
Physique II – Thermodynamique

Solutions 5

Problème I Transformations quasi-statiques

En A: p0, V0, T0 ;

En B: pB, 3V0, T0 ;

Il vient alors pB3V0 = nRT0 et donc :

pB =
nRT0

3V0
=

p0
3

.

En C: pC = p0, VC , TC ;

B → C étant adiabatique, il vient pV γ = cte, et donc :

pBVB
γ = pCVC

γ

⇒ p0
3
(3V0)

γ = p0VC
γ ,

pour obtenir le volume final :

VC = 3
γ−1
γ V0 .

La température se trouve en notant que pCVC = nRTC , et donc TC = pCVC
nR , soit TC =

p03
γ−1
γ V0

nR = T0 · 3
γ−1
γ .
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En D: VD = VC = 3
γ−1
γ V0, TD = T0, pD = nRTD

VD
= nRT0

3
γ−1
γ V0

= p0

3
γ−1
γ

.

Sur A → B :

WAB =

∫ B

A
−pdV =

∫ B

A
−nRT0

dV
V

= −nRT0 ln
VB

VA
= −nRT0 ln

3V0

V0
.

Or, sachant que la variation d’énergie interne du système est nulle (puisque la température reste

constante), on a ∆UAB = WAB +QAB = 0, et donc :

WAB = −p0V0 ln 3,

QAB = −WAB = p0V0 ln 3.

Sur B → C :

QBC = 0,

WBC = ∆UBC = CV (TC − TB)

= CV

(
3

γ−1
γ − 1

)
T0.

Sur C → D :

WCD = 0,

QCD = ∆UCD = CV (TD − TC)

= CV

(
1− 3

γ−1
γ

)
T0.

Ainsi, les énergies échangées sont :

Wtot = −p0V0 ln 3 + CV

(
3

γ−1
γ − 1

)
T0,

Qtot = p0V0 ln 3 + CV

(
1− 3

γ−1
γ

)
T0.

Problème II Moteur de Joule ou cycle de Brayton

1. Le cycle est décrit dans le sens horaire sur le diagramme p-V. Il correspond donc à un

moteur thermique (W < 0).

2. • Seules les évolutions 2→3 et 4→1 correspondent à un transfert thermique. Comme

les transformations sont isobares, la chaleur échangée peut être obtenue directement
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de la variation de l’enthalpie qui, pour un gaz parfait, ne dépend que de la variation

de la température. Ainsi :

Q23 = ∆H23 = CP (T3 − T2) =
γnR

γ − 1
(T3 − T2),

où CP = CV + nR et CV = nR/(γ − 1).

De même pour Q41 :

Q41 = ∆H41 = CP (T1 − T4) =
γnR

γ − 1
(T1 − T4),

• Le travail échangé lors des transformations adiabatiques est :

W12 = ∆U12 = CV (T2 − T1) =
nR

γ − 1
(T2 − T1),

W34 = ∆U34 =
nR

γ − 1
(T4 − T3).

Le long des isobares on trouve :

W23 = −p2(V3 − V2) = −nR(T3 − T2),

W41 = −p1(V1 − V4) = −nR(T1 − T4).

3. Le travail W échangé au cours du cycle est :

W = W12 +W23 +W34 +W41 =
−γnR

γ − 1
(T1 − T4 + T3 − T2).

L’efficacité du cycle est :

η =
−W

Q23
= 1 +

T1 − T4

T3 − T2
.

Pour trouver T2 on utilise le fait que le long d’une transformation adiabatique on a :

Tp(1−γ)/γ = const. Ainsi pour la transformation 1→2 on obtient :

T2 = T1

(
P1

P2

)(1−γ)/γ

≈ 450K.
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La température T4 peut être obtenue de la transformation adiabatique entre les états 3 et

4 :

T4 = T3

(
P2

P1

)(1−γ)/γ

≈ 400K,

et donc l’efficacité du cycle de Brayton est :

η = 1 +
300− 400

600− 450
≈ 0, 33.

4. L’efficacité ηCarnot d’un cycle de Carnot entre les mêmes sources aux températures T1 =

300K et T3 = 600K vaut :

ηCarnot = 1− T1

T3
= 0, 5

qui est donc supérieure à l’efficacité obtenue avec le cycle de Joule.

