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General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 8:15-10:00, Exercise Thu 10:15-12:00) 
Thermodynamic (5th week) 
Thermodynamical State 
A thermodynamic state is described by a set of state variables. Examples of state variables are, P, V, 
T, number of moles,  etc. They are uniquely defined, independent of how the system arrived at 
that particular state. As seen later, heat or work are not state variables since they depend on how the 
system reached the particular state. Once a sufficient numbers of variables have bees specified, all 
other variables are uniquely determined. The number of variables needed to specify the system 
depends on the system.  

Example: System of an ideal gas 
The gas law for ideal gas  shows that a set of three variables out of four, i.e. P, V, T, and N 
determines the system.  
 
The First Low of Thermodynamics 
Extending the concept of the energy conservation to the thermodynamical system. In a closed system, 
we have  

ΔEint =Q−W  

€ 

ΔE int; Change of the internal energy, Q: heat into the system, W: work by the system 
In the isolated system, no energy transfer can occur, i.e. Q = 0 and W = 0, hence 

€ 

ΔE int = 0. 
 

Thermal Processes 
There are the following four thermal processes for gas to change its state: 
 Isothermal (ΔT = 0): while the state changes, the temperature is kept constant.  
 Adiabatic (Q = 0): process with no heat, i.e. thermally isolated system or a very fast process.  
 Isobaric (ΔP = 0): while the state changes, the pressure is kept constant. 
 Isovolumetric (ΔV = 0): while the state changes, the volume is kept constant. 
 
Molecular Specific Heat 
Recall the specific heat, c, for solid and liquid: 

€ 

Q = mcΔT  
where the heat Q is in cal,  m is the mass in g and ΔT the temperature difference in degree Celsius. 
For the gas, two more variables, volume (V) and pressure (P), are needed in consideration. Therefore, 
two kinds of specific heats are introduced: 

€ 

cV : specific heat at constant volume 

€ 

cP : specific heat at a constant pressure.  
and they are fairly different.  
 

€ 

E int

€ 

PV = NkT
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 Specific heats molar specific heats 
 cal / (g K) cal / (mol K) 
 

€ 

cV  

€ 

cP  

€ 

CV  

€ 

CP  

€ 

CP −CV  

€ 

γ = CP CV  
Monatomic 
He 0.75 1.15 2.98 4.97 1.99 1.67 
Ne 0.15 0.25 2.98 4.97 1.99 1.67 
Diatomic 

€ 

N2  0.177 0.248 4.96 6.95 1.99 1.40 

€ 

O2  0.155 0.218 5.03 7.03 2.00 1.40 
Triatomic 

€ 

CO2  0.153 0.199 6.80 8.83 2.03 1.30 

€ 

H2O  (  

€ 

100!C ) 0.350 0.482 6.20 8.20 2.00 1.32 
 
Similarly, we can have those specific heats for 

€ 

NA  gas molecules, where  

€ 

NA = 6.02 ×1023 

€ 

NA  is the Avogadro number, called molar Specific Heats, 

€ 

CV  and 

€ 

CP . The heat needed to raise the 
temperature of n moles of gas, i.e. with n×NA  molecules, by ΔT in   

€ 

C!  is given by 

€ 

QV = nCVΔT     volume constant
QP = nCPΔT     pressure constant

 

For a gas with r u molecular mass, mass of the 1 mole of the gas is r g. Therefore,   
CV = r ⋅cV
CP = r ⋅cp

 

By noting that the atomic mass of the He, Ne, N2 etc. are given by, ~4 u, ~20 u, ~28 u, etc., 
respectively, the table shows that indeed this relation is valid. The gas is heated very slowly under  
 1) a constant volume V, or  
 2) a constant pressure P,  
to change the temperature from T to T+ΔT.   
For 1), ΔV=0, i.e. no work is done, i.e. from 

€ 

ΔE int =Q −W  
ΔEint =QV = nCVΔT  

all the thermal energy into the system is used to change the internal energy. For an infinitesimally 
small changes, we have   

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V=constant

≡
1
n
∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V

.  

