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Thermodynamic (3rd week)
Boltzmann Factor

Microstates and Macrostates
Imagine a system with two coins: Coin-A and Con-B. If you toss them, there are four possible states
with equal probabilities, 1/4, namely

Coin-A head and Coin-B head

Coin-A head and Coin-B tail

Coin-A tail and Coin-B head

Coin-A tail and Coin-B tail
Each four states are called microstates. All the microstates can be realised with an equal probability.
However, a more relevant states are macrostates, which are

Both coins are head

One of the coins is head

None of the coins is head
where the first and last macrostates contain one microstate and the second one two. Therefore, the
probability for the second macrostate to be realised is twice larger than the other two. In
thermodynamics, a Microstate of a gas can be defined by the position and velocity of the every gas
molecule, a macrostate are described by more global quantities such as a volume, pressure and
thermal energy and a set of different microstates give a same macrostate. All the microstates have an
equal probability to be realised. The probability to be realised for a particular macrostate is
proportional to the number of microstates giving that macrostate. We denote €2 to be the number of
microstates for a particular macrostate.

Thermal Equilibrium and Definition of Temperature

Let us consider the two systems, which are in thermal connect but isolated from their surroundings,
i.e. they can exchange thermal energies between the two but not with outside. The first system has
energy E, and the second system E,. The total energy, E = E, + E,, is constant since there is no
energy exchange with outside. Therefore, E, alone is enough to determine the microstates of the
joint system. We denote that 91(E1) as the number of the microstates in the first system and
QZ(EQ) for the second system. The total system then has QI(E 1)£22(E2) microstates. When the total
system reaches equilibrium, E, and E, become stable. The system appears to take a macroscopic
configuration that maximises the number of microstates, which corresponds to the highest
probability, i.e. most likely.

Since 91(E1)92(E2) 1S maximum,

It follows that
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From E = E, + E, =constant, dE =dE, + dE, =0, thus dE, = -dE,. Then we have,
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By noting
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it follows that
dInQ,(E,) dInQ,(E,)
dE, dE,
which is the equilibrium condition. In thermodynamics, this means that two systems are at the same

temperature. Therefore, the temperature is defined as
1 dnQ
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with & being the Boltzmann constant.

Boltzmann Factor
We consider a small system A in thermal contact with a heat reservoir A', which means A' is much
larger than A, and denote Pr(E r) to be the probability to find A in any one particular microstate r of
energy E,.The energy of the total system, A+A', E % is constant. It follows that

P(E,) = Q(E° - E,)

where Q’(E '_E r) is the number of microstates accessible by A' when its energy is E° - E - Since A
is much smaller than A', E, << E°. The Taylor expansion of f (xo + x) for € = x/x, <<1, is given by

df
Flxo+3) = £x0 + xoe) = f(x0)+(d—) ‘
€ e=0
where higher order in ¢ is neglected. Since x = éx, and x, is a constant,
d dx d d d

it follows that
) & _ _gd
f(xo+x)=f(x)+ d(x0+X))= X, f(xo)+(d(x0+x))x= *

If we take f(xo + x) to be an’(EO - E,), where x, = E’ and x =-E, , we obtain
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T being the temperature of the reservoir A', which is also the temperature of A when they are in

thermal equilibrium, and
E
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thus
Q(E®-E,)=ce ™t /M
where C is a constant. It follows that
Pr(Er) o ¢~ Er /KT

~E/kT , 1s called a Boltzmann factor.

The term, e

Velocity components and velocity distribution of molecule

Maxwell Distribution (391)
The energy of a gas molecule with a mass m and velocity v = (v V,,V ) is given by,
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m
E=—(v+v?+y?
200 Y

“E/T the probability to have a velocity between v = (v V,, V ) and

Using the Boltzmann factor, e oV Y,

V+dv = (vx +dv,, v, + dvy, v, + dvz) is given by

32
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which is a Gauss distribution.

