
Physique II – Thermodynamique

Solutions 8

Problème I Carbone

1. Le carbone sera dans la phase gazeuse si la température augmente sous pression constante.

2. À 1.0GPa et 5000K, le carbone sera dans la phase liquide.

Problème II Détente et entropie interne

Détente de Joule ou Gay-Loussac

1. Il n’y a pas de travail mécanique, car la pression opposée au gaz est nulle losqu’on ouvre

le robinet (enceinte sous vide, donc pas de pression : pext = 0). Donc W = 0. Et puisque

l’enceinte est adiabatique : Q = 0.

2. ∆U = W +Q = 0.

3. ∆U = CV ∆T , et donc ∆T = 0 (on a un gaz parfait). La transformation est isotherme.

pf = p1
V1

V1+V2
.

4. Dans la détente de Gay-Lussac, le gaz est initialement intégralement dans la première

enceinte. Sachant que le système total est isolé, il ne peut pas échanger de chaleur (et

donc d’entropie) avec l’extérieur. Sa variation d’entropie au cours de la détente vaut donc

∆S = Sint. On a ainsi production d’entropie interne : la détente de Gay-Lussac est

irréversible. On constate de plus qu’il nous suffit de calculer ∆S pour obtenir Sint.

Puisque l’entropie est une variable d’état, sa variation entre deux points ne dépend pas du

chemin parcouru. Pour déterminer ∆S, on considère donc une transformation réversible

(c’est-à-dire sans production d’entropie interne) entre les états (p1;V1;T1) et (p2;V1 +

V2;T2), avec T2 et P2 température et pression finales à déterminer. On notera ∆Srev la
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variation d’entropie le long de la transformation réversible. Comme ∆T = 0, la transfor-

mation réversible se fait à température constante, d’où :

dSrev
ext =

δQrev

T1
=

−δW rev

T1
=

pdV

T1
,

avec p = p1V1/V du fait que la température est constante. On trouve ∆Srev en intégrant

l’expression ci-dessus :

∆Srev =

∫ 2

1
dSrev =

∫ V1+V2

V1

pdV

T1
=

p1V1

T1

∫ V1+V2

V1

dV

V
= nR ln

(
V1 + V2

V1

)
.

Or, sachant que la variation d’entropie entre deux états ne dépend pas du chemin parcouru,

on a ∆S = ∆Srev, et donc :

∆Sint = ∆Srev = nR ln

(
V1 + V2

V1

)
> 0.

On aurait pu obtenir le même résultat en utilisant la relation générale vue en cours pour

la variation d’entropie d’un gaz parfait entre deux états A et B :

∆SA→B = nR ln

(
VB

VA

)
+ ncV,m ln

(
TB

TA

)
,

où cV,m = R/(γ − 1) dénote la chaleur spécifique du gaz à volume constant. On a ici

VA = V1, VB = V1 + V2 et TA = TB = cste, d’où

∆S = nR ln

(
V1 + V2

V1

)
> 0.

5. La transformation est irréversible.

6. ∆S = 0.23 J·K−1.

Détente de Joule-Thomson

1. Le travail reçu par le gaz correspond au travail fourni par les deux pistons. Le piston dans le

compartiment amont de la paroi fournit le travail W1 = −p1∆V = −p1(0−V1) = p1V1, car

dans le compartiment amont le volume passe de V1 à 0. Comme le volume du compartiment

aval passe de 0 à V2, le travail fourni par le piston aval est W2 = −p2∆V = −p2(V2− 0) =

−p2V2. Le travail reçu par le gaz lors de la détente de l’état 1 à l’état 2 est donc :

W = W1 +W2 = p1V1 − p2V2.

Comme la détente est adiabatique, la chaleur échangée est nulle (Q = 0) et donc

∆U = W = p1V1 − p2V2.
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2. De l’équation ci-dessus on obtient :

U2 − U1 = p1V1 − p2V2 ⇒ U1 + p1V1 = U2 + p2V2.

Or, la fonction enthalpie est H = U + pV , on a donc : H1 = H2 ⇒ ∆H = 0.

3. Dans le cas d’un gaz parfait, la variation d’enthalpie est déterminée par ∆H = ncp,m∆T ,

où n est le nombre de moles et cp,m est la chaleur spécifique molaire à pression constante.

Ainsi, ∆T = 0 si ∆H = 0. Il est ainsi possible d’observer que ∆U = 0 dans le cas d’un

gaz parfait. À l’aide du point 1, on obtient que p1V1 = p2V2 dans le cas de la détente de

Joule-Thompson. Pour un gaz réel, ∆H reste égal à 0 (voir point 2) mais pas forcément

∆U car la relation pV = nRT n’est plus valide pour des gaz réels. L’enthalpie ne dépend

donc plus de la température uniquement.

