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Problème I Une question de chemin(s)

1.

∆U = W +Q

∆UAC = ∆UABC = ∆UADC

∆UABC = WABC +QABC

QABC = ∆UAC −WABC = 800 J− (−500 J) = 1300 J

2.

W = −
∫

p dV

Isochore :

dV = 0

W = 0

∆U = Q

Isobare :

p = cst

W = −p

∫
dV = −p∆V

∆U = −p∆V +Q

WABC = WAB +

isochore=0︷ ︸︸ ︷
WBC = WAB = −500 J

WCD = pC(VC − VD) = pC(VB − VA) =
1

5
pA(VB − VA) =

WBA

5
= −WAB

5

WCD = 100 J
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3. Sur le cycle, ∆U = 0 car l’énergie interne est une fonction d’état, d’oú ∆UCDA = −∆UABC.

De plus, QCDA = ∆UCDA − WCDA. On trouve donc QCDA = −∆UABC − WCDA =

−800 J− 100 J = −900 J.

4. QCD = ∆UCD − WCD = (∆UCDA − ∆UDA) − WCD = (−∆UABC − ∆UDA) − WCD =

(−800 J− 500 J)− 100 J = −1400 J

Problème II Degrés de liberté

• L’atome de He : 3 degrés de liberté de translation

• La molécule de HF : 3 translations + 2 rotations (linéaire) + (3N−5 = 1) mode vibrationel

= 7 degrés de liberté (3 + 2 + 2 · 1).

• La molécule de CO2 : C’est une molécule linéaire, donc 3 translations + 2 rotations +

(3N − 5 = 4) modes vibrationels = 13 degrés de liberté (3 + 2 + 2 · 4).

• Le groupe heme B de l’hémoglobine, C34H32O4N4Fe : 3 translations + 3 rotations +

(3N − 6 = 3 · 75− 6 = 219) modes vibrationels = 444 degrés de liberté (3 + 3 + 2 · 219).

Problème III Détente d’un gaz

Par définition :

δW = −pext dV

1. Si la détente est réversible :

pext = psystème =
nRT

V

car le gaz parfait s’équilibre tout au long de la transformation avec l’environnement ex-

térieur. D’où :

δW1 = −nRT

V
dV =⇒ W1 = −

V2∫
V1

nRT

V
dV
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W1 = −nRT ln
V2

V1
= −nRT ln

(
nRT
p2

nRT
p1

)

W1 = nRT ln

(
p2
p1

)

2. Le système ressent tout au long de la transformation la pression p2. C’est un cas ir-

réversible :

δW2 = −p2dV =⇒ W2 = −p2(V2 − V1) = −nRTp2

(
1

p2
− 1

p1

)
= −nRT

(
1− p2

p1

)

W2 = nRT

(
p2
p1

− 1

)

3. Les deux transformations sont complètement séparées l’une de l’autre car on laisse le

système de s’équilibrer entre ces deux :

W3 = −2p2

(
nRT

2p2
− nRT

p1

)
−��p2

(
nRT

��p2
− nRT

2��p2

)
= −�2��p2nRT

(
p1 − 2p2

�2p1��p2

)
− nRT

(
1− 1

2

)
= nRT

(
2p2
p1

− 1− 1

2

)

W3 = nRT

(
2p2
p1

− 3

2

)

4.

W1 = −2723.26 J W2 = −1652.55 J W3 = −2065.68 J

Plus la détente est irréversible, plus des pertes énergétiques apparaissent qui impliquent

un travail fourni de plus en plus réduit. Si on divise la détente irréversible à plusieurs

étapes aussi irréversibles le travail fourni augmente. Bien-sûr, ces derniers doivent être

distinctes qui veut dire laisser le gaz de s’équilibrer avec la pression finale de chaque étape.

Note: If faut bien noter que les états d’équilibre sont : (p1, T, V1),(2p2, T, V
′
2 ) et (p2, T, V2).

On ne peut appliquer la loi de gaz parfaits que pour ces états.
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Problème IV Capacité calorifique

1. Chaque degré de liberté de translation et de rotation contribue R
2 à la capacité thermique

molaire à volume constant, CV,m. Chaque degré de liberté vibrationnel contribue R car

ils impliquent à la fois les énergies cinétique et potentielle liées à la vibration. A des

températures faibles, les degrés de liberté de rotation et de vibration sont dits inactifs, ne

contribuant pas à CV,m, ce qui nous donne CV,m = 3R
2 pour des gaz parfaits en général.

