Physique II — Thermodynamique

Solutions 3

11 mars 2025

PrROBLEME I POUSSEE D’ARCHIMEDE I

Pour savoir jusqu’ot le ballon peut monter, on cherche la hauteur ot le poids du ballon Ppa110n
est égal a la poussée d’Archimeéde Fy (en valeurs absolues).

Le poids du ballon est la force gravitationnelle exercée sur le ballon :

4
Pration = Mpallond = ,OHeVbaHong = §7r7'3,0Heg-

La poussée d’Archimeéde est le poids du volume d’air déplacé :

4
Fp = pairVballong = gﬂ-rgpairg

La formule barométrique a températuere constante donne la pression de l'air atmosphérique p.iy

en fonction de la hauteur :

_gMh
Pair = po€ BT .

D’o1, en utilisant la relation entre pression et densité fourni par I’équation des gaz parfaits,

_ pRT
=S

On multiplie les deux cotés de ’équation barométrique par % pour obtenir

gMh

Pair = po€ BT,

ol

poM kg
= PO 146 -8,
po RT m3

D’ou, en posant que
) p q

Y F =Pration + Fa =0,



on déduit que cette condition est satisfaite quand

PHe = Pair

et donc

PHe
h=——1In
gM ( Po )

PROBLEME II MONTGOLFIERE MINIATURE

1. Par la loi des gaz parfaits, le nombre de mols est donné comme :

no PV
" RT

Pour 14 d’un gaz parfait quelconque sous les conditions de la salle, le nombre de mols

associé est :

lbar-1/¢
n=Roaggk  O0Hmo
Donc :
mie = nMpe = 0.041mol - 4g/mol =|0.164 ¢
et

Mair = 0.8nMn,+0.2nMo, = 0.8-0.041 mol-28 g/mol+0.2-0.041 mol-32g/mol =|1.183 g

2. Deux forces s’appliquent sur la montgolfiére : son poids qui comprend la masse d’hélium
dans le ballon et la masse de la montgolfiére vide, et la poussée d’Archiméde. Alors

(projection de la loi fondamentale de la mécanique a ’axe vertical) :

> F = pairVhaliong — (Mum + mie)g

ol My est la masse de la montgolfiére vide et le référentiel choisi montre vers le haut. Afin

que la montgolfiere décolle la somme des forces doit étre positive. D’oit :

pairvballong - (mm + mHe)g >0



Le volume du ballon est égal au volume d’hélium, et donc le volume minimal admis :
pairvmin He — (mm + pHeVmin He) =0

mMm
Vmin He =
Pair — PHe

Afin que la montgolfiére puisse décollée, son volume doit étre supérieur a Vipin.
Dans la question 1 on a calculé les masses d’un litre d’air et d’un litre d’hélium dans les
conditions de la salle. Puisque dans le ballon gonflé régnent les mémes conditions que celles

de la salle, on peut utiliser ces masses pour définir les masses volumiques de la formule

précédente.
Pair = 1.183g/¢, pue = 0.164g/¢

Donc :

10g
1.183g/¢ —0.164 g/¢

Vmin =

Vinin = 9.81 /4

3. On peut trouver la masse d’air qui correspond & 1¢ pour 1bar et 373K en répétant les

étapes de la question 1. La masse volumique dans ces conditions est alors :
Pair(37T3K) = 0.929g/¢

et

mMm

Vmin air 373K) =
( ) Pair — pair(373 K)

] Vinin air (373 K) = 39.375\

PrROBLEME III CYCLE THERMODYNAMIQUE

Pour simplifier les calculs, il suffit de remarquer que pg = 0.5p4 et que Ty = %TC.



p|bar] TIK] VIL]
Al pa=1 Ty = 300 Vy =2 — 1
Bl pp=05 |Tg="Ta=300Vp="00a — sltla — oy, — 2
Clpc =ps =05 T =200 Vo = M08 — 2V = §
D| pp=pa=1|Tp=Tc =200 Vp="Me 2y, —2

Les diagrammes p—V', p—T et T-V sont explicités ci-dessous en partant de I’équation des gaz

parfaits :

Pour un diagramme p-V, les isothermes (71" constante) sont de la forme

p:

ce qui correspond & des hyperboles.
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FIG. 1. Diagramme montrant la pression en fonction du volume pour ce cycle. Les lignes rouges sont des

isothermes & 200 K et & 300 K.

