Physique II — Thermodynamique

Solutions 8

PrROBLEME I CARBONE

1. Le carbone sera dans la phase gazeuse si la température augmente sous pression constante.

2. A 1.0GPa et 5000 K, le carbone sera dans la phase liquide.

PROBLEME II DETENTE ET ENTROPIE INTERNE

Détente de Joule ou Gay-Loussac

1. Il n’y a pas de travail mécanique, car la pression opposée au gaz est nulle losqu’on ouvre
le robinet (enceinte sous vide, donc pas de pression : pexy = 0). Donc W = 0. Et puisque

I’enceinte est adiabatique : @ = 0.
2. AU=W+Q=0.

3. AU = Cy AT, et donc AT = 0 (on a un gaz parfait). La transformation est isotherme.

_ \%
Pf=P1vi57;-

4. Dans la détente de Gay-Lussac, le gaz est initialement intégralement dans la premiére
enceinte. Sachant que le systéme total est isolé, il ne peut pas échanger de chaleur (et
donc d’entropie) avec I'extérieur. Sa variation d’entropie au cours de la détente vaut donc
AS = St On a ainsi production d’entropie interne : la détente de Gay-Lussac est

irréversible. On constate de plus qu’il nous suffit de calculer AS pour obtenir Sjyt.

Puisque 'entropie est une variable d’état, sa variation entre deux points ne dépend pas du
chemin parcouru. Pour déterminer AS, on considére donc une transformation réversible
(c’est-a-dire sans production d’entropie interne) entre les états (p1;V1;71) et (p2; Vi +

Va;Th), avec Th et Py température et pression finales & déterminer. On notera AS™V la



variation d’entropie le long de la transformation réversible. Comme AT = 0, la transfor-

mation réversible se fait & température constante, d’ou :

5Qrev - —oWrev - pdV

d rev —
ext Ty Ty T’

avec p = p1V1/V du fait que la température est constante. On trouve AS™" en intégrant

I’expression ci-dessus :

2 Vi+Va Vi+Va
ASrev:/ dSrev:/ pdV:pl‘/l/ dl:ann <V1+‘/2>
1 v 5 Ty 4 Vi

Or, sachant que la variation d’entropie entre deux états ne dépend pas du chemin parcouru,
on a AS = AS™, et donc :

ASit = AS™ = nR1n <V1:;V2> > 0.
1

On aurait pu obtenir le méme résultat en utilisant la relation générale vue en cours pour
la variation d’entropie d’un gaz parfait entre deux états A et B :
Vi I
AS =nRIn|— ) +ncymn{ =1,
o =ttt (2 ) 4 nevtn (72
ol cym = R/(y — 1) dénote la chaleur spécifique du gaz a volume constant. On a ici
Va=WV,Vg=Vi+ Vo et Ty =T = cste, d’ou

AS = nRIn <V1+V2> > 0.
%1

5. La transformation est irréversible.

6. AS=0.23JKL

Détente de Joule-Thomson

1. Le travail regu par le gaz correspond au travail fourni par les deux pistons. Le piston dans le
compartiment amont de la paroi fournit le travail Wi = —pi AV = —p;(0—V;) = p1 V4, car
dans le compartiment amont le volume passe de V7 a4 0. Comme le volume du compartiment
aval passe de 0 a V3, le travail fourni par le piston aval est Wy = —pa AV = —po(Vo —0) =

—poVa. Le travail requ par le gaz lors de la détente de 1’état 1 a I’état 2 est donc :
W =W+ Wy =p1V1 —p2Va.
Comme la détente est adiabatique, la chaleur échangée est nulle (Q = 0) et donc

AU =W =p Vi — paVa.



2. De I’équation ci-dessus on obtient :
Uy = Uy =p1Vi —p2Vo = U + p1Vi = Uz + p2Va.

Or, la fonction enthalpie est H = U + pV, on a donc : Hy = Hy, = AH = 0.

3. Dans le cas d'un gaz parfait, la variation d’enthalpie est déterminée par AH = ncy , AT,
ot n est le nombre de moles et ¢, est la chaleur spécifique molaire & pression constante.
Ainsi, AT = 0si AH = 0. Il est ainsi possible d’observer que AU = 0 dans le cas d’un
gaz parfait. A I’aide du point 1, on obtient que p;Vi = paVs dans le cas de la détente de
Joule-Thompson. Pour un gaz réel, AH reste égal & 0 (voir point 2) mais pas forcément
AU car la relation pV = nRT n’est plus valide pour des gaz réels. L’enthalpie ne dépend

donc plus de la température uniquement.

