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Problème I L’équation d’état pour un gaz parfait est une fonction d’état

On définit

pV = nRT

comme la fonction d’état pour un gaz parfait.

1. Le pression s’écrit p(V, T ) = nRT
V .

La dérivée partielle de la pression par rapport à la température est

(
∂p

∂T

)
V

=
nR

V

et en la dérivant suivant le volume on obtient

∂2p

∂V ∂T
= − nR

V 2
.

Si on change l’ordre de dérivation :

(
∂p

∂V

)
T

= −nRT

V 2

∂2p

∂T ∂V
= − nR

V 2
.

Ainsi, le théorème de Schwartz est vérifié puisque les dérivées partielles secondes sont

égales et de cette façon la pression d’un gaz parfait est une fonction d’état.
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2. La variation de la pression entre l’état initial et final s’écrit:

∆p = pf (Vf , Tf )− pi(Vi, Ti) =
nRTf

Vf
− nRTi

Vi
= nR(

Tf

Vf
− Ti

Vi
) = 247 757.2Pa

pf = 249 420.0Pa

3. Une variation infinitésimale de la pression s’écrit :

dp =

(
∂p

∂T

)
V

dT +

(
∂p

∂V

)
T

dV

Si on fait varier le volume de Vi à Vf en gardant la température constante et égale à Ti, et

ensuite la température de Ti à Tf en gardant le volume constant et égale à Vf (chemin 1),

la variation de la pression est :

∆p1 =

∫
Vi→Vf ;T=Ti

dp +

∫
Ti→Tf ;V=Vf

dp

=

∫ Vf

Vi

(
∂p

∂V

)
T

dV +
��������∫ Ti

Ti

(
∂p

∂T

)
V

dT +
���������
∫ Vf

Vf

(
∂p

∂V

)
T

dV +

∫ Tf

Ti

(
∂p

∂T

)
V

dT

=

∫ Vf

Vi

−nRTi

V 2
dV +

∫ Tf

Ti

nR

Vf
dT

= nR

[
Ti

V

]Vf

Vi

+nR

[
T

Vf

]Tf

Ti

= nR

[
�
�
�Ti

Vf
− Ti

Vi
+

Tf

Vf �
�
�− Ti

Vf

]

= nR

[
Tf

Vf
− Ti

Vi

]
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Si on poursuit un deuxième chemin pour lequel, initialement, le volume est maintenu

constant à Vi et la température change de Ti à Tf et puis la variation du volume de Vi à

Vf se produit en conservant Tf :

∆p2 =

∫
Ti→Tf ;V=Vi

dp +

∫
Vi→Vf ;T=Tf

dp

=
���������∫ Vi

Vi

(
∂p

∂V

)
T

dV +

∫ Tf

Ti

(
∂p

∂T

)
V

dT +

∫ Vf

Vi

(
∂p

∂V

)
T

dV +
���������
∫ Tf

Tf

(
∂p

∂T

)
V

dT

=

∫ Tf

Ti

nR

Vi
dT +

∫ Vf

Vi

−nRTf

V 2
dV

= nR

[
T

Vi

]Tf

Ti

+nR

[
Tf

V

]Vf

Vi

= nR

[
�
�
�Tf

Vi
− Ti

Vi
+

Tf

Vf �
�
�−
Tf

Vi

]

= nR

[
Tf

Vf
− Ti

Vi

]

On constate que ∆p1 = ∆p2 = ∆p. Ce fait affirme que la fonction p(T, V ) est une

fonction d’état et qu’une variation associée ne dépend qu’aux états initial et final (l’ordre

d’intégration n’a aucun effet).
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Problème II Loi de Boyle

1.

h =
p

ρ ∗ g

h = 760 mm

2.

760mm = 29.125x

x = 26.09 mm

Comparable à une inch impériale contemporaine.

