
Physique II – Thermodynamique

Solutions 6

Problème I Pompe à chaleur

Solution alternative 1:

On sait que les machines de Carnot et les pompes à chaleurs idéales ont les rendements suivants,

en considérant W>0, le travail échangé entre les deux systèmes:
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Nous pouvons donc réécrire W = W comme:
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Supérieure à 1 car on sait que T+
1 > T+

2 , nous savons donc également que |Q+
2 | > |Q+

1 |.

Solution alternative 2:

Puisque la machine thermique et la pompe à chaleur opère des cycles réversibles de Carnot,

on peut écrire:

∆U = 0 ∆S = 0
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La convention des signes choisie est celle du cours.

D’où :

(1) |Q+
1 | − |Q−

1 | − |W | = 0
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machine thermique

(3) |Q−
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2 | = 0

(4)
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 pompe à chaleur

En additionnant (1) et (3) :
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2 | = 0

En substituant (2) et (4) dans (5) :
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|Q+
2 | > |Q+

1 | est vraie car T+
1 > T+

2 > T−. Ce qui veut dire que la chaleur fournie à la source

chaude à la température T+
2 par la pompe à chaleur est plus grande que la chaleur retirée par le

moteur thermique à la source chaude T+
1 .
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Problème II Cycle d’Otto

1.

2. Sur les deux adiabatique AB et CD, aucune chaleur n’est échangée par définition. Le

mélange reçoit de la chaleur (Qc > 0 ) au cours de l’explosion (portion BC), et perd de

la chaleur (Qf < 0) lors de la détente isochore (portion DA). Sur un cycle, du travail est

fourni Wtotal < 0(le cycle est parcouru dans le sens horaire; c’est un cycle moteur) et il

résulte d’un travail WAB > 0 fourni au gaz au cours de sa compression entre A et B, et

d’un travail WCD < 0 que génère le gaz entre C et D. Le bilan thermique sur un cycle est

le suivant :

∆U = WAB +Qc +WCD +Qf = 0

Ce qui donne:

WAB +WCD = −(Qc +Qf )

3. Au cours des transformations isochores, les quantités de chaleur échangées sont égales à

la variation d’énergie interne du gaz, soient :

Qc = ∆UBC = Cv(TC − TB)

et :

Qf = ∆UDA = Cv(TA − TD)
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L’efficacité η de ce moteur thermique est donnée par :

η =
|W |
Qc

=
Qc +Qf

Qc
= 1 +

Qf

Qc
= 1 +

TA − TD

TC − TB

4. Puisque les transformations AB et CD sont deux adiabatiques, et en considérant que le

mélange air/carburant est un mélange de gaz parfaits, on a :

TA

TB
=

(
VB

VA

)γ−1

⇔ TB = TA

(
VA

VB

)γ−1

= TAα
γ−1

et :

TC

TD
=

(
VD

VC

)γ−1

⇔ TD = TC

(
VC

VD

)γ−1
VC=VB ,VD=VA= TCα

−(γ−1)

En injectant ces expressions dans l’expression de l’efficacité, on obtient:

η = 1 +
TA − TCα

−(γ−1)

TC − TAαγ−1
= 1− TA − TCα

−(γ−1)

TAαγ−1 − TC

= 1− TA − TCα
−(γ−1)

αγ−1
(
TA − TCα−(γ−1)

) = 1− 1

αγ−1
= 58.5%

5. L’efficacité du moteur de Carnot idéal de ce cycle fonctionnant entre les températures TA

et TC vaut :

ηc = 1− TC

TA
= 76%

L’efficacité du cycle d’Otto par rapport à celle du moteur de Carnot idéal vaut donc:

r =
η

ηc
= 77%
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Problème III Cycle à l’échelle

1. Pour la table p, V, T, l’on démarre avec le tableau suivant, en recopiant les données de

l’énoncé :

état p V T

1 p0 V0 T0

2

3 0.4 p0 2V0

4

On peut ensuite remplir le tableau dans l’ordre suivant (d’autres ordres sont possibles):

• T3: par pV = nRT , T3 = T1
p3V3

p1V1
= 0.8 T0

• p2: isobare 1 → 2, p2 = p1 = p0

• V4: isochore 4 → 1, V4 = V1 = V0

• T4: isotherme 3 → 4, T4 = T3 = 0.8 T0

• p4: par pV = nRT , p4 = p1
T4V1
T1V4

= 0.8 p0

• V2: abaibatique 2 → 3, donc p2V
γ
2 = p3V

γ
3 ⇔ V2 = V3

(
p3
p2

)1/γ
= 2

(
2
5

)1/γ
V0

• T2: par pV = nRT , T2 = T1
p2V2

p1V1
= 2

(
2
5

)1/γ
T0

Ce qui nous donne le tableau final suivant:

état p V T

1 p0 V0 T0

2 p0 2
(
2
5

)1/γ
V0 2

(
2
5

)1/γ
T0

3 0.4 p0 2V0 0.8 T0

4 0.8 p0 V0 0.8 T0
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Le cycle à l’échelle nous donne donc (on sait que le gaz est monoatomique, donc γ = 5
3):
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FIG. 1. Cycle thermodynamique dans le plan pV .