Pour un diagramme p-T', les isochores (V' constante) sont de la forme

ce qui donne des droites.

p = const - T,
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FIG. 2. Diagramme montrant la pression en fonction de la température pour le cycle étudié ici. Les

lignes rouges sont des isochores.

Pour un diagramme T-V/, les isobares (p constante) sont données par

T:%V:const-v

et prennent aussi la forme des droites.

350

K)

< 300 i

250

Temperature

200 T R— i

C
150 /

0.6 0.8 1.0 1.2 1.4 1.6 1.8 20 22x10°
Volume (m?)

FIG. 3. Diagramme montrant la temperature en fonction du volume pour le cycle étudié ici. Les lignes

rouges sont des isobares & 1 bar et a4 0.5 bar.

PrROBLEME IV  FONCTIONS D’ETAT 7

Le travail effectué par ou sur un gaz parfait peut s’exprimer comme : W = —pAV =
transformation isobare , W = nRT ln% = transformation isotherme et W = 0 = pour une
transformation isochore. L’échange de chaleur et la variation de 1’énergie interne sont donnés
par AU = %nR(T ¢ —T;) (pour un gaz parfait monoatomique, donc AU = 0 = transformation
isotherme) et AU =W + Q.

On a donc :



e A —B:
Wap =0 (transformation isochore)

Afin de calculer la variation de I’énergie interne, on doit d’abord connaitre quelle est la
variation de température. Puisque pV = nRT est linéaire, augmenter p d’un facteur 10
nous donne une variation de T de Ty = 373 K a Ty = 3730 K. Alors Tg — Th = 3357 K.
Alors,

3
AUpp = §nR -3357K

De nouveau, utiliser pV = nRT pour les points A ou B nous donne nR = 2.68 x 1076

JK1
3
AUnp = 7 - 2.68 x 1070 JK - 3357K = 1.35 x 1072 J
Maintenant, il est possible d’évaluer I’échange de chaleur. Puisque W = 0,

Qap = AUpp = 1.35 x 1072J

@ > 0 signifie que le systéme (gaz parfait) a assimilé de la chaleur pendant la transforma-

tion.
e B—C:

AUpc =0 (transformation isotherme)

1%
Wpe = nRTgIn —2 = —9.16 x 1073 J
Vo

Qpc = —Wge =9.16 x 1073

Puisque Q > 0 et W < 0, on voit que le systéme a absorbé de la chaleur et a fourni du

travail dans cette transformation.

e C — D: C’est une transformation isobare, donc pc = pp. En utilisant pV = nRT au

point C, on trouve pc = 4.00 x 10% Pa = pp.

Wep = —pcAVep = —4.00 x 10° Pa - (—1.5 x 107 °m?) = 6.00 x 1073 J



_ppVp  4.00x 10°Pa-1 x 1070 m?

— =14925K
nR 2.68 x 106 JK!

Tp

3 3
AUcp = 5nR(TD —Tc) = 5268 1070 JK1 - (1492.5 K — 3730 K) = —9.00 x 1073 J
Qcp = AUcp — Wep = —9.00 x 10737 — 6.000 x 1073J = —15.00 x 1073 J

Si quelqu’un veut fermer le cycle thermodynamique, il doit considérer une transformation

isochore de D a A (élément supplémentaire et pas mentionné aux questions).
e D— A

Wpa =0 (transformation isochore)
3 3
AUpp = 5nR(TA —Tp) = 52:68 x 1070 JK™1 . (373K — 1492.5K) = —4.50 x 1072 J

Qpa = AUpa — Wpa = —4.50 x 1073 ]

En résumant les résultats dans un tableau :