3.

heau = hHg ∗
ρHg

ρeau

heau = 13.5 mm par mm de Hg

Problème III Différentielles exactes

La forme générale d’une différentielle totale est

dF (x, y) = G(x, y)dx+H(x, y)dy.

Si F est une différentielle totale, la règle de Schwarz doit être satisfaite, donc(∂G
∂y

)
x
=

(∂H
∂x

)
y
,

ce qui implique que ( ∂2F

∂x∂y

)
=

( ∂2F

∂y∂x

)
,
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puisque dans ce cas

G =
(∂F
∂x

)
y

et

H =
(∂F
∂y

)
x
.

1.

G(x, y) = −y, H(x, y) = x.

Les dérivées partielles secondes croisées sont :(∂G
∂y

)
x
= −1,

(∂H
∂x

)
y
= 1.

Ces dernières ne sont pas égales, ainsi la forme différentielle dF1 n’est pas exacte.

2.

G(x, y) = − y

x2
, H(x, y) =

1

x
.

Les dérivées partielles secondes croisées sont :(∂G
∂y

)
x
= − 1

x2
,

(∂H
∂x

)
y
= − 1

x2
.

Ces dernières sont égales, ainsi la forme différentielle dF2 est exacte.

3.

G(x, y) = −e2x−3y

3
, H(x, y) =

e2x−3y

2
.

Les dérivées partielles secondes croisées sont :(∂G
∂y

)
x
= e2x−3y,

(∂H
∂x

)
y
= e2x−3y.

Ces dernières sont égales, ainsi la forme différentielle dF3 est exacte.

4.

G(x, y) =
ln(xy)

y
, H(x, y) =

x

y2
.

Les dérivées partielles secondes croisées sont :(∂G
∂y

)
x
=

�x
�x�y �

y − ln(xy) · 1
y2

=
1− ln(xy)

y2
,

(∂H
∂x

)
y
=

1

y2
.

Ces dernières ne sont pas égales, ainsi la forme différentielle dF4 n’est pas exacte.
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Problème IV Réaction emprisonnée dans un réacteur

1. Puisque la réaction n’est pas totale et dépend de la température pour qu’on puisse prouver

qu’elle a eu lieu, on doit dans un premier temps, faire le bilan de matière.

[mol] 2A(g) −−⇀↽−− 2B(g) + C(g)

Quantité initiale 0.1 0 0

Changement −2x(T ) 2x(T ) x(T )

Quantité finale 0.1− 2x(T ) 2x(T ) x(T )

Par ce dernier, le nombre de mols total à chaque température n(T ) se trouve par l’addition

des nombres de mols finaux du réactif A et des produits B et C. Il est exprimé par :

n(T ) = 0.1mol + x(T )

où x(T ) est un nombre positif (avancement de la réaction). Donc, l’existence de la réaction

est obligatoirement suivie par une augmentation du nombre de mols total. La loi des gaz

parfaits pour l’état du système à 250 ◦C donne la quantité de gaz associée :

n(250◦C) =
pV

RT
=

3.3 atm · 1.5 ℓ
0.082 ℓ atmK−1mol−1 · 523K

= 0.115mol.

Alors, à 250 ◦C la réaction existe.

2. À 250 ◦C :

x(250 ◦C) = n(250 ◦C)− 0.1mol = 0.015mol

et donc :

nA(250
◦C) = (0.1− 2 · 0.015) mol = 0.07mol.

La fraction de A qui s’est décomposée est donnée par la quantité consommée par rapport

