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Problème I Poussée d’Archimède II

Pour savoir jusqu’où le ballon peut monter, on cherche la hauteur où le poids du ballon Pballon

est égal à la poussée d’Archimède FA (en valeurs absolues).

Le poids du ballon est la force gravitationnelle exercée sur le ballon :

Pballon = mballong = ρHeVballong =
4

3
πr3ρHeg.

La poussée d’Archimède est le poids du volume d’air déplacé :

FA = ρairVballong =
4

3
πr3ρairg.

La formule barométrique à températuere constante donne la pression de l’air atmosphérique pair

en fonction de la hauteur :

pair = p0e
− gMh

RT .

D’où, en utilisant la relation entre pression et densité fourni par l’équation des gaz parfaits,

p =
ρRT

M
.

On multiplie les deux cotés de l’équation barométrique par M
RT pour obtenir

ρair = ρ0e
− gMh

RT ,

où

ρ0 =
p0M

RT
= 1.16

kg

m3
.

D’où, en posant que

∑
F = Pballon + FA = 0,
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on déduit que cette condition est satisfaite quand

ρHe = ρair

et donc

h = −RT

gM
ln(

ρHe

ρ0
)

h = 5316m

Problème II Montgolfière miniature

1. Par la loi des gaz parfaits, le nombre de mols est donné comme :

n =
pV

RT

Pour 1 ℓ d’un gaz parfait quelconque sous les conditions de la salle, le nombre de mols

associé est :

n =
1bar · 1 ℓ
R · 293K

= 0.041mol.

Donc :

mHe = nMHe = 0.041mol · 4 g/mol = 0.164 g

et

mair = 0.8nMN2
+0.2nMO2

= 0.8·0.041mol·28 g/mol+0.2·0.041mol·32 g/mol = 1.183 g

2. Deux forces s’appliquent sur la montgolfière : son poids qui comprend la masse d’hélium

dans le ballon et la masse de la montgolfière vide, et la poussée d’Archimède. Alors

(projection de la loi fondamentale de la mécanique à l’axe vertical) :∑
F = ρairVballong − (mm +mHe)g

où mm est la masse de la montgolfière vide et le référentiel choisi montre vers le haut. Afin

que la montgolfière décolle la somme des forces doit être positive. D’où :

ρairVballon�g − (mm +mHe)�g > 0
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Le volume du ballon est égal au volume d’hélium, et donc le volume minimal admis :

ρairVmin He − (mm + ρHeVmin He) = 0

Vmin He =
mm

ρair − ρHe

Afin que la montgolfière puisse décollée, son volume doit être supérieur à Vmin.

Dans la question 1 on a calculé les masses d’un litre d’air et d’un litre d’hélium dans les

conditions de la salle. Puisque dans le ballon gonflé règnent les mêmes conditions que celles

de la salle, on peut utiliser ces masses pour définir les masses volumiques de la formule

précédente.

ρair = 1.183 g/ℓ, ρHe = 0.164 g/ℓ

Donc :

Vmin =
10 g

1.183 g/ℓ− 0.164 g/ℓ

Vmin = 9.81 ℓ

3. On peut trouver la masse d’air qui correspond à 1 ℓ pour 1 bar et 373K en répétant les

étapes de la question 1. La masse volumique dans ces conditions est alors :

ρair(373K) = 0.929 g/ℓ

et

Vmin air(373K) =
mm

ρair − ρair(373K)

Vmin air(373K) = 39.37 ℓ

Problème III Cycle thermodynamique

Pour simplifier les calculs, il suffit de remarquer que pB = 0.5pA et que TA = 2
3TC .
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p[bar] T[K] V[L]

A pA = 1 TA = 300 VA = nRTA
PA

= 1

B pB = 0.5 TB = TA = 300 VB = nRTA
pB

= nRTA
0.5pA

= 2VA = 2

C pC = pB = 0.5 TC = 200 VC = nRTB
pB

= 2
3VB = 4

3

D pD = pA = 1 TD = TC = 200 VD = nRTC
pA

= 2
3VA = 2

3

Les diagrammes p–V , p–T et T–V sont explicités ci-dessous en partant de l’équation des gaz

parfaits :

p =
nRT

V

Pour un diagramme p–V , les isothermes (T constante) sont de la forme

p =
const
V

,

ce qui correspond à des hyperboles.
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FIG. 1. Diagramme montrant la pression en fonction du volume pour ce cycle. Les lignes rouges sont des

isothermes à 200 K et à 300 K.