A—-B|B-—=C C—D |D—A
AU |13.50mJ 0 —9.00mJ |—4.50mJ

W 0 —-9.16 mJ| 6.00mJ 0

Q [13.50mJ| 9.16 mJ |—-15.00mJ|—4.50mJ

AUtotal =0
Wiotal = —3.16 mJ
Qtotal = 3.16mJ
Wiotal +Qtotal = —3.16mJ + 3.16 mJ = 0 = AUistal
Les points de départ et d’arrivée sont les mémes dans un cycle. L’énergie interne ne dépend
pas de chemin (définition d’une équation d’état), sa variation est donc nulle pour chaque cycle.

Pour un gaz parfait les températures initiale et finale sont également identiques. De plus, pour

chaque cycle, le gaz parfait absorbe 3.16 mJ sous forme de chaleur et le transforme en travail.

En ajoutant le point C’; on a :



B C|C=C

AU |22.5mJ|—22.5mJ

W |-15mJ 0

Q [37.5mJ|—22.5mJ

La variation de I’énergie interne de B & C sera nulle indépendamment du chemin parcouru
car ces points appartiennent a la méme courbe isotherme. Cependant, si ’'on compare le travail
effectué de B & C en passant par C’ avec celui effectué en passant par l'isotherme (calcul préce-
dent), on remarque une différence de —5.84mJ. La chaleur échangée montre une différence de
5.84mJ, comme on peut le prédire. Nous avons les mémes points de départ et d’arrivée qu’avant
mais avec un chemin différent, le travail et la chaleur se comportent différemment. Avec cela,

nous pouvons donc conclure que @) et W ne sont pas des fonctions d’état.



PROBLEME V. = TRANSFORMATION D’UN GAZ PARFAIT

On suppose que les transformations sont quasi-statiques, c¢’est-a-dire qu’on les effectue suff-
isamment lentement pour que la pression & 'intérieur du piston s’égalise avec la pression externe
a chaque instant. Pour calculer le travail regu par le piston le long des trois chemins proposés, il

suffit d’intégrer 'expression 0W = —pdV dans le diagramme (p,V) en suivant les chemins.

e A—B:

v
Wag = nRTx In A
VB

. . v, . .
En utilisant le fait que 3£ = g—i (puisque pV = cste), on obtient:

Wap = nRTy In 28 — 4014.3]
PA

e A—D—B : La compression ADB se compose de la transformation isochore AD dont le

travail est nul (puisque V' = cste), suivie de la compression isobare DB. On obtient donc:

Waps = Wps = —pa(VB — Va)
En utilisant les faits que Th = Tp et VA = nRTA /pa, on trouve:

Waps = —nRT, <1 _ ZB) — 9976.8]
A

¢ A—C—B : La compression ACB est la succession d’une transformation isobare (AC)

et d’une transformation isochore (CB). Ainsi :

Wacs = Wac = —pa(VB — Vo) = —nRTx (Z;A — 1> =19954J]
B

On constate que le travail regu par le systéme est différent le long des trois chemins. Le

travail n’est donc pas une fonction d’état.



10

PROBLEME VI VARIATION DE L’ENERGIE INTERNE APRES MELANGE DE DEUX GAZ PARFAITS

1. L’énergie interne de l’ensemble ne varie pas car le reservoir est rigide (W = 0) et la

transformation est adiabatique (Q = 0).

2. Sachant que I'énergie interne du systéme ne varie pas, ses valeurs avant et aprés la mise

en communication des deux compartiments doivent étre identiques:
nic,T; + noc, Ty = (1 + na)e, Ty,

ou T; dénote la température de chaque gaz initialement et T la température de I’esemble

finalement. On en déduit Ty = T; : la température des gaz ne varie pas.

3. A I'état final, la loi des gaz parfaits donne :

Ty RTf

pbr= v

ouny =mny +mng, Ty =T; et Vy = 2V. Donc, en se référant a I’état initial :

ni R’Tl TLQR,_E

1% T 1% :p1+p2

Pr= 2 2

ps = L.5bar