4. Comme dans le cas de la détente de Gay-Lussac, la détente de Joule-Thomson se fait dans
une enceinte dont les parois sont isolées thermiquement. La variation d’entropie du gaz est
donc uniquement due & la création d’entropie interne. Sachant que la transformation est
isotherme (prouvé au point 3. pour un gaz parfait), on peut réutiliser le résultat obtenu
pour la détente de Gay-Lussac pour exprimer AS entre I'état initial (py; Vi;717) et I'état
final (po; Va; T1) :

AS =nRln —=.
1

Si l’on utilise la loi des gaz parfaits pour remplacer V5/V; par p1/p2, on trouve finalement :

ASiy. = AS = nRIn <pl> > 0.
D2

Remarque : La détente de Joule-Thomson peut étre reproduite en pratique en utilisant un

montage similaire a celui schématisé ci-dessous.



IP1>P2
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PrROBLEME III TRAVAIL D'UN GAZ DE VAN DER WAALS

1. Isochore : 6W = —pdV = 0 = Wisochore = 0.

2. Isobare: 6W = —pdV = W = [ —pdV. p=cte=p;. donc Wisbare = —p1(Va—V1).

3. Isotherme : W = —pdV et on peut exprimer la pression en fonction du volume :
Va
W = —/ pdV
|4
avec p = % — vz- On en déduit :
V2 RT V2 g Vo —b 11
Wi rme = — —dV —dV = —RT1 ——— .
sotherme - V —b +/V1 V2 HVI_b+(I<V1 ‘/2>

PrROBLEME IV  CyYCLE DE CARNOT ET STIRLING AVEC UN GAZ DE VAN DER WAALS

1. L’efficacité d’un cycle de Carnot réversible est Noarnot = 1 — %, indépendamment du fluide
considéré.

C’est donc la méme pour un cycle de Carnot décrit pour un gaz parfait.

2. L’énergie interne du gaz de Van der Waals ne dépend que de T et V.
Pour les deux isochores, les chaleurs échangées sont donc égales et opposées. Elles valent
Cy(T. — T}) et se compensent.

L’ensemble du cycle est donc réversible et son efficacité est maximale, c’est-a-dire

T)Stirling, VAW = 7]Carnot



Il existe une maniére plus longue de le démontrer. Il faut calculer W et @ pour chaque

étape du cycle :

B B
WAB = / _peztdv = / —pdV
A A

Pour une mole p = v~ 2

B B
av av
Wap = —RT,—— 2z
o = [ AT
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Wtot = —R(Tc — Tf) In VA ~b

Q a chaque étape du cycle : Dans tout les cas AU = Q + W:

n2a 1 1

=C,T — — = AU = C,AT —n’a |+ — —

U=C v = AU =C na[vf Vi]

Q=AU -W
1 1 Vg —b 1 1
= C)(T.~T.) —a|— — —| + RT.1 —
Qan ( ) “[w; VJ'% nvgb+“[w; VJ
Vg —b




1 1
= AUpc =Co(Ty —T.) —a | — — —
Qpc Upc C( f ) G[VB VB:|

= Gu(Ty - To)

Ve -0

= —RT,1
Qcp R

Qpa = Cv(Tc - Tf)

Donc Qpc = —Qpa. Sile régénérateur est parfait I'intégralité de QQ po peut étre régénéré

en QQp4 alors :

n = Wtot
QaB

T
-1
T

= NCarnot

On retrouve la méme efficacité.

3. En I’absence de régénérateur :

R(T. — Ty) In A=}

 RT,InyE=l + Cy(T. — Ty)

n= Wtot
Qap +Qpa

PROBLEME V  VARIATION DE L’ENERGIE INTERNE APRES MELANGE DE DEUX GAZ PARFAITS

1. L’énergie interne de ’ensemble ne varie pas, car le systéme ne regoit ni travail (paroi

rigide), ni chaleur (paroi adiabatique).