5. Les évolutions 1→2 et 3→4 étant adiabatiques et quasi-statiques pour un gaz parfait :
T γ
1 p

1−γ
1 = T γ

2 p
1−γ
2

T γ
3 p

1−γ
3 = T γ

4 p
1−γ
4

⇒


T2
T1

=
(
p2
p1

) γ−1
γ

= a
1−γ
γ

T4
T3

=
(
p4
p3

) γ−1
γ

=
(
p1
p2

) γ−1
γ

= a
γ−1
γ

Finalement : η = 1 + T4−T1

T1a
1−γ
γ −T4a

1−γ
γ

η = 1− a
γ−1
γ

Il a existé des automobiles fonctionnant sur le cycle de Brayton, comme celle illustrée sur

la photo ci-dessous. Le cycle de Brayton est également rencontré dans certains réacteurs

d’avion.
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Problème III Expérience de Clément-Desormes

1. Le diagramme (p, V ) :

Avec A(p0, T0, V0), B(p1, T0, V ), C(p0, T2, V2) et D(p2, T0, V2).

2. Les données du problème sont : p0, T0, V0, V et CV,m. Alors, T2 et V2 seront exprimés en

fonctions de ces paramètres.

La transformation AB est une isotherme. D’où :

p0V0 = p1V

La transformation BC est une adiabatique. Donc :

p1V
γ = p0V

γ
2

Alors :

p1 =
p0V0

V
=⇒ V2 = V

γ−1
γ V

1
γ

0

Par la loi des gaz parfaits à l’état initial A on trouve le nombre de moles total :

n =
p0V0

RT0

En appliquant à nouveau la loi des gaz parfaits pour le point C, on trouve la température

T2 :

T2 = T0V
γ−1
γ V

1−γ
γ

0
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3. La transformation AB est une isotherme réversible (T = cst) :

δW = −nRT

V
dV =⇒ WAB = −nRT ln

V

V0
= p0V0 ln

V0

V

La transformation BC est une adiabatique réversible (Q = 0) :

δW = dU = nCV,mdT =⇒ WBC = nCV,m(T2−T0) =
p0V0

R
CV,m

(
V

γ−1
γ V

1−γ
γ

0 − 1

)
La transformation CD est un isochore (V = cst) :

WCD = 0

Le travail total est la somme de ces travaux :

WT = WAB +WBC +WCD = p0V0

(
ln

V0

V
+

CV,m

R
V

γ−1
γ V

1−γ
γ

0 −
CV,m

R

)

Annexe : Calcul du coefficient adiabatique γ

Dans l’état initial, le gaz parfait a un volume V0, une pression p0 et une température T0.

D’après l’équation d’état d’un gaz parfait,

p0V0 = nRT0

A la fin du processus de compression isotherme à température T0, le gaz parfait a une pression

p1 et il est entièrement contenu dans la sphère de volume V . D’après l’équation d’état d’un gaz

parfait,

p1V = nRT0

A la fin du processus de détente adiabatique, la pression du gaz parfait est égale à la pression

initiale p0 et le volume de gaz dans la sphère et la seringue est V2. D’après l’équation d’une

transformation adiabatique,

p1V
γ = p0V

γ
2

A la fin du processus de compression isochore à volume V2, la pression du gaz parfait est p2 et la

température du gaz dans la sphère et la seringue est égale à la température initiale T0. D’après

l’équation d’un gaz parfait,

p2V2 = nRT0
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Des équations précédentes, on tire que,

p1
p0

=

(
V2

V

)γ

=

(
nRT0

p2

p1
nRT0

)γ

=

(
p1
p0

p0
p2

)γ

En utilisant les définitions p1 = p0 +∆p1 et p2 = p0 +∆p2, l’expression précédente devient,

1 +
∆p1
p0

=

(
1 +

∆p1
p0

)γ (
1 +

∆p2
p0

)−γ

Vu que les variations de pression sont faibles par rapport à la pression initiale, i.e. ∆p1 ≪ p0 et

∆p2 ≪ p0, le développement au 1 er ordre en ∆p1/p0 et ∆p2/p0 s’écrit,

1 +
∆p1
p0

≃
(
1 + γ

∆p1
p0

)(
1− γ

∆p2
p0

)

1 +
∆p1
p0

≃ 1 + γ

(
∆p1
p0

− ∆p2
p0

)
− γ2

∆p1
p0

∆p2
p0

où le dernier terme est un terme du 2e ordre que l’on peut négliger. Ainsi, on obtient la relation,