The process 2) requires  

€ 

ΔE int =QP −W  
where the work 

€ 

W = PΔV , since 

€ 

ΔV ≠ 0  and P is constant. Noting that 

€ 

ΔE int  are identical for the 
two processes given the same change in the temperature, ΔT, it follows that 

€ 

QV =QP −W , i.e.  

€ 

QP −QV =W = PΔV  
where the work is in the isobaric process, i.e. P is constant. For an ideal gas, 

€ 

PV = nRT , with a 
constant pressure we obtain  

€ 

ΔV =
nRΔT
P

 

leading to  
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€ 

QP −QV = P nRΔT
P

= nRΔT  

Combined with 

€ 

QP = nCPΔT  and 

€ 

QV = nCVΔT , it follows that  

€ 

CP −CV = R  
i.e. 

€ 

CP > CV , i.e. more heat is needed for the constant pressure to raise the temperature to compensate 
the work done at the same time. Note that the gas constant is given by  

€ 

R = 8.314
J

mol⋅ K
=1.99

cal
mol⋅ K

 

which is close to the values given experimentally for various gasses.  
 

Equipartition of Energy 
In the kinetic theory of the point like ideal gas discussed previously, we obtained  

PV = Nm vx
2 =

2
3
N m

2
v2

⎛

⎝
⎜

⎞

⎠
⎟=
2
3
N K  

where K  is the average translational kinetic energy and N K  is equivalent to the internal energy 
of the gas. Together with the ideal gas law, PV = nRT , it follows that  

Eint =
3nRT
2

 

In the process with a constant volume, W = 0 and  
ΔEint =QV = nCVΔT  

thus 

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

3
2
R  

From the value of R, we obtain 

€ 

CV = 2.98cal mol⋅ K , in a good agreement with monatomic gasses. 
We now recall the Boltzmann factor 

€ 

e−E kT  describing the distribution of the internal energy E for a 
temperature T. Let us assume that the energy has a function of variable x as form 

€ 

E = αx2 with a 
constant α. The average energy 

€ 

E  is then given by  

€ 

E =
αx2e−αx

2 kTdx
−∞

∞∫
e−αx

2 kTdx
−∞

∞∫
=
kT
2

 

If we extend the energy to be  

€ 

E = α i xi
2

i=1

n f

∑  

i.e. the energy is a sum of 

€ 

n f  components, all having a same functional form. The average energy is 
then becomes, 

  

€ 

E =

dx1−∞

∞∫ ! dxn f α i xi
2

i=1

n f

∑ e
− α j x j

2
j∑ kT

−∞

∞∫

dx1−∞

∞∫ ! dxn f e
− α j x j

2
j∑ kT

−∞

∞∫
=

dx1−∞

∞∫ ! dxn f α i xi
2e
− α j x j

2
j∑ kT

−∞

∞∫

dx1−∞

∞∫ ! dxn f e
− α j x j

2
j∑ kT

−∞

∞∫i=1

n f

∑  

Since all the but one integrals cancel between the numerators and denominators, we have 

€ 

E =
dxiα i xi

2e−α i xi
2 kT

−∞

∞∫
dxie

−α i xi
2 kT

−∞

∞∫i=1

n f

∑ =
n f
2
kT  

For a gas of N molecules, or n mole, it follows that  
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€ 

E =
n f
2
NkT  or 

€ 

E =
n f
2
nRT  

respectively. It follows that  

€ 

CV =
1
n
ΔE int
ΔT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

n f
2
R 

A mono atomic gas has only translational degrees of freedom and the energy is given by  

€ 

E =
m
2
vx
2 + vy

2 + vz
2( )  

i.e. 

€ 

n f = 3. More complex molecules have rotational kinetic energies, in addition to the translational 
kinetic energies.  