2. Sachant que I’énergie interne du systéme ne varie pas, ses valeurs avant et aprés le retrait

de la paroi doivent étre identiques:
nicy T} + necyTi = (n1 + n2)e, Tt

ou T; dénote la température de chaque gaz avant le retrait de la paroi. On en déduit

Tt = T;: la température des gaz ne varie pas.

3. En utilisant la loi des gaz parfaits on trouve :

PV

En injectant ce résultat dans la partie de gauche de ’équation de Van der Waals on trouve

nza

)V —nb) = 1,0007] (2)

(p+
Et en faisant pareil dans la partie droite :
nRT =1J (3)

On peut remarquer que la différence est négligeable, et donc considérer que le nombre de

mol est le méme avec 'hypothése des gaz parfaits ou 'hypothése de Van der Waals.

4. On constate que I’énergie interne n’est plus proportionnelle a la température, du fait de la
présence d’un terme de correction en n?/V. En utilisant la conservation de I’énergie interne
du systéme complet (i.e. de ’ensemble des deux gaz) comme a la question précédente, on
trouvera que 73 # Tt la température n’est pas constante! Dans le cas général, ou la
température initiale des deux compartiments est identique, on trouve :

T, =T- — % <”%+"5_(”1+“2)2>.
(n1+n2)Cym \Vi V2 Vi+Ve )’

an

Dans le cas de I’énoncé: Ty =T — m avec ng = n.
5.
_pitpr 3
/ 2 2

AN: py = 1.5 bar.



PROBLEME VI TEMPERATURE DE MELANGE

Regardons ce qui se passe lorsque 'on mélange les deux masses d’eau mj et ma, ot my est la
masse de ’eau de température inconnue 717 qui est ajoutée au seau et my dénote la masse d’eau
initialement contenue dans le seau. Comme nous ’avons vu dans le cours, lorsque le mélange
sera & 1’équilibre, toute ’eau aura la méme température Ts,. Comme ’eau ajoutée est liquide,
il est possible d’exprimer la quantité de chaleur qu’elle échange lors de la transformation grace

a la capacité calorifique Cy = mjc. La chaleur échangée est donc exprimée comme :

Q1 =mic(Ty —T1) (4)
L’eau dans le seau est également liquide, ainsi sa chaleur échangée s’écrit de la méme maniére :
Q2 = mac(Ty — T3) (5)

Les deux quantités de I’eau échangent de la chaleur uniquement entre elles lors du mélange (pas

de pertes vers I'environnement), ainsi, on peut écrire :

Q1 +Q2=0 (6)
En remplacant chacun des termes de cette équation par leurs expressions 4 et 5, on trouve :
mic(Ty —T1) + moc(Ty —To) =0 = (mq + ma)cTan = micTy + macTh (7)
Ainsi, on obtient ’expression pour 717 :
m1 Thn + ma(Thn — 1)

T = (8)

mi

On aurait pu aboutir directement & la méme formule en partant du principe que la température
du mélange final correspond en fait & la moyenne des températures initiales pondérées par les
masses.

Remarque : L’équation 7 aurait également pu étre obtenue par un bilan d’enthalpie avec :
Hgy, = Hi + Hy — mgonIn = micli + mocly

Application numérique :

_ 4kg-284.75K 4 6kg - (284.75 — 283.15)K

= 287.15K =14.0°C
4kg

Ty



PROBLEME VII PETIT TOUR DES CHALEURS LATENTES

Comme indiqué dans I’énoncé, on considére un cycle de transformations au voisinage du
point triple. Le corps pur, initialement & 1’état solide, est tout d’abord liquéfié, puis vaporisé,
avant d’étre ramené a ’état solide. On suppose que la variation d’énergie du systéme au cours
du cycle est uniquement due aux chaleurs latentes de changement de phase. Or, comme il s’agit

d’un cycle, la variation totale d’énergie au cours du cycle doit étre nulle:
AE =0 & mAH, yy+mAH;_,;+mAH, .; =0,

ot m désigne la masse du corps pur, et AH,_,;, AH;_,, et AH,_,, correspondent aux chaleurs
latentes de fusion, vaporisation et condensation. Sachant que la chaleur latente de condensation
(aussi appelée sublimation inverse) est identique mais de signe opposé a la chaleur latente de