2. On sait que ∆U = nCV ∆T pour toutes les transformations, ce qui est équivalent à

la chaleur nécéssaire lors d’une transformation isochore. Nous savons également que la chaleur

est nulle lors d’une transformation adiabatique. Et que la chaleur est égale à nCp∆T lors d’une

transformation isobare. Dans le cas d’ une isotherme, on peut calculer W = −
∫
pdV et comme

on sait que ∆U = Q+W et ∆Uisotherme = 0, alors Qisotherme = −Wisotherme.

transition type ∆U Q

1 → 2 isobare nCV

(
2
(
2
5

)1/γ − 1
)

nCp

(
2
(
2
5

)1/γ − 1
)

2 → 3 adiabatique nCV

(
0.8− 2

(
2
5

)1/γ)
0

3 → 4 isotherme 0 0.8 nRT0 ln (0.5)

4 → 1 isochore 0.2 nCV T0 0.2 nCV T0

3. ∆U1→3 = ∆U1→2 + ∆U2→3 = nCV T0(0.8 − 1) = −0.2 nCV T0. La différence d’énergie

interne est l’opposé de ∆U4→1 mais aussi de Q4→1, et cela n’est pas un hasard. Il est possible de

décomposer chaque transformation (1 → 3 dans ce cas) en une transformation isochore (1 → 4) et

une transformation isotherme (4 → 3). Cela est pariculièrement intéressant car l’énergie interne

est une fonction d’état, ainsi, ne nous prenons pas la tête et calculons toujours le chemin le plus

simple. Lors d’une transformation isotherme, nous savons que l’énergie interne ne change pas. De

ce fait, il suffit de calculer le ∆U d’une isochore jusqu’à la température d’intéret. Nous pourrions

choisir une autre transformation qu’isochore, mais là encore, choississons la plus simple. Nous

savons que lors d’une transformation ischore, le travail est nul. Nous ne devons donc calculer plus
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que la chaleur nécéssaire pour se déplacer à la température désirée sur une isochore (nCV ∆T ).

Cela explique donc pourquoi ∆U = nCV ∆T pour toutes les transformations.

Problème IV Centrale nucléaire (adapté de l’examen 2013, autre professeur)

1. La turbine est une machine thermique qui produit du travail à partir de la chaleur qu’elle

reçoit de la source chaude. On a donc : Qc > 0 et Qf < 0.

2. (a) Puisque la variation d’énergie interne de la turbine au cours d’un cycle est nulle, on

doit avoir : W +Qc +Qf = 0, où W < 0 est le travail fourni par la turbine au cours

d’un cycle. On en déduit :

p =
Wext

τ
=

−W

τ
=

Qc +Qf

τ
.

(b)

Qc

Tc
+

Qf

Tf
= 0.

(c) Le rendement maximum correspond au cas où la turbine se comporterait comme une

machine idéale de Carnot :

ηm = ηCarnot =
−W

Qc
=

Qc +Qf

Qc
= 1 +

Qf

Qc
.

(d)

ηm = ηCarnot =
−W

Qc
= 1−

Tf

Tc
.

3. La définition du rendement ne change pas, elle correspond toujours au rapport de la

quantité que l’on cherche à obtenir sur la quantité que l’on fournit à la machine :

ηr =
−W

Qr
c

= 1 +
Qr

f

Qr
c

,

où l’on a de nouveau utilisé le fait que la variation d’énergie interne de la turbine est nulle

au cours d’un cycle.
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4. La centrale rejette la quantité de chaleur −Qr
f dans la rivière pendant la durée τ . La

masse d’eau m qui reçoit cette chaleur vaut : m = ρDτ . Sachant que sa température

augmente de ∆T , on trouve :

mC∆T = −Qr
f = ρDτC∆T.

5. Par définition du rendement,

ηr =
−W

Qr
c

=
W

W +Qr
f

,

avec W +Qr
c +Qr

f = 0 et p = −W
τ .

On en déduit

ηr =
−pτ

−pτ +Qr
f

et donc

ηr(Q
r
f − pτ) = −pτ

et enfin

p = −
ηrQ

r
f

(1− ηr)τ
=

ηrρDC∆T

1− ηr
.

L’application numérique donne :

ηm = 1−
Tf

Tc
= 1− 300

900
=

2

3
,

ηr = ϵηm = 0.5 · 2
3
=

1

3
,

Qr
f = −ρCDτ∆T = (−1000 · 4000 · 400 · 1.5) J = −2.4 · 109 J = −2.4 GJ.

p = −
ηrQ

r
f

(1− ηr)τ
=

(
1
3 · 2.4 · 109

1− 1
3

)
W = 1.2 · 109 W = 1.2 GW.

Ces valeurs ne correspondent pas à la réalité.
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