à la quantité initiale :

nA(20
◦C)− nA(250

◦C)

nA(20◦C)
= 30%
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3. Par le tableau du bilan de matière et la loi des gaz parfaits a 250 ◦C, on a :

pA(250
◦C) = 2.00 atm pB(250

◦C) = 0.86 atm pC(250
◦C) = 0.43 atm

4. nA(800
◦C) = 0mol qui donne x(800 ◦C) = 0.05mol. Ainsi, n(800 ◦C) = 0.15mol. Par la

loi des gaz parfaits :

p(800 ◦C) = 8.80 atm

5. À 1000 ◦C, puisque A est totalement décomposé, la réaction n’a plus lieu et le nombre de

mols est identique à celui à 800 ◦C. Ainsi, par la loi des gaz parfaits en considérant cette

nouvelle température :

p(1000 ◦C) = 10.45 atm

Problème V Calcul de la pression du laboratoire

Après le remplissage de l’ampoule, la loi des gaz parfaits donne :

pV = ninRTin

Et suite à l’échappement d’une quantité de Cl2 dans le thermostat, pour ce nouveau état, la loi

des gaz parfaits dicte :

pV = nfRTf

En sachant, de plus, que

Tf = Tin + 30K

On est capable de résoudre le système de trois équations avec

nin =
min

MCl2

=
7.1 g

71.0 g/mol
= 0.1mol, nf =

mf

MCl2

=
6.4 g

71.0 g/mol
= 0.09mol,

On trouve

Tin = 270K et p = 1.007 atm
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Problème VI Poussée d’Archimède I

1. En prenant un référentielle vertical pointant vers le haut avec l’origine à la surface de

l’eau (fluide incompressible), on a que la pression hydrostatique s’exprime comme :

p = ρeaugz.

où z est la valeur absolue de la coordonnée verticale. Par ailleurs, la force hydrostatique

associée est une force de pression et alors :

F⃗ = −pSn⃗

où p est la pression au niveau de la surface horizontale S et n⃗ le vecteur unitaire, per-

pendiculaire à la surface et orienté vers l’eau (vers l’extérieur de la surface fermée). Les

forces exercées sur la surface supérieure et inférieure de la bôıte sont donc :

Fsup = −ρeaugzπ

(
D

2

)2

, Finf = ρeaug(z + h)π

(
D

2

)2

Le bilan des forces donne :

∑
F = Fsup + Finf = ρeaug(z + h)π

(
D

2

)2

− gzπ

(
D

2

)2

= ρeaughπ

(
D

2

)2

∑
F = ρeaugVboite

ce qui est la poussée d’Archimède dans le référentiel choisi.

Note : La symétrie cylindrique de la surface latérale implique une contribution nulle au

calcul de la force de pression.

2. En considérant que la bôıte pourrait flotter on fait le bilan de forces appliquées sur elle.

Ces sont deux : son poids et la poussée d’Archimède, toutes les deux alignées à la direction

verticale. Le bilan à cette direction est :

∑
F = FGrav+FPA = ρeaugVsub−mboiteg = ρeaugVsub−ρboitegVboite = g(ρeauVsub−ρboiteVboite)

Par définition, la bôıte quand elle sera en contact avec l’eau cherchera de trouver son point

d’équilibre. Autrement dit, elle trouvera une position pour laquelle la somme de forces
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extérieures est nulle. Si elle sera totalement submergée, le volume submergé de la formule

précédente est égal à son volume complet. Ainsi :

ρboite = ρeau

Dans le cas, maintenant, où la bôıte flotte, le volume submergé est inférieur au total.

D’où :

ρboite < ρeau

Note : Si ρboite > ρeau la force totale entraine la bôıte vers des positions de plus en plus

profondes dans l’eau. Alors, en général si ρboite ≥ ρeau, la bôıte se trouve totalement dans

l’eau.

3. Généralement, quand la bôıte trouve sa position d’équilibre :

ρeauVsub − ρboiteVboite = 0

Ici, Vsub ̸= Vboite, alors :

h′ =

(
1− ρboite

ρeau

)
h

où h′ est la hauteur de la partie de la bôıte en dehors de l’eau.

La salinité de l’eau modifie sa densité. Plus l’eau est salée, plus sa densité est élevée,

et par conséquent plus la poussée d’Archimède est forte. Le cylindre qui passait d’un

point d’eau douce à un point d’eau salée verrait ainsi son volume immergé diminuer (h′

augmente).