sublimation, on en déduit:
A];Is—>g = _AHg—>s =AH, y; + A~I:—rl~>g-

Chacun des termes AH,_,,, AH,_,; et AH)_,4 est positif par définition, d’otr

AH, g > AHp_,,. (9)
Or, d’aprés la formule de Clapeyron,
dps
AHg g =T(vg — vs) (ng,
dp
AH g =T(vg — vl)d—jlf’,

ol v, vy et vy dénotent les volumes massiques du corps pur en phase solide, liquide et gaseuze;
Psg(T) et pig(T') correspondent aux courbes de sublimation et de vaporisation dans le diagramme
p—T'. Sachant que le volume massique du corps pur en phase gaseuze est beaucoup plus élevé
que ceux des phases solide et liquide (vy > v, et vy > v;), les relations précédentes peuvent se
simplifier:

dpsg

dr’

d
AH), ~ Tvg%. (11)

AHy g~ Tv, (10)
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En combinant les équations (9)—(11), on trouve finalement que:

dpsg _ dpig
ar ~ 47’

& savoir que la pente de la courbe de sublimation est plus élevée que celle de la courbe de

vaporisation.

Solution des exercices recommandés

PrROBLEME VIII COCOTTE-MINUTE

Le point d’ébullition de ’eau dépendant de la pression atmosphérique, I'augmentation de
pression permet de faire monter la température de cuisson plus haut que 100°C. Une soupape
relache la vapeur dés que la pression absolue dépasse 1.8 bar qui est la valeur de la pression de

vapeur saturante de I'eau & 117°C.

PROBLEME IX ICE SKATING

On se place dans une journée d’hiver o il fait —10°C, debout sur un lac gelé au niveau de
la mer. La glace sur la surface est sous pression atmosphérique d’1 bar ou 10° Pascal. Sous nos
pieds, la pression appliquée sur la glace est égale a notre poids divisé par la surface de contact
de nos chaussures, en plus de la pression atmosphérique. En supposant qu’on pése 70 kg (700 N)

et que la surface de nos pieds est égale a4 500 cm? (0.05 m?), la pression sous nos pieds est :

N
p=10° Pa+ % = 100000 Pa + 14000 Pa = 114000 Pa = 1.14 bar.

On sort de notre poche le diagramme de phase de I’eau (que 'on transporte toujours sur soi) et
on trace une ligne verticale & —10°C pour vérifier que la glace sous nos pieds est toujours bien
solide, en se rappelant bien qu’l atm est & peu prés égale a 1 bar. Puis, on décide de mettre nos
patins. Leurs lames est construite de telle sorte qu’elles appliquent une trés grande pression sur
la glace : en regardant bien, on remarque qu’elles ont une section concave afin de minimiser la
surface de contact avec la glace. Elles sont aussi concave en longueur de telle sorte que seulement

une petite partie de la lame ne puisse toucher la glace.
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En supposant que la surface de contact avec la glace est de 0.1 mm -50 mm = 5 mm? =

5-106 m2. Alors, la pression sous nos pieds est :

700 N

— 5 5 _ 5 o
55 10-6 2 = 10° Pa+700-10” Pa =701 -10° Pa =701 bar.

p=10° Pa+

Si on repose sur un pied, cette pression croit jusqu’a 1401 bar ! En analysant le diagramme de
I’eau encore une fois, on arrive a la conclusion qu’il y a toujours une fine couche d’eau liquide
sous les lames car dans ces conditions de température et de pression, la glace devient liquide.
Ceci n’arrive qu’en raison de la pente négative de la courbe d’interface solide-liquide dans le
diagramme de phase, ce qui n’est pas le cas pour la plus grande majorité des substances. Une
fois que les lames se sont déplacées, la pression redevient 1 bar et I’eau redevient de la glace.

Ceci est la raison pour laquelle les frottements sont si faibles lorsqu’on patine sur de la glace.
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Water
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La méme chose ne pourrait étre possible sur de la glace séche. Le diagramme de phase du
CO, montre qu’augmenter la pression sur une surface de glace carbonique ne peut produire une

transition de phase. Les patineurs peuvent se réjouir du comportement "anormal" de I'eau !

Un article scientifique a été publié en 2019 montrant que la physique du patinage sur glace
a encore de nombreuses questions sans réponse : https://doi. org/10. 1103/ PhysRevX. 9.
041025. Voir aussi la vidéo suivante pour une expérience qui montre un comportement similaire

de Ueau sous pression locale : http: //y2u. be/ qQCVnjGUv24 .