 
For example, diatomic molecules have two and triatomic molecules three degrees of freedom and the 
kinetic energy is given by  

€ 

E =
m
2
vx
2 + vy

2 + vz
2( ) +

L1
2

2I1
+
L2
2

2I2
 and 

€ 

E =
m
2
vx
2 + vy

2 + vz
2( ) +

L1
2

2I1
+
L2
2

2I2
+
L3
2

2I3
 

respectively, where L's  are the angular momenta and I's corresponding moments, i.e. 

€ 

n f = 5 and 6. 
Energy of diatomic gas with vibration is given by  

  

€ 

E =
m
2

vx
2 + vy

2 + vz
2( ) +

L1
2

2I1
+

L2
2

2I2
+

µ
2
! ˙ r 1 −
! ˙ r 2( )2

+
k
2
! r 1 −
! r 2( )2

 

where µ is the reduced mass of the two atoms and k is the spring constant, i.e. 

€ 

n f = 7. 
Here are some considerations:  
 Monatomic molecule: 3-translational kinetic energies, 

€ 

n f = 3 
 Diatomic molecule: plus 2-rotational kinetic energies, 

€ 

n f = 5  
 Diatomic molecule: plus1-vibrational kinetic and 1-vibrational potential energies, 

€ 

n f = 7  
It seems that energy of a molecule is equally shared among the active degrees of freedom and the 
each degree of freedom caries in average kT/2 of the energy. This is called equipartition theorem.  

 
Note that 

€ 

3
2
R = 2.98cal mol⋅ K, 

5
2
R = 4.98cal mol⋅ K, 

7
2
R = 6.97cal mol⋅ K  
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Measured values show that 1) some of the degrees of freedom are not "active", and 2) decreases with 
temperature to

€ 

nf = 5 then to 

€ 

nf = 3 for different gas molecules, i.e. gasses behave like a monatomic 
molecule at a very low temperature. These observations are related to the foundation of quantum 
theory.  
 
Change of internal energy for ideal gas 
For isovolumetric process, we have Δ𝑉 = 0, thus 

ΔEint =QV = nCVΔT  
and for isobaric process 

ΔEint = nCPΔT − PΔV  
For ideal gas, we have 

€ 

CP −CV = R  and ΔV = nRΔT P , thus  
ΔEint = n CV + R( )ΔT − nRΔT = nCVΔT  

i.e. the change of internal energy for a temperature change of ΔT is given by  
ΔEint = nCVΔT  

for both isovolumetric and isobaric processes. For ideal gas, any change in two thermal states can 
be made as combinations of Isovolumetric and isobaric processes, the change of internal energy for a 
temperature change of ΔT for any processes is given by  

ΔEint = nCVΔT . 
Adiabatic Process 
As mentioned, for a defined gas, among three state variables, T, V and P, there are only two 
independent variables. Let us use T and V, leading to   

€ 

ΔE int =
∂E int
∂V

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T
ΔV +

∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V
ΔT . 

for a very small change of the state, i.e. Δ𝑉 𝑉 ≪ 1 and Δ𝑃 𝑃 ≪ 1, and also  

𝑊 = 𝑃 𝑉 𝑑𝑉
!!!!!

!!
≈ 𝑃 𝑉! 𝑑𝑉

!!!!

!
= 𝑃Δ𝑉 

The first law of thermodynamics gives  

€ 

ΔE int =Q −W =Q − PΔV . 

By combining the two equations, we obtain  

€ 

Q = PΔV +
∂E int
∂V

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T
ΔV +

∂E int
∂T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
V
ΔT . 

For ideal gas, recalling that the internal energy depends only on the temperature, i.e. 

€ 

∂E int ∂V( )T = 0 
and the definition of 

€ 

CV , it follows that  

€ 

Q = PΔV + nCVΔT . 