4. Comme dans le cas de la détente de Gay-Lussac, la détente de Joule-Thomson se fait dans

une enceinte dont les parois sont isolées thermiquement. La variation d’entropie du gaz est

donc uniquement due à la création d’entropie interne. Sachant que la transformation est

isotherme (prouvé au point 3. pour un gaz parfait), on peut réutiliser le résultat obtenu

pour la détente de Gay-Lussac pour exprimer ∆S entre l’état initial (p1;V1;T1) et l’état

final (p2;V2;T1) :

∆S = nR ln
V2

V1
.

Si l’on utilise la loi des gaz parfaits pour remplacer V2/V1 par p1/p2, on trouve finalement :

∆Sint = ∆S = nR ln

(
p1
p2

)
> 0.

Remarque : La détente de Joule-Thomson peut être reproduite en pratique en utilisant un

montage similaire à celui schématisé ci-dessous.
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Problème III Travail d’un gaz de Van der Waals

1. Isochore : δW = −pdV = 0 ⇒ Wisochore = 0.

2. Isobare : δW = −pdV ⇒ W =
∫
−pdV. p = cte = p1. donc Wisobare = −p1(V2−V1).

3. Isotherme : δW = −pdV et on peut exprimer la pression en fonction du volume :

W = −
∫ V2

V1

pdV

avec p = RT
V−b −

a
V 2 . On en déduit :

Wisotherme = −
∫ V2

V1

RT

V − b
dV +

∫ V2

V1

a

V 2
dV = −RT ln

V2 − b

V1 − b
+ a

(
1

V1
− 1

V2

)
.

Problème IV Cycle de Carnot et Stirling avec un gaz de Van Der Waals

1. L’efficacité d’un cycle de Carnot réversible est ηCarnot = 1− Tf

Tc
, indépendamment du fluide

considéré.

C’est donc la même pour un cycle de Carnot décrit pour un gaz parfait.

2. L’énergie interne du gaz de Van der Waals ne dépend que de T et V.

Pour les deux isochores, les chaleurs échangées sont donc égales et opposées. Elles valent

CV (Tc − Tf ) et se compensent.

L’ensemble du cycle est donc réversible et son efficacité est maximale, c’est-à-dire

ηStirling, VdW = ηCarnot
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Il existe une manière plus longue de le démontrer. Il faut calculer W et Q pour chaque

étape du cycle :

WAB =

∫ B

A
−pextdV =

∫ B

A
−pdV

Pour une mole p = RT
V−b −

a2

V 2

WAB =

∫ B

A
−RTc

dV

V − b
+

∫ B

A
a
dV

V 2

= −RTc [ln(V − b)]BA + a

[
− 1

V

]B
A

= RTc ln
VA − b

VB − b
− a

[
1

VB
− 1

VA

]
= −RTc ln

VB − b

VA − b
− a

[
1

VB
− 1

VA

]

WBC = 0

WCD = −RTf ln
VA − b

VB − b
+ a

[
1

VB
− 1

VA

]

WDA = 0

Wtot = −R(Tc − Tf ) ln
VB − b

VA − b

Q à chaque étape du cycle : Dans tout les cas ∆U = Q+W :

U = CvT − n2a

V
=⇒ ∆U = Cv∆T − n2a

[
1

Vf
− 1

Vi

]

Q = ∆U −W

QAB = Cv(Tc − Tc)− a

[
1

VB
− 1

VA

]
+RTc ln

VB − b

VA − b
+ a

[
1

VB
− 1

VA

]
= RTc ln

VB − b

VA − b
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QBC = ∆UBC = Cv(Tf − Tc)− a

[
1

VB
− 1

VB

]
= Cv(Tf − Tc)

QCD = −RTf ln
VB − b

VA − b

QDA = Cv(Tc − Tf )

Donc QBC = −QDA. Si le régénérateur est parfait l’intégralité de QBC peut être régénéré

en QDA alors :

η =

∣∣∣∣Wtot

QAB

∣∣∣∣
= 1−

Tf

Tc
= ηCarnot

On retrouve la même efficacité.

