
Physique II - Thermodynamique

Correction - Série Supplémentaire

Correction – Exercice 1 : Gaz de van der Waals

1. Équation de la spinodale

On exprime la pression pour une mole de gaz de van der Waals en fonction de V :

p =
RT

V − b
− a

V 2
.

En imposant ∂p/∂V = 0, on obtient :

p =
2a(V − b)

V 3
− a

V 2
=

a

V 2

(
1− 2b

V

)
.

En substituant cette expression dans l’équation d’état de van der Waals, on trouve l’équation
de la courbe spinodale :

p =
RT

V − b
− a

V 2
=

2a(V − b)

V 3
− a

V 2
=

a

V 2

(
1− 2b

V

)
.

2. Coordonnées du point critique

Les coordonnées (pc, Vc) du sommet de la courbe spinodale (nommé point critique) sont obtenues
en imposant ∂p/∂V = 0 dans l’expression précédente.

Ainsi :

− 2a

V 3
+

6ab

V 4
= 0 ⇒ Vc = 3b.

En introduisant cette valeur dans l’équation trouvée en 1, on trouve la valeur de pc :

pc =
a

V 2
c

(
2(Vc − b)2

Vc
− 1

)
=

a

27b2
.

D’où :

Tc =
1

R

(
pc +

a

V 2
c

)
(Vc − b) =

8a

27bR
.

3. Rapport universel

En utilisant les expressions de pc, Vc et Tc, on a :

pcVc

Tc
=

3R

8
.
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Correction – Exercice 2 : Gaz de van der Waals à dilution infinie

1. Dilution infinie

La condition de dilution infinie pour un gaz de van der Waals peut être obtenue en faisant tendre
le volume V vers l’infini ou le nombre de moles n vers zéro. Dans les deux cas, le terme nb devient
négligeable par rapport à V , et an2/V 2 tend vers zéro.

On retrouve alors l’équation d’état d’un gaz parfait : un gaz de van der Waals se comporte
comme un gaz parfait à dilution infinie.

2. Haute température

Si l’on fait tendre la température vers l’infini, le terme an2/V 2 devient négligeable et l’on trouve :

p ≈ nRT

V − nb
.

On constate que le terme de correction −nb ne disparâıt pas : un gaz de van der Waals ne se
comporte pas comme un gaz parfait à haute température.

Correction – Exercice 3 : Distribution de Maxwell-Boltzmann

La distribution du module des vitesses de Maxwell-Boltzmann s’écrit, pour une molécule de
masse m dans un environnement à la température T :

p(v) = 4πv2
(

m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
.

La probabilité que la molécule ait une vitesse de norme comprise entre v et v + dv vaut :

dp = p(v) dv.

1. Vitesse moyenne

La vitesse moyenne se calcule en pondérant chaque vitesse possible par la probabilité d’observer
cette vitesse :

⟨v⟩ =
∫ +∞

0
v p(v) dv.

En effectuant des integrations par parties et le changement de variable suivant :

η =

√
m

2kBT
v, ⇒ dv =

√
2kBT

m
dη,

on obtient :

⟨v⟩ =
√

8kBT

πm
= 1,78 · 103 m/s.
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2. Vitesse quadratique moyenne

La vitesse quadratique moyenne se calcule de façon similaire à la vitesse moyenne, c’est-à-dire
en pondérant chaque vitesse quadratique possible par la probabilité d’observer cette vitesse :

⟨v2⟩ =
∫ +∞

0
v2 p(v) dv.

Toujours avec des integrations par parties et le changement de variable η =
√

m
2kBT v, on obtient :

⟨v2⟩ = 3kBT

m
, d’où vrms =

√
⟨v2⟩ = 1,93 · 103 m/s.

3. Vitesse la plus probable

La vitesse la plus probable correspond à celle associée au maximum de la distribution de Maxwell-
Boltzmann. Si l’on note vmp cette vitesse, on a :

dp

dv

∣∣∣∣
v=vmp

= 0.

En dérivant et simplifiant l’expression, on obtient :

vmp =

√
2kBT

m
= 1,57 · 103 m/s.

4. Nombre de molécules entre 400 et 401 m/s

En règle générale, la probabilité que la vitesse d’une molécule ait une norme comprise entre v1
et v2 s’obtient en intégrant la distribution de Maxwell-Boltzmann entre v1 et v2 :∫ v2

v1

p(v) dv.

Cependant, dans le cas présent, v1 et v2 sont suffisamment proches pour approximer l’intégrale
par la formule du rectangle :∫ v2

v1

p(v) dv ≈ p(v1)(v2 − v1) = p(400) · 1 = p0 = 8,6 · 10−5 m/s.

Le nombre de molécules N0 avec une vitesse comprise entre 400 m/s et 401 m/s s’obtient en
multipliant le nombre total de molécules N par cette probabilité :

N0 = N · p0 = 2,59 · 1019 m/s.
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Correction – Exercice 4 : Température de mélange

On est en train de considérer un système isolé. La chaleur reçue par l’eau est donc égale à la
chaleur cédée par l’aluminium :

Qeau = −QAl.

On a :
ceaumeau∆Teau = −cAlmAl∆TAl.

Soit, en termes de températures :

ceaumeau(Tf − Ti,eau) = cAlmAl(Ti,Al − Tf ),

⇒ Ti,Al =
ceaumeau(Tf − Ti,eau)

cAlmAl
+ Tf .

A.N. = 517 deg

Correction - Exercice 5 : Volume molaire partiel

Supposons qu’il y 100 ml de solution et que A représente l’éthanol et B représente l’eau. Le
volume de la solution est donc :

V = nAVA + nBVB

où VA et VB sont les volumes molaires de l’éthanol et de l’eau, respectivement. Le volume molaire
partiel de l’eau est donc

VB =
V − nAVA

nB
,

La masse de la solution, m est donné par :

m = V ρ

Les masses d’éthanol et d’eau dans la solution sont donc

mA = 0.2m = 0.2V ρ, et

mB = 0.8m = 0.8V ρ,

et les moles d’éthanol et d’eau dans la solution sont

nA =
mA

MA
=

0.2V ρ

MA
= 0.4205 mol

nB =
mB

MB
=

0.8V ρ

MB
= 4.30 mol

VB =
V − nAVA

nB
= 18.15 ml/mol
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