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General Physics II at EPFL  
(2018-2019 SS, Wed 17:15-19:00 and Thu 8:15-10:00, Exercise Thu 10:15-12:00) 
 
Thermodynamic (3rd week) 
Boltzmann Factor 
Microstates and Macrostates 
Imagine a system with two coins: Coin-A and Con-B. If you toss them, there are four possible states 
with equal probabilities, 1/4, namely 
 Coin-A head and Coin-B head 
 Coin-A head and Coin-B tail 
 Coin-A tail and Coin-B head 
 Coin-A tail and Coin-B tail 
Each four states are called microstates. All the microstates can be realised with an equal probability. 
However, a more relevant states are macrostates, which are 
 Both coins are head 
 One of the coins is head 
 None of the coins is head 
where the first and last macrostates contain one microstate and the second one two. Therefore, the 
probability for the second macrostate to be realised is twice larger than the other two. In 
thermodynamics, a Microstate of a gas can be defined by the position and velocity of the every gas 
molecule, a macrostate are described by more global quantities such as a volume, pressure and 
thermal energy and a set of different microstates give a same macrostate. All the microstates have an 
equal probability to be realised. The probability to be realised for a particular macrostate is 
proportional to the number of microstates giving that macrostate. We denote Ω to be the number of 
microstates for a particular macrostate.  
 
Thermal Equilibrium and Definition of Temperature 
Let us consider the two systems, which are in thermal connect but isolated from their surroundings, 
i.e. they can exchange thermal energies between the two but not with outside. The first system has 
energy 

€ 

E1 and the second system 

€ 

E2 . The total energy, 

€ 

E = E1 + E2 , is constant since there is no 
energy exchange with outside. Therefore, 

€ 

E1 alone is enough to determine the microstates of the 
joint system.  We denote that 

€ 

Ω1 E1( )  as the number of the microstates in the first system and 

€ 

Ω2 E2( ) for the second system. The total system then has 

€ 

Ω1 E1( )Ω2 E2( )  microstates. When the total 
system reaches equilibrium, 

€ 

E1 and 

€ 

E2  become stable. The system appears to take a macroscopic 
configuration that maximises the number of microstates, which corresponds to the highest 
probability, i.e. most likely.  
Since 

€ 

Ω1 E1( )Ω2 E2( )  is maximum,  

€ 

d
dE1

Ω1 E1( )Ω2 E2( )[ ] = 0 

It follows that  
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€ 

d
dE1

Ω1 E1( )Ω2 E2( )[ ] =
dΩ1 E1( )
dE1

Ω2 E2( ) +Ω1 E1( )
dΩ2 E2( )
dE1

=
dΩ1 E1( )
dE1

Ω2 E2( ) +Ω1 E1( ) dE2dE1

dΩ2 E2( )
dE2

 

From 

€ 

E = E1 + E2 = constant , 

€ 

dE = dE1 + dE2 = 0, thus 

€ 

dE1 = −dE2 . Then we have,  

€ 

dΩ1 E1( )
dE1

Ω2 E2( ) −Ω1 E1( )
dΩ2 E2( )
dE2

= 0  

or 

€ 

1
Ω1 E1( )

dΩ1 E1( )
dE1

=
1

Ω2 E2( )
dΩ2 E2( )
dE2

 

By noting  

€ 

d ln f x( )
dx

=
df x( )
dx

d ln f x( )
df x( )

=
1
f x( )

df x( )
dx

 

it follows that  

€ 

d lnΩ1 E1( )
dE1

=
d lnΩ2 E2( )

dE2
 

which is the equilibrium condition. In thermodynamics, this means that two systems are at the same 
temperature. Therefore, the temperature is defined as  

€ 

1
kT

=
d lnΩ
dE

 

with k being the Boltzmann constant.  
 
Boltzmann Factor 
We consider a small system A in thermal contact with a heat reservoir A', which means A' is much 
larger than A, and denote 

€ 

Pr Er( ) to be the probability to find A in any one particular microstate r of 
energy 

€ 

Er . The energy of the total system, A+A', 

€ 

E 0 is constant. It follows that  

€ 

Pr Er( )∝ ʹ Ω E 0 − Er( ) 
where 

€ 

ʹ Ω E 0 − Er( )  is the number of microstates accessible by A' when its energy is 

€ 

E 0 − Er . Since A 
is much smaller than A', 

€ 

Er << E 0 . The Taylor expansion of 

€ 

f x0 + x( ) for 

€ 

ε = x x0 <<1, is given by  

€ 

f x0 + x( ) = f x0 + x0ε( ) ≈ f x0( ) +
df
dε
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ε=0
ε  

where higher order in ε is neglected. Since 

€ 

x = εx0 and 

€ 

x0 is a constant, 

€ 

d
dε

=
dx
dε

d
dx

= x0
d
dx

= x0
d

d x0 + x( )
 

it follows that  

f x0 + x( ) ≈ f x0( )+ df
d x0 + x( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
ε=0