∆p1 ≃ γ (∆p1 −∆p2)

ce qui implique que,

γ ≃ ∆p1
∆p1 −∆p2

Problème IV Cycle d’Atkinson

1. Pour le processus adiabatique, p(V ) = cst/V γ où γ > 1 et cst = p1V
γ
1 = p2V

γ
2 ou

cst = p4V
γ
4 = p5V

γ
5 . Pour les processus isochores, V = V2 = V3 = cst or V = V5 = V6 =

cst. Pour les processus isobares, p(V ) = p3 = p4 = cst ou p(V ) = p6 = p1 = cst.
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2. A l’aide de la relation d’un processus adiabatique et de l’équation d’état du gaz parfait,

les pressions sont données par,

p2 = p1

(
V1

V2

)γ

p4 = p3 p5 =
nRT5

V6
p6 = p1

et les volumes par,

V3 = V2 V4 =

(
nRT5

p3

) 1
γ

V
γ−1
γ

6 V5 = V6

Les températures s’écrivent,

T1 =
p1V1

nR
T2 =

p1V1

nR

(
V1

V2

)γ−1

T3 =
p3V3

nR

T4 =

(
p3V6

nR

) γ−1
γ

T
1
γ

5 T6 =
p1V6

nR

3. Les travaux effectués durant la compression adiabatique et la détente adiabatique s’écrivent,

W12 = ∆U12 = cnR

∫ T2

T1

dT = cnR (T2 − T1)

W45 = ∆U45 = cnR

∫ T5

T4

dT = cnR (T5 − T4)
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Il n’y a pas de travail effectué durant l’échauffement isochore et le refroidissement isochore,

W23 = W56 = 0

Les travaux effectués durant les processus isobares s’écrivent,

W34 = −
∫ 4

3
pdV = −p3

∫ V4

V3

dV = −p3 (V4 − V3) = nR (T3 − T4)

W61 = −
∫ 1

6
pdV = −p1

∫ V1

V6

dV = −p1 (V1 − V6) = nR (T6 − T1)

Le travail effectué par cycle s’écrit,

W = W12 +W34 +W45 +W61

W = cnR (T2 − T1 + T5 − T4) + nR (T3 − T4 + T6 − T1)

4. Il n’y a pas d’échange de chaleur durant la compression adiabatique et la détente adiaba-

tique,

Q12 = Q45 = 0

Les chaleurs échangées durant I’échauffement isochore et le refroidissement isochore sont

données par,

Q23 = ∆U23 =

∫ U3

U2

dU = cnR

∫ T3

T2

dT = cnR (T3 − T2)

Q56 = ∆U56 =

∫ U6

U5

dU = cnR

∫ T6

T5

dT = cnR (T6 − T5)

Les chaleurs échangées durant les processus isobares s’écrivent,

Q34 = ∆H34 =

∫ H4

H3

dH = (c+ 1)nR

∫ T4

T3

dT = (c+ 1)nR (T4 − T3)

Q61 = ∆H61 =

∫ H1

H6

dH = (c+ 1)nR

∫ T1

T6

dT = (c+ 1)nR (T1 − T6)

La chaleur fournie au réservoir chaud s’écrit,

Q+ = Q23 +Q34 = cnR (T3 − T2) + (c+ 1)nR (T4 − T3)

5. A l’aide de la définition du rendement, on obtient,

ηA = − W

Q+
= −c (T2 − T1 + T5 − T4) + (T3 − T4 + T6 − T1)

c (T3 − T2) + (c+ 1) (T4 − T3)

=
(T1 − T2 + T4 − T5) + (γ − 1) (T4 − T3 + T1 − T6)

(T3 − T2) + γ (T4 − T3)
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Problème V Chauffe-eau

Chaque seconde dans le chauffe-eau entrent 25mℓ d’eau. Sa température augmente de 40 ◦C

ou 40K. En considérant que la pression est constante, la chaleur nécessaire est donnée par :

Q = neauCp,eau∆T =
25 g

18 gmol−1 · 75.2 JK−1mol−1 · 40K = 4.18 kJ

Cette quantité d’énergie doit être fournie par la combustion du méthane. Les limitations tech-

niques impliquent que le transfert de la chaleur produite par la réaction chimique vers l’eau à

chauffer s’effectue avec un rendement de 90%, d’où :

Q = 0.9Qréaction =⇒ Qréaction = 4.64 kJ

À pression atmosphérique, la combustion d’une mol de méthane libère 881 kJ. Alors :

nCH4
=

4.64 kJ

881 kJmol−1 = 5.27× 10−3mol

Par la loi des gaz parfaits, on trouve le volume correspondant du méthane par seconde et donc

le débit volumique V̇ à 15 ◦C :

V̇CH4,15
◦C = 126mℓ/s

Problème VI Capacité thermique en fonction de la température

Si CV , m, Cp, m sont les capacités thermiques molaires à volume constant et pression constante

respectivement, la relation de Mayer donne :

Cp,m − CV,m = R

Alors, si on veut avoir la relation entre les capacités thermiques massiques (CV,M, Cp,M), on doit

diviser chacune par la masse molaire du CO :

CV,M = Cp,M − R

MCO

Dans ce cas le volume reste constant. Ainsi, la variation de l’énergie interne est égale à la chaleur

reçue par le CO.