3. En l’absence de régénérateur :

η =

∣∣∣∣ Wtot

QAB +QDA

∣∣∣∣ = R(Tc − Tf ) ln
VB−b
VA−b

RTc ln
VB−b
VA−b + Cv(Tc − Tf )

Problème V Variation de l’énergie interne après mélange de deux gaz parfaits

1. L’énergie interne de l’ensemble ne varie pas, car le système ne reçoit ni travail (paroi

rigide), ni chaleur (paroi adiabatique).
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2. Sachant que l’énergie interne du système ne varie pas, ses valeurs avant et après le retrait

de la paroi doivent être identiques:

n1cvTi + n2cvTi = (n1 + n2)cvTf,

où Ti dénote la température de chaque gaz avant le retrait de la paroi. On en déduit

Tf = Ti: la température des gaz ne varie pas.

3. En utilisant la loi des gaz parfaits on trouve :

nGP =
PV

RT
= 0.04mol (1)

En injectant ce résultat dans la partie de gauche de l’équation de Van der Waals on trouve

:

(p+
n2a

V 2
)(V − nb) = 1, 0007J (2)

Et en faisant pareil dans la partie droite :

nRT = 1J (3)

On peut remarquer que la différence est négligeable, et donc considérer que le nombre de

mol est le même avec l’hypothèse des gaz parfaits ou l’hypothèse de Van der Waals.

4. On constate que l’énergie interne n’est plus proportionnelle à la température, du fait de la

présence d’un terme de correction en n2/V . En utilisant la conservation de l’énergie interne

du système complet (i.e. de l’ensemble des deux gaz) comme à la question précédente, on

trouvera que Ti ̸= Tf: la température n’est pas constante! Dans le cas général, où la

température initiale des deux compartiments est identique, on trouve :

Tf = T − a

(n1 + n2)CV,m

(
n2
1

V1
+

n2
2

V2
− (n1 + n2)

2

V1 + V2

)
;

Dans le cas de l’énoncé: Tf = T − an

6CV,mV
avec n2 = n.

5.

pf =
p1 + p2

2
=

3

2
p.

AN: pf = 1.5 bar.
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Problème VI Température de mélange

Regardons ce qui se passe lorsque l’on mélange les deux masses d’eau m1 et m2, où m1 est la

masse de l’eau de température inconnue T1 qui est ajoutée au seau et m2 dénote la masse d’eau

initialement contenue dans le seau. Comme nous l’avons vu dans le cours, lorsque le mélange

sera à l’équilibre, toute l’eau aura la même température Tfin. Comme l’eau ajoutée est liquide,

il est possible d’exprimer la quantité de chaleur qu’elle échange lors de la transformation grâce

à la capacité calorifique C1 = m1c. La chaleur échangée est donc exprimée comme :

Q1 = m1c(Tf − T1) (4)

L’eau dans le seau est également liquide, ainsi sa chaleur échangée s’écrit de la même manière :

Q2 = m2c(Tf − T2) (5)

Les deux quantités de l’eau échangent de la chaleur uniquement entre elles lors du mélange (pas

de pertes vers l’environnement), ainsi, on peut écrire :

Q1 +Q2 = 0 (6)

En remplaçant chacun des termes de cette équation par leurs expressions 4 et 5, on trouve :

m1c(Tf − T1) +m2c(Tf − T2) = 0 =⇒ (m1 +m2)cTfin = m1cT1 +m2cT2 (7)

Ainsi, on obtient l’expression pour T1 :

T1 =
m1Tfin +m2(Tfin − T2)

m1
(8)

On aurait pu aboutir directement à la même formule en partant du principe que la température

du mélange final correspond en fait à la moyenne des températures initiales pondérées par les

masses.

Remarque : L’équation 7 aurait également pu être obtenue par un bilan d’enthalpie avec :

Hfin = H1 +H2 =⇒ mfincTfin = m1cT1 +m2cT2

Application numérique :

T1 =
4kg · 284.75K + 6kg · (284.75− 283.15)K

4 kg
= 287.15K = 14.0 ◦C
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Problème VII Petit tour des chaleurs latentes

Comme indiqué dans l’énoncé, on considère un cycle de transformations au voisinage du

point triple. Le corps pur, initialement à l’état solide, est tout d’abord liquéfié, puis vaporisé,

avant d’être ramené à l’état solide. On suppose que la variation d’énergie du système au cours

du cycle est uniquement due aux chaleurs latentes de changement de phase. Or, comme il s’agit

d’un cycle, la variation totale d’énergie au cours du cycle doit être nulle:

∆E = 0 ⇔ m∆Hs→l +m∆Hl→g +m∆Hg→s = 0,

où m désigne la masse du corps pur, et ∆Hs→l, ∆Hl→g et ∆Hg→s correspondent aux chaleurs

latentes de fusion, vaporisation et condensation. Sachant que la chaleur latente de condensation

(aussi appelée sublimation inverse) est identique mais de signe opposé à la chaleur latente de

sublimation, on en déduit:

∆Hs→g = −∆Hg→s = ∆Hs→l +∆Hl→g.