εx0 = f x0( )+ df
d x0 + x( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
x=0

x  

 
If we take 

€ 

f x0 + x( ) to be 

€ 

ln ʹ Ω E 0 − Er( ), where x0 = E
0  and x = −Er , we obtain  
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€ 

lnΩ E 0 − Er( ) ≈ lnΩ E 0( ) −
d lnΩ E 0 − Er( )
d E 0 − Er( )

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
Er =0

Er  

Since  

€ 

d lnΩ E 0 − Er( )
d E 0 − Er( )

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
Er =0

=
1
kT

 

T being the temperature of the reservoir A', which is also the temperature of A when they are in 
thermal equilibrium, and  

€ 

lnΩ E 0 − Er( ) ≈ lnΩ E 0( ) − Er

kT
 

thus  

€ 

Ω E 0 − Er( ) = Ce−Er kT  
where C is a constant. It follows that  

€ 

Pr Er( )∝ e−Er kT  
The term, 

€ 

e−E kT , is called a Boltzmann factor.  
 
Velocity components and velocity distribution of molecule 
Maxwell Distribution (391) 
The energy of a gas molecule with a mass m and velocity   

€ 

! v = vx ,  vy,  vz( ) is given by,   

€ 

E =
m
2
vx
2 + vy

2 + vz
2( )  

Using the Boltzmann factor, 

€ 

e−E kT , the probability to have a velocity between   

€ 

! v = vx ,  vy,  vz( ) and 

  

€ 

! v + d! v = vx + dvx ,  vy + dvy,  vz + dvz( ) is given by  

€ 

f vx( ) f vy( ) f vz( )dvxdvydvz =
m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

exp −
m
2kT

vx
2 + vy

2 + vz
2( )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
dvxdvydvz  

which is a Gauss distribution.  
A Gauss distribution in one dimension is generally given by  

 
where x0 is the mean  

 
and σ variance, i.e.  

 
leading to 

 
So the distribution of the velocity components are given by the Gauss distribution with  

 

€ 

Gσ , x0
x( ) =

1
σ 2π

exp −
x − x0( )2

2σ2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

€ 

x = xGσ , x0
x( )dx

−∞

∞∫ = x0

€ 

Var x( ) ≡ x − x0( )2

€ 

x − x0( )2
= x − x0( )2

Gσ , x0
x( )dx

−∞

∞∫ = ʹ x 2Gσ , x0
ʹ x + x0( )dx

−∞

∞∫ =
1

σ 2π
ʹ x 2 exp −

ʹ x 2

2σ2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dx

−∞

∞∫ =σ2

€ 

x0 = 0  and  σ2 =
m
kT
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An important characteristics of a Gauss distribution is that the probability for x to be between  
and  is ~68.2%. Equally for between  and , ~95.4%, and for between  
and , ~99.7%.  

 
 
By recalling, 

€ 

v2 = vx
2 + vy

2 + vz
2 and 

€ 

dvxdvydvz = v2 sinθdvdθdφ , it follows that  

€ 

m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

exp −
m
2kT

vx
2 + vy

2 + vz
2( )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
dvxdvydvz =

m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

exp −
m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ v2 sinθdvdθdφ  

Integration over θ and φ gives  

€ 

F v( )dv =
m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v2 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dv sinθdθ dφ0

2π∫0
π∫ = 4π

m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v2 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dv  

where 

€ 

F v( ) = 4π
m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v2 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

gives the probability distribution of the velocity, 

€ 

v .  Using 

€ 

F v( ), called the Maxwell distribution of 
speeds, the average velocity, 

€ 

v , is given by  

€ 

v = vF v( )0
∞∫ dv . 

Similarly, 

€ 

vrms is given by  

€ 

vrms = v2 = v2F v( )dv0
∞∫  

Using the integrals given in the next section,  

€ 

I2 a( ) = x2 exp −ax2( )dx0
∞∫ =

π
4
a−3 2

I4 a( ) = x4 exp −ax2( )dx0
∞∫ =

3 π
8

a−5 2
 

we obtain   

€ 

F v( )dv0
∞∫ = 4π

m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v2 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dv0

∞∫ = 4π
m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2 π

4
m
2kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−3 2

=1 

i.e. the probability function, 

€ 

F v( ), is properly normalised, and  

€ 

x0 −σ

€ 

x0 +σ

€ 

x0 − 2σ

€ 

x0 + 2σ

€ 

x0 − 3σ

€ 

x0 + 3σ

0
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Gauss distributionσ = 1

x
0
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Gauss distributionσ = 2

x
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€ 

v2F v( )dv0
∞∫ = 4π

m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v4 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dv0

∞∫ = 4π
m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2 3 π

8
m
2kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−5 2

=
3
2

m
2kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−1

=
3kT
m

 

i.e.  