δQ = dU = mCOCV,M dT
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Puisque la capacité thermique varie selon la température, la chaleur est donnée comme :

Q = mCO

Tf∫
Tin

(
A0 −

A1

T
+

A2

T 2
− R

MCO

)
dT

Q = mCO

[(
A0 −

R

MCO

)
T −A1 lnT − A2

T

]Tf=400K

Tin=300K

Q = 2887 J

Problème VII La méthode de Ruckhardt (facultatif)

1. Bilan des forces: ma⃗ = P⃗ + f⃗1 + f⃗2, avec :

• le poids P⃗ = −mge⃗x

• les forces de pression

 f⃗1 = −p0se⃗x

f⃗2 = pse⃗x

où e⃗x dénote le vecteur unitaire le long de l’axe vertical Ox, orienté vers le haut. On

projette cette égalité sur Ox :

m
d2x

dt2
= s(p− p0)−mg

À l’équilibre: 0 = s(pe − p0)−mg

pe = p0 +
mg

s

2. Pour une évolution adiabatique, quasi-statique :

pV γ = p0V
γ
0 ⇒ dp = (p0V

γ
0 )(−γ)V (−γ−1)dV = −γ

p

V
dV

Au voisinage de (p0, V0) :

dp
dV

= −γ
p0
V0

3. On en déduit :

p− p0
V − V0

= −γ
p0
V0

⇒ p− p0 = −γ
p0
V0

sx
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4. On reporte dans la projection de la relation fondamentale de la dynamique.

m
d2x

dt2
= s

[
−γ

p0
V0

sx

]
−mg

D’où: d2x
dt2 + γp0s2

mV0
x = −g qui est l’équation caractéristique d’un mouvement oscillatoire

harmonique sans frottements.

5. La pulsation est :

ω =

√
γp0s2

mV0

et donc :

θ =
2π

ω
= 2π

√
mV0

γp0s2
.

On en déduit :

γ =
mV0

p0s2
4π2

θ2
.

Problème VIII Limite à la compressibilité brutale d’un gaz (facultatif) (Exa-

men 2015, autre professeur)

1. Le rapport volumétrique est défini comme a = V0
Vf

et le taux de compression comme k =
pf
p0

.

Pour une transformation isotherme pV = cst et donc V0
Vf

=
pf
p0

et aisotherme = k, qui tend

vers l’infini quand k tend vers l’infini. Pour une transformation adiabatique pV γ = cst et

donc
(

V0
Vf

)γ
=

pf
p0

et aadiabatique = k1/γ , qui tend vers l’infini quand k tend vers l’infini.

2. On ne peut pas utiliser la loi de Laplace pV γ = cst car la transformation n’est plus quasi-

statique, il faut utiliser l’expression générale du travail :

W = −p1(V1 − V0) = −kp0V0

(
1

a
− 1

)
Pour un gaz parfait U ne dépend que de la température et donc:

∆U = nCV,m(T1 − T0) =
nR

γ − 1
(T1 − T0)
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∆U =
nR

γ − 1
(T1 − T0) =

1

γ − 1
(nRT1 − nRT0) =

1

γ − 1
(p1V1 − p0V0) =

p0V0

γ − 1

(
k

a
− 1

)

Comme ∆U = W on en déduit :

p0V0

γ − 1

(
k

a
− 1

)
= −kp0V0

(
1

a
− 1

)
et après simplification:

a =
γk

(γ − 1)k + 1

qui tend vers une valeur limite a = γ
(γ−1) quand k tend vers l’infini. Lors de la compression

brutale le gaz devient incompressible, ce qui n’est pas le cas lors d’une compression quasi-

statique.

3. Un calcul élémentaire en utilisant la loi des gaz parfaits donne :

Tf =

(
1

γ
+

γ − 1

γ
k

)
T0

AN: pour un gaz parfait monoatomique γ = 5/3 et Tf = 1380 K.