In an adiabatic process, no heat is allowed. This can happen when the system is thermally well 
isolated or the process happens very fast. Let us consider a very slow (quasistatic) process where the 
state of ideal gas is adiabatically changed from A:

€ 

Va,  Pa,  T0( )  to C:

€ 

Vb,  Pc,  Tc( ) , i.e. C has the same 
volume as B.  Since there is no heat involved in the process, Q = 0, thus  

€ 

PΔV + nCVΔT = 0 . 
Using 

€ 

PV = nRT  for the ideal gas, we obtain 



 6 

€ 

ΔV
V

+
CV
R
ΔT
T

= 0  

and further more,  

€ 

ΔT =
PΔV +VΔP

nR
 and T =

PV
nR

 

lead to  

€ 

ΔV
V

+
CV
R

ΔV
V

+
ΔP
P

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0 . 

It follows that  

€ 

R +CV( ) ΔVV +CV
ΔP
P

= CP
ΔV
V

+CV
ΔP
P

= 0 

i.e.  

€ 

γ
ΔV
V

+
ΔP
P

= 0 

where, 

€ 

γ = CP CV >1. By replacing ΔV and ΔP by dV and dP, respectively, integration gives  

€ 

γ lnV + lnP = lnV γ +lnP = ln V γP( ) = constant  
leading to  

€ 

V γP =  constant . 
 
Special demonstration 
Let us consider two states A:

€ 

Va,  Pa,  T0( )  to B:

€ 

Vb,  Pb,  T0( )  of the same gas, where Va <Vb . Since the 
temperatures are the same, the internal energy at A and B are the same, i.e.  

ΔEint = Eint:b −Eint:a = 0  
From the first law of thermodynamic  

ΔEint =Q−W  
it follows that  

Q =Wa→b  
i.e. if work is done, there must be heat.  
We now determine the work for two different paths.  
 1) Work done for the isothermal expansion of an ideal gas from A to B at the temperature 

€ 

T0. From 
the ideal gas law,  

P = nRT0
V

 

the work is given by  

W1:a→b = PdV
Va

Vb∫ =
nRT0
V

dV
Va

Vb∫ = nRT0
dV
VVa

Vb∫ = nRT0 lnV ]Va
Vb = nRT0 ln

Vb
Va
> 0

 
Note that from the ideal gas law, Pa > Pb  and W corresponds to the area under the P(V) line.  

 



 7 

 
2) Work done for the isovolumeric process from 

€ 

P = Pa to 

€ 

P = Pb , with constant 

€ 

V =Va to the state 
D:

€ 

Va,  Pb( ), followed by the isobaric process with a constant 

€ 

P = Pb  from 

€ 

V =Va to 

€ 

V =Vb .  
For the isovolumeric part,  

Wa→d = PdV
Va

Va∫ = 0  

i.e. no work is done. Note that at D:

€ 

Va,  Pb( ), the temperature has to change. This can be seen by 
comparing the equation of the state at a, and d,  

€ 

T0 =
PaVa
nR

, 

€ 

Td =
PbVa
nR

 

and 

€ 

Td −T0 =
Va
nR

Pb − Pa( ) < 0  

i.e. the temperature drops. In the second process, 

€ 

P = Pb  and the work is given by  
Wd→b = Pb dVVa

Vb∫ = Pb dV
Va

Vb∫ = PbV ]Va
Vb = Pb Vb −Va( ) > 0  

In this process, the temperature has to increases from 

€ 

Td to 

€ 

T0. The total work done is  
W2:a→b =Wa→d +Wb→b = Pb Vb −Va( )  

With the ideal gas law,  

€ 

Pb =
nRT0
Vb

 

it follows that  

W2:a→b = Pb Vb −Va( ) = nRT0 1−
Va
Vb

⎛

⎝
⎜

⎞

⎠
⎟  

Note that  
W1:a→b ≠W2:a→b  

i.e. the work done depends on the path of the process. In both cases, the work is positive hence there 
must be the heat into the gas. Since 

€ 

Q =W , the heat Q also depends on the process.  
 


