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PROBLEME I 1’EQUATION D’ETAT POUR UN GAZ PARFAIT EST UNE FONCTION D’ETAT

On définit

pV =nRT
comme la fonction d’état pour un gaz parfait.

1. Le pression s’écrit p(V,T) = #.

La dérivée partielle de la pression par rapport a la température est
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et en la dérivant suivant le volume on obtient
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Si on change 'ordre de dérivation :
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Ainsi, le théoreme de Schwartz est vérifié puisque les dérivées partielles secondes sont

égales et de cette facon la pression d’'un gaz parfait est une fonction d’état.



2. La variation de la pression entre 1’état initial et final s’écrit:

Ty T,
R(=+ — —) =2477572P
n (Vf Vz) a

nRTY _ nRT;

Ap = Ty) —pi(Vi, i) =

|py =249420.0Pa|

3. Une variation infinitésimale de la pression s’écrit :
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Si on fait varier le volume de V; a V; en gardant la température constante et égale a T;, et

ensuite la température de T; & Ty en gardant le volume constant et égale a Vy (chemin 1),

la variation de la pression est :
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Si on poursuit un deuxieme chemin pour lequel, initialement, le volume est maintenu
constant a V; et la température change de T; a Ty et puis la variation du volume de V; a

V¢ se produit en conservant T :
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On constate que Ap; = Apy = Ap. Ce fait affirme que la fonction p(7,V) est une
fonction d’état et qu’une variation associée ne dépend qu’aux états initial et final (I’ordre

d’intégration n’a aucun effet).



ProBLEME II Lor DE BOYLE

1.
h— p
pP*g
h = 760 mm
2.
760mm = 29.125x
x = 26.09 mm
Comparable & une inch impériale contemporaine.
3.
hean = hizg % 9
Peau

heqw = 13.5 mm par mm de Hg

PrROBLEME III DIFFERENTIELLES EXACTES

La forme générale d’une différentielle totale est
dF(z,y) = G(z,y)dx + H(z,y)dy.
Si F' est une différentielle totale, la regle de Schwarz doit étre satisfaite, donc
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ce qui implique que
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puisque dans ce cas
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Les dérivées partielles secondes croisées sont :
(29 o (9
0y /= oxr /y
Ces dernieres ne sont pas égales, ainsi la forme différentielle dF} n’est pas exacte.
2.
Clay)=-2,  Hiy) =
T,y) = —= T,y) = —.
) y x2 ) ) y T
Les dérivées partielles secondes croisées sont :
<8G> 1 (8H ) 1
oylz  x?’ or /)y 2’
Ces dernieres sont égales, ainsi la forme différentielle dF5 est exacte.
3.
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Les dérivées partielles secondes croisées sont :
(%) _ 23y (CLH) _ 203y,
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Ces dernieres sont égales, ainsi la forme différentielle dF3 est exacte.
4.
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Les dérivées partielles secondes croisées sont :
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Ces dernieres ne sont pas égales, ainsi la forme différentielle dFy n’est pas exacte.



PrROBLEME IV  REACTION EMPRISONNEE DANS UN REACTEUR

1. Puisque la réaction n’est pas totale et dépend de la température pour qu’on puisse prouver

qu’elle a eu lieu, on doit dans un premier temps, faire le bilan de matiere.

[mol] 2A(g) = 2B(g) + C(g)
Quantité initiale 0.1 0 0

Changement —2x(T) 2¢(T) «(T)

Quantité finale {0.1 — 2z(T) 2¢(T) «(T)

Par ce dernier, le nombre de mols total & chaque température n(T") se trouve par I’addition

des nombres de mols finaux du réactif A et des produits B et C. Il est exprimé par :
n(T) = 0.1mol + z(T)

ou z(T) est un nombre positif (avancement de la réaction). Donc, 'existence de la réaction
est obligatoirement suivie par une augmentation du nombre de mols total. La loi des gaz

parfaits pour ’état du systeme a 250 °C donne la quantité de gaz associée :

o pV 3.3atm- 1.5/
n(250°C) = — = = 0.115mol.
( ) RT  0.082¢atmK-'mol ™' 523K

Alors, a 250°C la réaction existe.
2. A 250°C :
x(250°C) = n(250°C) — 0.1 mol = 0.015mol
et donc :
na(250°C) = (0.1 — 2-0.015) mol = 0.07 mol.