Pour un diagramme p–T , les isochores (V constante) sont de la forme

p = const · T,

ce qui donne des droites.
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FIG. 2. Diagramme montrant la pression en fonction de la température pour le cycle étudié ici. Les

lignes rouges sont des isochores.

Pour un diagramme T–V , les isobares (p constante) sont données par

T =
p

nR
V = const · V

et prennent aussi la forme des droites.
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FIG. 3. Diagramme montrant la temperature en fonction du volume pour le cycle étudié ici. Les lignes

rouges sont des isobares à 1 bar et à 0.5 bar.

Problème IV Fonctions d’état ?

Le travail effectué par ou sur un gaz parfait peut s’exprimer comme : W = −p∆V ⇒

transformation isobare , W = nRT ln Vi
Vf

⇒ transformation isotherme et W = 0 ⇒ pour une

transformation isochore. L’échange de chaleur et la variation de l’énergie interne sont donnés

par ∆U = 3
2nR(Tf − Ti) (pour un gaz parfait monoatomique, donc ∆U = 0 ⇒ transformation

isotherme) et ∆U = W +Q.

On a donc :
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• A −→ B:

WAB = 0 (transformation isochore)

Afin de calculer la variation de l’énergie interne, on doit d’abord connaître quelle est la

variation de température. Puisque pV = nRT est linéaire, augmenter p d’un facteur 10

nous donne une variation de T de TA = 373 K à TB = 3730 K. Alors TB − TA = 3357 K.

Alors,

∆UAB =
3

2
nR · 3357K

De nouveau, utiliser pV = nRT pour les points A ou B nous donne nR = 2.68 × 10−6

JK−1

∆UAB =
3

2
· 2.68× 10−6 JK−1 · 3357K = 1.35× 10−2 J

Maintenant, il est possible d’évaluer l’échange de chaleur. Puisque W = 0,

QAB = ∆UAB = 1.35× 10−2 J

Q > 0 signifie que le système (gaz parfait) a assimilé de la chaleur pendant la transforma-

tion.

• B −→ C:

∆UBC = 0 (transformation isotherme)

WBC = nRTB ln
VB

VC
= −9.16× 10−3 J

QBC = −WBC = 9.16× 10−3 J

Puisque Q > 0 et W < 0, on voit que le système a absorbé de la chaleur et a fourni du

travail dans cette transformation.

• C −→ D: C’est une transformation isobare, donc pC = pD. En utilisant pV = nRT au

point C, on trouve pC = 4.00× 103 Pa = pD.

WCD = −pC∆VCD = −4.00× 103 Pa · (−1.5× 10−6m3) = 6.00× 10−3 J
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TD =
pDVD

nR
=

4.00× 103 Pa · 1× 10−6m3

2.68× 10−6 JK−1 = 1492.5K

∆UCD =
3

2
nR(TD − TC) =

3

2
2.68× 10−6 JK−1 · (1492.5K− 3730K) = −9.00× 10−3 J

QCD = ∆UCD −WCD = −9.00× 10−3 J− 6.000× 10−3 J = −15.00× 10−3 J

Si quelqu’un veut fermer le cycle thermodynamique, il doit considérer une transformation

isochore de D à A (élément supplémentaire et pas mentionné aux questions).

