Physique II — Thermodynamique

Solutions 5

PROBLEME I TRANSFORMATIONS QUASI-STATIQUES
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En A: Do, va TO 5
En B: pg, 3V, To ;
Il vient alors pg3Vy = nR1j et donc :
. nRTO . @
PE= 3y, T 3

En C: pc =po, Vo, 1Ic ;

B — C' étant adiabatique, il vient pV'7 = cte, et donc :

pBVBY = pcVe”

= %(3%)7 = poVe?,

pour obtenir le volume final :

L71
VC:3“Y Vb

La température se trouve en notant que pcVo = nRT¢, et donc T = £ i;c, soit T =

377 Vi =
Eo 0=T0-37.



—1
En D: Vp=Ve =37 Vo, Tp =Tp, pp = “Hle = Bl — 1o

37 W 37

Sur A — B :

B B
d
Wag = / —pdV = / —nRTO—V = —nRTy ln@ = —nRTy lnB—Vb.
A A \% Va Vo

Or, sachant que la variation d’énergie interne du systéme est nulle (puisque la température reste

constante), on a AUap = Wap + Qap = 0, et donc :

Wap = —poVoIn3,

Qap = —Wap =poVoIn3.

Sur B — C :
Rpc =0,
Wpe = AUpc = Cy(Tc — 1)
=ov (35 -1) 7.
Sur C — D :

Wep =0,
Qcp = AUcp = Cy(Tp —1Tc)
—Cy (1 _ 3”771) To.
Ainsi, les énergies échangées sont :
-1
Wier = —poVoln3+Cy (375 —1) T,

—1
Quot = poVoIn3+Cy (1-377 ) Ty,

PrROBLEME II MOTEUR DE JOULE OU CYCLE DE BRAYTON

1. Le cycle est décrit dans le sens horaire sur le diagramme p-V. Il correspond donc a un

moteur thermique (W < 0).

2. e Seules les évolutions 2—3 et 4—1 correspondent & un transfert thermique. Comme

les transformations sont isobares, la chaleur échangée peut étre obtenue directement



de la variation de 'enthalpie qui, pour un gaz parfait, ne dépend que de la variation

de la température. Ainsi :

YnR

Q23 = AHy3 = Cp(T3 — T3) = o 1(T3 —Ty),
ou Cp=Cy +nRet Cy =nR/(y—1).
De méme pour (4 :
ynR
Qun =AHuy =Cp(T1 —Ty) = - 1(T1 —Ty),

e Le travail échangé lors des transformations adiabatiques est :

nR
v—1

Wipg =AU =Cy (T —Th) = (Ty —T1),

nR
v—1

Wsq = AUsy = (T4 — T3).

Le long des isobares on trouve :

Waz = —pa2(V3 = Vo) = —nR(T3 — Tb),

Wy = —p1(Vi = Vi) = —nR(T1 — Ty).

3. Le travail W échangé au cours du cycle est :

—vynR
W =Wig + Waz + Way + Wy = 77_1 (Ty — Ty + T3 — T>).
L’efficacité du cycle est :
-W T, — T,
A 1 1
Q23 T3 — 15

Pour trouver T, on utilise le fait que le long d’une transformation adiabatique on a :

Tp=1/7 = const. Ainsi pour la transformation 1—2 on obtient :

P (I=) /v
Ty =T, (P;> ~ 450 K.



La température Ty peut étre obtenue de la transformation adiabatique entre les états 3 et

4 .

P 0=/
T, =T <P?> ~ 400K,

et donc efficacité du cycle de Brayton est :

300 — 400 _

600 — 450 0,33.

n=1

. Lefficacité ncamot d’un cycle de Carnot entre les mémes sources aux températures 1) =

300K et T3 = 600 K vaut :

TICarnot = 1———=0,5

qui est donc supérieure a 'efficacité obtenue avec le cycle de Joule.

. Les évolutions 1—2 et 3—4 étant adiabatiques et quasi-statiques pour un gaz parfait :

y=1 1ny
Vo 1=y _ v, 1=y Tn _ (p2) " _
Typy ' =151, T%_<p71 -
= ~y—1 ~y—1 o
Yo 1=y _ oy, 1=y Ty _ (pa\ » _ (p1) » _ =
Typy  =Typy T3 — \p3 — \p2 =a”
. o Ty—T,
Finalement : n =1+ —=—1—+—
Tia ¥ —=Tga 7
y=1
n:l—a’Y

Il a existé des automobiles fonctionnant sur le cycle de Brayton, comme celle illustrée sur
la photo ci-dessous. Le cycle de Brayton est également rencontré dans certains réacteurs

d’avion.

Une voiture @ moteur de Brayton en 1905.



PrROBLEME III EXPERIENCE DE CLEMENT-DESORMES

1. Le diagramme (p, V) :

P2 D
N e A

o
g

Isochore

<‘V

V V2 V,

Avec A(p07T0>%>a B(plaT()’V)v C(p07T27 VvZ) et D(p27T07 VVQ)

2. Les données du probléme sont : pg, To, Vo, V et Cym. Alors, Ty et Va seront exprimés en

fonctions de ces paramétres.