La fraction de A qui s’est décomposée est donnée par la quantité consommeée par rapport

a la quantité initiale :

na(20°C) — na(250°C)
na(20°C)

= 30%




3. Par le tableau du bilan de matiére et la loi des gaz parfaits a 250°C, on a :

|pA(250°C) = 2.00 atm| |pB(250°C) = 0.86 atm | po(250°C) = 0.43atm

4. na(800°C) = 0mol qui donne z(800°C) = 0.05mol. Ainsi, n(800°C) = 0.15mol. Par la

loi des gaz parfaits :

| p(800°C) = 8.80atm|

5. A 1000 °C, puisque A est totalement décomposé, la réaction n’a plus lieu et le nombre de
mols est identique a celui a 800 °C. Ainsi, par la loi des gaz parfaits en considérant cette

nouvelle température :

\p(moo °C) = 10.45 atm

PROBLEME V CALCUL DE LA PRESSION DU LABORATOIRE

Apres le remplissage de 'ampoule, la loi des gaz parfaits donne :
pV = ninRﬂn

Et suite a I’échappement d’une quantité de Cl, dans le thermostat, pour ce nouveau état, la loi

des gaz parfaits dicte :
pV = neR1T;
En sachant, de plus, que
Tt =T + 30K

On est capable de résoudre le systeme de trois équations avec

me o 6.4g
May, ~ 71.0g/mol

o mMin . 7.1g
N Mgy, ~ 71.0g/mol

= 0.09 mol,

Nin =0.1mol, nf=

On trouve

| T = 270K et p=1.007atm|




PrROBLEME VI POUSSEE D’ARCHIMEDE |

1. En prenant un référentielle vertical pointant vers le haut avec l'origine a la surface de

I'eau (fluide incompressible), on a que la pression hydrostatique s’exprime comme :

P = Peaug=-

ou z est la valeur absolue de la coordonnée verticale. Par ailleurs, la force hydrostatique

associée est une force de pression et alors :
F=—-pSn

ou p est la pression au niveau de la surface horizontale S et 7 le vecteur unitaire, per-
pendiculaire a la surface et orienté vers I'eau (vers 'extérieur de la surface fermée). Les

forces exercées sur la surface supérieure et inférieure de la boite sont donc :

D\? D\?
Fsup = —PeaudcmT™ (2) , Fis= peaug<2 + h)ﬂ' (2)

Le bilan des forces donne :

D\? D\? D\?
ZF = Fsup + Enf = peaug(z + h)7r <2> — gzm <2> = peaughﬂ'r <2>

Z F= peaugvboite

ce qui est la poussée d’Archimede dans le référentiel choisi.
Note : La symétrie cylindrique de la surface latérale implique une contribution nulle au

calcul de la force de pression.

2. En considérant que la boite pourrait flotter on fait le bilan de forces appliquées sur elle.
Ces sont deux : son poids et la poussée d’Archimede, toutes les deux alignées a la direction

verticale. Le bilan a cette direction est :

Z F = Fgravt+FpA = peaudVsub—Mboited = Peaud Vsub—Pboited Vboite = g(Peaqusub_pboiteVboite)

Par définition, la boite quand elle sera en contact avec I’eau cherchera de trouver son point

d’équilibre. Autrement dit, elle trouvera une position pour laquelle la somme de forces



extérieures est nulle. Si elle sera totalement submergée, le volume submergé de la formule

précédente est égal a son volume complet. Ainsi :

Phboite = Peau

Dans le cas, maintenant, ou la boite flotte, le volume submergé est inférieur au total.

D’ou :

Pboite < Peau

Note : Si ppoite > pPeau la force totale entraine la boite vers des positions de plus en plus
profondes dans 'eau. Alors, en général si ppoite = Peau, 1& boite se trouve totalement dans

I’eau.

. Généralement, quand la boite trouve sa position d’équilibre :

PeauVsub — Phoite Vboite = 0

ICi7 Vvsub 7é Vboitea alors :

h = (1 - pbOite) h
Peau

ot ' est la hauteur de la partie de la boite en dehors de 'eau.

La salinité de '’eau modifie sa densité. Plus 'eau est salée, plus sa densité est élevée,
et par conséquent plus la poussée d’Archimede est forte. Le cylindre qui passait d’un
point d’eau douce & un point d’eau salée verrait ainsi son volume immergé diminuer (b’

augmente).