• D −→ A

WDA = 0 (transformation isochore)

∆UDA =
3

2
nR(TA − TD) =

3

2
2.68× 10−6 JK−1 · (373K− 1492.5K) = −4.50× 10−3 J

QDA = ∆UDA −WDA = −4.50× 10−3 J

En résumant les résultats dans un tableau :

A → B B → C C → D D → A

∆U 13.50mJ 0 −9.00mJ −4.50mJ

W 0 −9.16mJ 6.00mJ 0

Q 13.50mJ 9.16mJ −15.00mJ −4.50mJ

∆Utotal = 0

Wtotal = −3.16mJ

Qtotal = 3.16mJ

Wtotal +Qtotal = −3.16mJ + 3.16mJ = 0 = ∆Utotal

Les points de départ et d’arrivée sont les mêmes dans un cycle. L’énergie interne ne dépend

pas de chemin (définition d’une équation d’état), sa variation est donc nulle pour chaque cycle.

Pour un gaz parfait les températures initiale et finale sont également identiques. De plus, pour

chaque cycle, le gaz parfait absorbe 3.16mJ sous forme de chaleur et le transforme en travail.

En ajoutant le point C’, on a :
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B → C’ C’ → C

∆U 22.5mJ −22.5mJ

W −15mJ 0

Q 37.5mJ −22.5mJ

La variation de l’énergie interne de B à C sera nulle indépendamment du chemin parcouru

car ces points appartiennent à la même courbe isotherme. Cependant, si l’on compare le travail

effectué de B à C en passant par C’ avec celui effectué en passant par l’isotherme (calcul préce-

dent), on remarque une différence de −5.84mJ. La chaleur échangée montre une différence de

5.84mJ, comme on peut le prédire. Nous avons les mêmes points de départ et d’arrivée qu’avant

mais avec un chemin différent, le travail et la chaleur se comportent différemment. Avec cela,

nous pouvons donc conclure que Q et W ne sont pas des fonctions d’état.
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Problème V Transformation d’un gaz parfait

On suppose que les transformations sont quasi-statiques, c’est-à-dire qu’on les effectue suff-

isamment lentement pour que la pression à l’intérieur du piston s’égalise avec la pression externe

à chaque instant. Pour calculer le travail reçu par le piston le long des trois chemins proposés, il

suffit d’intégrer l’expression δW = −pdV dans le diagramme (p,V) en suivant les chemins.

• A−→B :

WAB = nRTA ln
VA

VB

En utilisant le fait que VA
VB

= pB
pA

(puisque pV = cste), on obtient:

WAB = nRTA ln
pB

pA
= 4014.3 J

• A−→D−→B : La compression ADB se compose de la transformation isochore AD dont le

travail est nul (puisque V = cste), suivie de la compression isobare DB. On obtient donc:

WADB = WDB = −pB(VB − VA)

En utilisant les faits que TA = TB et VA = nRTA/pA, on trouve:

WADB = −nRTA

(
1− pB

pA

)
= 9976.8 J

• A−→C−→B : La compression ACB est la succession d’une transformation isobare (AC)

et d’une transformation isochore (CB). Ainsi :

WACB = WAC = −pA(VB − VA) = −nRTA

(
pA

pB
− 1

)
= 1995.4 J

On constate que le travail reçu par le système est différent le long des trois chemins. Le

travail n’est donc pas une fonction d’état.
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Problème VI Variation de l’énergie interne après mélange de deux gaz parfaits

1. L’énergie interne de l’ensemble ne varie pas car le reservoir est rigide (W = 0) et la

transformation est adiabatique (Q = 0).

2. Sachant que l’énergie interne du système ne varie pas, ses valeurs avant et après la mise

en communication des deux compartiments doivent être identiques:

n1cvTi + n2cvTi = (n1 + n2)cvTf ,

où Ti dénote la température de chaque gaz initialement et Tf la température de l’esemble

finalement. On en déduit Tf = Ti : la température des gaz ne varie pas.

3. À l’état final, la loi des gaz parfaits donne :

pf =
ntRTf

Vf

où nt = n1 + n2, Tf = Ti et Vf = 2V . Donc, en se référant à l’état initial :

pf =

n1RTi

V
+

n2RTi

V
2

=
p1 + p2

2

pf = 1.5 bar