Quand la température se situe entre 102 et 103 K, les modes de rotation commencent

à s’activer. Pour des molécules diatomiques comme H2, CV,m devient 5R
2 . A de très

hautes températures, T > 103 K, les modes vibrationnels commencent aussi à contribuer

à CV,m. Puisque H2 n’a qu’un mode vibrationnel, cela ajoute R à CV,m, qui équivaut donc

à CV,m = 7R
2 .

2. Puisque l’argon est un gaz mono-atomique, il ne possède que des degrés de libertés de

translation. Ainsi, sa capacité thermique molaire à volume constant s’exprime simplement

comme CV,m = 3R
2 et reste constante pour toute température. NO2 est une molécule

coudée, alors puisqu’elle a 3 translations + 3 rotations + (3N − 6 = 3) vibrations, la

courbe aura la même forme que pour H2, mais les différentes valeurs de CV,m se situeront

à 3R
2 , 3R et 6R.

Problème V Cycles et efficacités

1. L’efficacité de la machine est :

ηirrev =
|W |
|Qc|

=
45J

200J
= 0.225

2. L’efficacité d’une machine idéale qui travaille entre les mêmes températures de la machine

réelle (efficacité de Carnot) est :

ηrev = 1−
Tf

Tc
= 1− 290K

380K
= 0.237

Le travail qui serait exercé par la machine idéale est :

|Wrev| = ηrev|Qc| = 0.237 · 200 = 47.4 J.

Le travail perdu est donc (47.4− 45) J = 2.4 J par cycle.
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Problème VI Cycle de Stirling

1. Le cycle de Stirling comprend 4 phases : une détente isotherme sur AB, un refroidissement

isochore sur BC, une compression isotherme sur CD, et enfin un chauffage isochore sur

DA.

2. Au cours d’une détente isotherme, la quantité de chaleur reçue par le système est égale au

travail mécanique donné au cours de cette même phase (car ∆U = 0) :

QAB = −WAB =

∫ B

A
pdV = nRTc ln

VB

VA
> 0

Le signe est positif, car la chaleur est reçue par le système.

QCD = nRTf ln
VD

VC
< 0

À noter que cette quantité est négative (VD < VC), donc la chaleur sort du système.

Au cours du chauffage isochore, le système a reçu l’énergie suivante sous forme de chaleur :

QDA = CV ∆T = CV (Tc − Tf ) > 0

où CV est la capacitè calorifique à volume constant du gaz considéré. Le signe est à

nouveau positif. A l’opposé, le système cède QBC lors du refroidissement isochore :

QBC = CV ∆T = CV (Tf − Tc) < 0
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La quantité totale d’énergie calorifique reçue par le système (somme des chaleurs positives)

est donc :

Qtot = CV (Tc − Tf ) + nRTc ln
VB

VA

3. Sur le cycle, la variation de l’énergie interne est nulle et on a donc ∆Ucycle = Wcycle +

Qcycle = 0, et le travail net fourni par le cycle est donné par

Wcycle = −Qcycle = − (QAB +QBC +QCD +QDA) = −nR(Tc − Tf ) ln
VB

VA
< 0

4. L’efficacité d’un moteur thermique est définie comme étant le rapport

η =

∣∣∣∣énergie obtenue sous la forme désirée
énergie donnée à la machine

∣∣∣∣
qui est, dans notre cas :

η =
nR(Tc − Tf ) ln

VB
VA

CV (Tc − Tf ) + nRTc ln
VB
VA

=

(
1− Tf

Tc

)
1 +

CV (Tc−Tf)
nRTc ln

VB
VA

Pour un cycle de Carnot fonctionnant à la même température, l’efficacité est :

ηCarnot = 1−
Tf

Tc

Comme CV (Tc−Tf)
nRTc ln

VB
VA

> 0, nous avons η < ηCarnot. L’efficacité du cycle de Carnot est donc

supérieur à celui du cycle de Stirling.

5. Pour que l’efficacité du cycle de Stirling soit aussi bonne que celle du cycle de Carnot,

il faudrait que toute l’énergie nécessaire au réchauffement isochore soit récupérée lors

du refroidissement isochore. En effet, à ce moment-là, le terme CV (Tc − Tf ) tombe, et

l’expression de l’efficacité devient :

η =
R(Tc − Tf ) ln

VB
VA

RTc ln
VB
VA

ou, après simplification :

η =
Tc − Tf

Tc
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qui est bien l’efficacité d’un cycle de Carnot. Pour se rapprocher de l’efficacité du cycle

de Carnot, il est possible de rajouter sur certains moteurs Stirling un régénérateur qui

va récupérer la chaleur lors du refroidissement du fluide et la restituer à celui-ci lorsqu’il

doit se réchauffer. Un tel accumulateur de chaleur peut être réalisé à partir d’un bon

conducteur thermique.


