
small changes, we have
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The process 2) requires
AEint = QP -w
where the work W = PAV , since AV =0 and P is constant. Noting that AE,  are identical for the

two processes given the same change in the temperature, AT, it follows that Q, =Qp - W , 1.€.
Qp ~Qy =W = PAV

where the work is in the isobaric process, i.e. P is constant. For an ideal gas, PV =nRT, with a

constant pressure we obtain
nRAT

P

AV

leading to



nRAT

Op -0y = = nRAT
Combined with Qp = nC, AT and Q, = nCyAT , it follows that

1e. Cp > Cy,1.e. more heat is needed for the constant pressure to raise the temperature to compensate
the work done at the same time. Note that the gas constant is given by

R=8314—) —199—<d

mol- K mol- K
which is close to the values given experimentally for various gasses.

Equipartition of Energy
In the kinetic theory of the point like ideal gas discussed previously, we obtained
2 (m 2
PV =Nm(v)==N|—=(v*)|==N(K

(12) =20 20%) - 2n ()
where <K > is the average translational kinetic energy and N <K > is equivalent to the internal energy
of the gas. Together with the ideal gas law, PV =nRT , it follows that

E, - 3nRT
2

In the process with a constant volume, W =0 and

AE, =0, =nC AT

1 AE, |\ 3

thus

AT 2
From the value of R, we obtain C,, =2.98cal/ mol' K, in a good agreement with monatomic gasses.
We now recall the Boltzmann factor e~ 2/*" describing the distribution of the internal energy E for a
temperature 7. Let us assume that the energy has a function of variable x as form E = ax® with a
constant a. The average energy (E) is then given by
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i.e. the energy is a sum of n, components, all having a same functional form. The average energy is
then becomes,
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Since all the but one integrals cancel between the numerators and denominators, we have
f 2 —ax?/kT
e ng
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For a gas of N molecules, or n mole, it follows that

dx;ox;




respectively. It follows that

2
A mono atomic gas has only translational degrees of freedom and the energy is given by

m
E=—(v+v?+y?
200 Y

ie. n, =3. More complex molecules have rotational kinetic energies, in addition to the translational
kinetic energies.

For example, diatomic molecules have two and triatomic molecules three degrees of freedom and the
kinetic energy is given by

=ﬂ(v)f+v2,+vf)+—l+—2 and E =ﬂ(v§+vz+v§)+—l+—2+—3
2 y 21, " 21, 2 y 21, " 21, " 21,

respectively, where L's are the angular momenta and I's corresponding moments, i.e. n, =5 and 6.
Energy of diatomic gas with vibration is given by
2 2

=%(vf +vy2 +vZ2)+2L—;1+2LTZ+§(71 _;;2)2 +§(F1 —;2)2
where w is the reduced mass of the two atoms and & is the spring constant, i.e. n, =7.
Here are some considerations:

Monatomic molecule: 3-translational Kinetic energies, n, =3

Diatomic molecule: plus 2-rotational kinetic energies, n, =5

Diatomic molecule: plus1-vibrational kinetic and 1-vibrational potential energies, n, =7
It seems that energy of a molecule is equally shared among the active degrees of freedom and the
each degree of freedom caries in average k7/2 of the energy. This is called equipartition theorem.

Note that
3 5 7
ER =2.98cal/mol K, ER = 4.98cal/mol- K, ER =6.97 cal/mol- K



Measured values show that 1) some of the degrees of freedom are not "active", and 2) decreases with
temperature ton, =5 then to n; = 3 for different gas molecules, i.e. gasses behave like a monatomic
molecule at a very low temperature. These observations are related to the foundation of quantum
theory.