€ 

vrms = v2 = v2F v( )dv0
∞∫ =

3kT
m

 

which was needed in the previous section.  
Equally, by using   

€ 

I3 a( ) = x3 exp −ax2( )dx0
∞∫ =

1
2
a−2  

we obtain  

€ 

vF v( )dv0
∞∫ = 4π

m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v3 exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dv0

∞∫ = 4π
m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2 1
2

m
2kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−2

=
4
π

m
2kT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−1 2

=
8kT
mπ

 

thus the average velocity is given by  

€ 

v = vF v( )0
∞∫ dv =

8kT
mπ

 

Lastly, the most probable velocity 

€ 

vmp  given 

€ 

d
dv
F v = vmp( ) = 0 

From 

€ 

F v( ), it follows that  

€ 

F v( )
dv

= 8π
m
2πkT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
3 2

v exp − m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

mv3

2kT
exp −

m
2kT

v2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

thus 

€ 

exp −
m
2kT

vmp
2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

mvmp
2

2kT
exp −

m
2kT

vmp
2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0 . 

leading to  

€ 

mvmp
2

2kT
=1 

therefore,  

€ 

vmp =
2kT
m

 

Note that the trivial solution, 

€ 

v = 0, corresponds to the minimum. 
It is interesting to remark that  

€ 

vmp =
2kT
m

≈1.414 kT
m

,   v =
8kT
mπ

≈1.596 kT
m

,   vrms =
3kT
m

≈1.732 kT
m

 

i.e. the three velocities are not so far apart.  It is interesting to note that  

€ 

vrms
2 =

3kT
m

= 3σ2  

where σ is the standard deviation of the Gauss distribution giving the probability distribution of the 
velocity components.  
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Special subject on distributions 
Let us consider a variable x, which can take a value between 𝑥! to 𝑥!. The variable x can be discrete, 
such as the number of population in the Swiss towns and villages, or continuous such as the absolute 
value of the speed of cars on the road. We then make n measurements of x, i.e. 𝑥!, 𝑥!,⋯ to 𝑥!. 
 
Average and root mean squared are given by  

𝑥 =
1
𝑛 𝑥!

!

!!!

 

and 
𝑥 − 𝑥 ! = 𝑥! − 𝑥 !, 

respectively, and a probability to have a value 𝑥! by  

𝑃 𝑥! =
1
𝑛 𝑥! 

leading the average to be 

𝑥 = 𝑃 𝑥!

!

!!!

 

One can “bin” x with a finite interval, dx, and denote 𝑛 𝑥! 𝑑𝑥 to be the number of measurements 
where x is between 𝑥! and 𝑥! + 𝑑𝑥. Then the average becomes 

𝑥 =
1
𝑛 𝑥!𝑛 𝑥!

!

!!!

𝑑𝑥 =
1
𝑛 𝑥𝑛 𝑥

!!

!!!!

𝑑𝑥 = 𝑥𝑃 𝑥
!!

!!!!

𝑑𝑥 

For continuous variable, in the limit of 𝑛 → ∞ and 𝑑𝑥 → 0, n(x) (so as P(x)) becomes a smooth 
function of x. Then the sum can be replaced by the integral, i.e.   

𝑥 =
1
𝑁 𝑥𝑛 𝑥 𝑑𝑥

!!

!!
= 𝑥𝑃 𝑥 𝑑𝑥

!!

!!
 

 
 
Some Tricks for Integral 
Here are some useful notes on the integration. 

€ 

In a( ) = xn exp −ax2( )dx0
∞∫  

For n = 0, by introducing 

€ 

ʹ x = ax  

€ 

I0 a( ) = exp −ax2( )dx0
∞∫ =

1
a

exp − ʹ x 2( )d ʹ x 0
∞∫  

We now consider the following integral:  

€ 

exp −x2( )dx0
∞∫ exp −y2( )dy0

∞∫ = exp −x2( )0
∞∫ exp −y2( )dxdy0

∞∫ = exp − x2 + y2( )[ ]0
∞∫ dxdy0

∞∫  

By changing to the polar coordinate system, 

€ 

x = rcosφ,  y = rsinφ , and 

€ 

dxdy = rdrdφ , we have  

€ 

exp − x2 + y2( )[ ]0
∞∫ dxdy0

∞∫ =
1
4

rexp −r2( )0
2π∫ drdφ0

∞∫ =
π
2

rexp −r2( )dr = −
π
40

∞∫ exp −r2( )]
r=0

∞
=
π
4

 

leading to  

€ 

exp −x2( )dx0
∞∫ =

π
2

 

Finally, we obtain  
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€ 

I0 a( ) = exp −ax2( )dx =
1
20

∞∫ π
a

 

For n = 1, it follows that  

€ 

I1 a( ) = x exp −ax2( )dx0
∞∫ = −

1
2a
exp −ax2( )⎤ ⎦ ⎥ 0

∞

=
1
2a

 

and for  n = 2,  

€ 

I2 a( ) = x2 exp −ax2( )dx = −
d
da
I0 a( ) = −

π
2

d
da0

∞∫ a−1 2 =
π
4
a−3 2  

For n = 3 and 4 , we have 

€ 

I3 a( ) = x3 exp −ax2( )dx0
∞∫ = −

d
da
I1 = −

1
2
d
da
a−1 =

1
2
a−2

I4 a( ) = x4 exp −ax2( )dx = −
d
da
I2 a( ) =

π
4

d
da0

∞∫ a−3 2 =
3 π
8

a−5 2
 

 