A Gauss distribution in one dimension is generally given by

(x-x,)°
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where x, is the mean
(x)= 7 xG,  (x)dx = x,
and o variance, i.e.

Var(x) = <(x - x0)2>

leading to
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So the distribution of the velocity components are given by the Gauss distribution with

x, =0 and 02=k—n;
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An important characteristics of a Gauss distribution is that the probability for x to be between x, —o
and x, + 0 is ~68.2%. Equally for between x, -20 and x, +20, ~95.4%, and for between x, — 30
and x, +30,~99.7%.
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By recalling, v’ =v. +v> +v} and dv,dv,dv, =v’sin6dvd6d¢, it follows that
32 32
o exp —i(v + v +v )}dv dv,dv, = (L) exp(—ﬂv )v sinOdvdOd¢
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Integration over 0 and ¢ gives

32 3/2
F(v)dv =(ﬁ) v2exp(-2kﬂTv2)dvfg sin6d6 " dg = 4n(ﬁ) vzexp(-z%vz)dv

where
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2mkT 2kT

gives the probability distribution of the velocity, v. Using F(v), called the Maxwell distribution of
speeds, the average velocity, (v), is given by

(v) = f:vF(v)dv.

Using the integrals given in the next section,
- \r
_ 2 2 g NI 3
a)—fox exp( ax )dx— 2 a
3Wa s,
2 a

Similarly, v, . is given by

f X exp( )dx=

we obtain
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i.e. the probability function, F(v), is properly normalised, and
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which was needed in the previous section.
Equally, by using

f X exp( )dx =%a‘2

we obtain
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thus the average velocity is given by

(v) = [y vF(v)dv =

Lastly, the most probable velocity v, given
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From F(v), it follows that
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Note that the trivial solution, v =0, corresponds to the minimum.
It is interesting to remark that
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i.e. the three velocities are not so far apart. It is interesting to note that
3kT
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rms

where o is the standard deviation of the Gauss distribution giving the probability distribution of the
velocity components.
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Special subject on distributions

Let us consider a variable x, which can take a value between x; to x,,. The variable x can be discrete,
such as the number of population in the Swiss towns and villages, or continuous such as the absolute
value of the speed of cars on the road. We then make n measurements of x, i.e. x1, X5, *** t0 X;,.

Average and root mean squared are given by
n

wW=">x

i=1
and

VA = (x)?) = (x?) = (x)2,

respectively, and a probability to have a value x; by

1
P(x;) = X

(x) = ip(xi)

One can “bin” x with a finite interval, dx, and denote n(x;)dx to be the number of measurements
where x is between x; and x; + dx. Then the average becomes

leading the average to be

n Xy Xu
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For continuous variable, in the limit of n - oo and dx — 0, n(x) (so as P(x)) becomes a smooth
function of x. Then the sum can be replaced by the integral, i.e.

(x) = %fxuxn(x)dx = fxuxP(x)dx

Some Tricks for Integral
Here are some useful notes on the integration.
I,(a)= f: x" exp(—axz)dx
For n = 0, by introducing x’' = Vax
I,(a) = f:exp(—axz)dx = %f:exp(—x’z)dx’
We now consider the following integral:
f:exp(—xz)dxf:exp(—yz)dy = f:f:exp(—x2)exp(—y2)dxdy = f:fgoexp[—(xz +y2)]dxdy
By changing to the polar coordinate system, x = rcos@, y = rsing, and dxdy = rdrd¢ , we have
f:f:exp[—(XZ + yZ)]dxdy = %f:foz” rexp(—rz)drd(p = %f:rexp(_ﬁ)dr - _%exp(_rz)]f 0 =%
leading to
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Finally, we obtain
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For n =1, it follows that

I,(a) = f:xexp(—axz)dx = —iexp(—axz) T2

and for n=2,

= f:xzexp(—ax2)dx = —ilo(a) = —ﬂia_l/2 = ﬂcz_3/2
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Forn =3 and 4 , we have
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