Chacun des termes ∆Hs→g, ∆Hs→l et ∆Hl→g est positif par définition, d’où

∆Hs→g > ∆Hl→g. (9)

Or, d’après la formule de Clapeyron,

∆Hs→g = T (vg − vs)
dpsg
dT

,

∆Hl→g = T (vg − vl)
dplg
dT

,

où vs, vl et vg dénotent les volumes massiques du corps pur en phase solide, liquide et gaseuze;

psg(T ) et plg(T ) correspondent aux courbes de sublimation et de vaporisation dans le diagramme

p–T . Sachant que le volume massique du corps pur en phase gaseuze est beaucoup plus élevé

que ceux des phases solide et liquide (vg ≫ vs et vg ≫ vl), les relations précédentes peuvent se

simplifier:

∆Hs→g ≈ Tvg
dpsg
dT

, (10)

∆Hl→g ≈ Tvg
dplg
dT

. (11)
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En combinant les équations (9)–(11), on trouve finalement que:

dpsg
dT

>
dplg
dT

,

à savoir que la pente de la courbe de sublimation est plus élevée que celle de la courbe de

vaporisation.

Solution des exercices recommandés

Problème VIII Cocotte-minute

Le point d’ébullition de l’eau dépendant de la pression atmosphérique, l’augmentation de

pression permet de faire monter la température de cuisson plus haut que 100 ◦C. Une soupape

relâche la vapeur dès que la pression absolue dépasse 1.8 bar qui est la valeur de la pression de

vapeur saturante de l’eau à 117 ◦C.

Problème IX Ice skating

On se place dans une journée d’hiver où il fait −10◦C, debout sur un lac gelé au niveau de

la mer. La glace sur la surface est sous pression atmosphérique d’1 bar ou 105 Pascal. Sous nos

pieds, la pression appliquée sur la glace est égale à notre poids divisé par la surface de contact

de nos chaussures, en plus de la pression atmosphérique. En supposant qu’on pèse 70 kg (700 N)

et que la surface de nos pieds est égale à 500 cm2 (0.05 m2), la pression sous nos pieds est :

p = 105 Pa +
700 N
0.05 m2

= 100000 Pa + 14000 Pa = 114000 Pa = 1.14 bar.

On sort de notre poche le diagramme de phase de l’eau (que l’on transporte toujours sur soi) et

on trace une ligne verticale à −10◦C pour vérifier que la glace sous nos pieds est toujours bien

solide, en se rappelant bien qu’1 atm est à peu près égale à 1 bar. Puis, on décide de mettre nos

patins. Leurs lames est construite de telle sorte qu’elles appliquent une très grande pression sur

la glace : en regardant bien, on remarque qu’elles ont une section concave afin de minimiser la

surface de contact avec la glace. Elles sont aussi concave en longueur de telle sorte que seulement

une petite partie de la lame ne puisse toucher la glace.
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En supposant que la surface de contact avec la glace est de 0.1 mm ·50 mm = 5 mm2 =

5 · 10−6 m2. Alors, la pression sous nos pieds est :

p = 105 Pa +
700 N

2 · 5 · 10−6 m2
= 105 Pa + 700 · 105 Pa = 701 · 105 Pa = 701 bar.

Si on repose sur un pied, cette pression croît jusqu’à 1401 bar ! En analysant le diagramme de

l’eau encore une fois, on arrive a la conclusion qu’il y a toujours une fine couche d’eau liquide

sous les lames car dans ces conditions de température et de pression, la glace devient liquide.

Ceci n’arrive qu’en raison de la pente négative de la courbe d’interface solide-liquide dans le

diagramme de phase, ce qui n’est pas le cas pour la plus grande majorité des substances. Une

fois que les lames se sont déplacées, la pression redevient 1 bar et l’eau redevient de la glace.

Ceci est la raison pour laquelle les frottements sont si faibles lorsqu’on patine sur de la glace.
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La même chose ne pourrait être possible sur de la glace sèche. Le diagramme de phase du

CO2 montre qu’augmenter la pression sur une surface de glace carbonique ne peut produire une

transition de phase. Les patineurs peuvent se réjouir du comportement "anormal" de l’eau !

Un article scientifique a été publié en 2019 montrant que la physique du patinage sur glace

a encore de nombreuses questions sans réponse : https: // doi. org/ 10. 1103/ PhysRevX. 9.

041025 . Voir aussi la vidéo suivante pour une expérience qui montre un comportement similaire

de l’eau sous pression locale : http: // y2u. be/ qQCVnjGUv24 .