Change of internal energy for ideal gas

For isovolumetric process, we have AV = 0, thus
AE =Q,=nC AT
and for isobaric process
AE,  =nC,AT - PAV
For ideal gas, we have C, —Cy = R and AV =nRAT/P , thus
AE,, =n(C, +R)AT - nRAT = nC AT

i.e. the change of internal energy for a temperature change of AT is given by

AE  =nC AT
for both isovolumetric and isobaric processes. For ideal gas, any change in two thermal states can
be made as combinations of Isovolumetric and isobaric processes, the change of internal energy for a
temperature change of AT for any processes is given by

AE,  =nC AT .
Adiabatic Process

As mentioned, for a defined gas, among three state variables, 7, V and P, there are only two

independent variables. Let us use 7 and V, leading to
oE. OE.
AE,, = (—‘m) AV + (—‘m) AT
A Jar ), -

for a very small change of the state,i.e. |AV/V| <« 1 and |[AP/P| « 1, and also
Vi+AV V+AV

W = P(V)av = P(Vi)f dV = PAV
Vi 14
The first law of thermodynamics gives
AE,, =Q-W =0-PAV

By combining the two equations, we obtain

oE,
= PAV +|—™
o-rav{T7)

OE.
AV+( m‘) AT
\%

T aT
For ideal gas, recalling that the internal energy depends only on the temperature, i.e. (dE ot/ (?V)T =0
and the definition of Cy,, it follows that

Q= PAV +nC,AT
In an adiabatic process, no heat is allowed. This can happen when the system is thermally well
isolated or the process happens very fast. Let us consider a very slow (quasistatic) process where the
state of ideal gas is adiabatically changed from A:(Va, P, To) to C:(Vb, P, TC), i.e. C has the same
volume as B. Since there is no heat involved in the process, Q = 0, thus

PAV +nCy,AT =0

Using PV =nRT for the ideal gas, we obtain



AV Gy AT

+ —=0
\% R T
and further more,
AT = PAV + VAP andT=ﬂ
nR nR

lead to
A
_V+&(A_V+A_P)=O
\% R\V P

It follows that

AV AP AV AP
R+Cy)—+Cy— =Cp—+C, — =0
(R+ V)V V. p Py "7V p
ie.
AV AP
y—t—=0
Vv P

where, y = Cp /Cy, >1. By replacing AV and AP by dV and dP, respectively, integration gives
yInV +InP =InV" +InP = ln(VyP) = constant
leading to
V'P = constant

Special demonstration

Let us consider two states A: (Va, P,, TO) to B: (Vb, Py, To) of the same gas, where V, <V, . Since the
temperatures are the same, the internal energy at A and B are the same, i.e.

AE, =E,~E;. =0
From the first law of thermodynamic
AE, =0-W
it follows that
0=W,_,

i.e. if work is done, there must be heat.
We now determine the work for two different paths.

1) Work done for the isothermal expansion of an ideal gas from A to B at the temperature 7,. From
the ideal gas law,

pPo nRT,
%
the work is given by
Yo v, nRT, v, dV v, Vi
W . =fva PdV=fVa 0 dV=nRT0fVa 7=nRT01nV]V“ =nRT01n7b>0

a

Note that from the ideal gas law, P, > P, and W corresponds to the area under the P(V) line.



B: (Pv, Vb, T0)

D: (Pb’ Va,

-V

2) Work done for the isovolumeric process from P = P, to P = P,, with constant V =V, to the state
D: (Va, Pb) , followed by the isobaric process with a constant P = P, from V =V, to V =V,.
For the isovolumeric part,

a

W, =fVV:PdV=O
i.e. no work is done. Note that at D: (Va, Pb), the temperature has to change. This can be seen by
comparing the equation of the state at a, and d,

T = Pava
nR

, Td — PbVa
nR

and

Va
T,-T, =E(Pb—Pa)<0

i.e. the temperature drops. In the second process, P = P, and the work is given by
Yy Y Y
Wew=[, BaV=P[ dV=RV] =R (V,~V,)>0

In this process, the temperature has to increases from 7} to 7. The total work done is
Waao =Wy + Wi = F, (Vb _Va)

a—d
With the ideal gas law,
_ NRT,

P
b v,

it follows that

b

W2:a—>b = R)(‘/b _‘/d) = nRT;J (1—%)
Note that
W/1:a—>b = W2:a—>b

i.e. the work done depends on the path of the process. In both cases, the work is positive hence there
must be the heat into the gas. Since Q =W , the heat Q also depends on the process.