La transformation AB est une isotherme. D’ou :
poVo =p1V

La transformation BC est une adiabatique. Donc :
pV7 =poVy

Alors :

_ poVo
Vv

y-1_ 1
p1 Vo=V 2V

Par la loi des gaz parfaits & I’état initial A on trouve le nombre de moles total :

_— poVo
RTy

En appliquant & nouveau la loi des gaz parfaits pour le point C, on trouve la température

TQZ

y—1 1=
TQZTQV Rl VOV




3. La transformation AB est une isotherme réversible (7' = cst) :

nRT V Vo
W=———-dV — Wag = —nRTIn — = In —
) % AB nRT In Vo poVo In %

La transformation BC est une adiabatique réversible (Q = 0) :

poVo SRR
oW =dU = TLCVJndT - Wpe = nCV,m(TQ*TO) = TCV’m Vo VO T =1

La transformation CD est un isochore (V' = cst) :

Wep =0

Le travail total est la somme de ces travaux :

v

Vo Cym..x=t. =2 Cyn
WT:WAB+WBc+WCD:p0%<ln0+ }/%’ Vvv Vi, - v; >

Anneze : Calcul du coefficient adiabatique
Dans ’état initial, le gaz parfait a un volume V{, une pression pg et une température Tj.

D’aprés ’équation d’état d’un gaz parfait,
poVo = nR1j

A la fin du processus de compression isotherme & température Tp, le gaz parfait a une pression
p1 et il est entiérement contenu dans la sphére de volume V. D’aprés 'équation d’état d’un gaz

parfait,
p1V =nR1Tj

A la fin du processus de détente adiabatique, la pression du gaz parfait est égale & la pression
initiale pg et le volume de gaz dans la sphére et la seringue est V5. D’aprés I’équation d’une

transformation adiabatique,
PV =poVy

A la fin du processus de compression isochore a volume V5, la pression du gaz parfait est py et la
température du gaz dans la sphére et la seringue est égale a la température initiale Ty. D’aprés

I’équation d’un gaz parfait,

p2Vo = nR1j



Des équations précédentes, on tire que,

ne(v) = () = (i)
Do |4 p2 nRIy Do P2

En utilisant les définitions p1 = pg + Ap1 et po = pg + Aps, 'expression précédente devient,

A A v A -
1+pl:<1+p1) <1+p2>
Po Po Po

Vu que les variations de pression sont faibles par rapport a la pression initiale, i.e. Ap; < pg et

Aps < po, le développement au 1 er ordre en Apy/pg et Aps/pg s'écrit,

A A A
L4 Ae <1+,Yp1> <1_,ym>
Po Po Po

Ap: (Apl B AP2> _ Api Apy

1+ —~1+7
Po Po Po Po Po

ou le dernier terme est un terme du 2° ordre que I’on peut négliger. Ainsi, on obtient la relation,
Ap1 = v (Ap1 — Ap)

ce qui implique que,

PrROBLEME IV CYCLE D’ATKINSON

1. Pour le processus adiabatique, p(V) = cst/V? o v > 1 et cst = p1V] = paVy' ou
cst = paV = psVi'. Pour les processus isochores, V =V, =V =cst or V = V5 = Vg =

cst. Pour les processus isobares, p(V)) = ps = ps = cst ou p(V') = pg = p1 = cst.
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2. A Tl’aide de la relation d’un processus adiabatique et de ’équation d’état du gaz parfait,

les pressions sont données par,

. E v o _TLRT5 o
P2 = Pp1 v P4 = P3 b5 = Ve Pe = P1

et les volumes par,

1

T\~ 2=t

‘/3i‘/2 ‘/21—<n‘2§5>’yx/v6v V5:‘/é
3

Les températures s’écrivent,

Vi Vi (Vi\"! p3V3
T =21 T, = (2L Ty =573
"7 hR > nR (1/'2) 57 nR

~y—1
p3Ve\ 7 .2 1 Ve
Ty = —= T Tg = ——
* ( nik ) 5 " hR

3. Les travaux effectués durant la compression adiabatique et la détente adiabatique s’écrivent,

Ty
W12 = AU12 =cnR dT = enR (T2 — Tl)
T

T5
W45 = AU45 =cnR dT = enR (T5 — T4)
Ty



Il n’y a pas de travail effectué durant I’échauffement isochore et le refroidissement isochore,
Wag = Wsg =0
Les travaux effectués durant les processus isobares s’écrivent,

4 Vi
W34=—/ pdVZ—pza/ dV = —ps (V4 — V3) = nR (13 — Tj)
3 Vs

1 i
W61 :/ pdV:pl/ dV:*pl (V1*V6) :TLR(T()*Tl)
6 Ve

Le travail effectué par cycle s’écrit,

W = Wiz + Wsq + Was + Wer
W:CTLR(TQ*Tl+T5*T4)+TLR(T3*T4+T6*T1)

4. Il n’y a pas d’échange de chaleur durant la compression adiabatique et la détente adiaba-

tique,

Q12 =0Q45 =0

Les chaleurs échangées durant I’échauffement isochore et le refroidissement isochore sont

données par,

Us T
Q23 = AU23 = / dU = cnR/ dT = cnR (Tg - TQ)
Us To

U(; T6
Q56 = AU56 = / dU = cnR/ dT = cnR (T6 — T5)
Us T5

Les chaleurs échangées durant les processus isobares s’écrivent,

Hy Ty
Qa1 = AHyy = / dH = (c + 1)nR/ dT = (c+ 1)nR (Ty — Ty)
H- T:
H; ;—’1
Qo1 = AHg, = / dH = (c + 1)nR/ dT = (c+ V)nR (T1 — Tp)
Hg Ts

La chaleur fournie au réservoir chaud s’écrit,
QT = Qa3+ Q34 = cnR (T3 — Tz) + (c+ 1)nR (Ty — T)

5. A l’aide de la définition du rendement, on obtient,
_ _K _ _C(TQ—Tl+T5—T4)+(T3—T4+T6—T1)
T T (T — T3) + (c+ 1) (T4 — T3)
(Th —To+Ty—T5)+(v—1) (Ty — T35+ Ty — Tp)
(5 = To) + v (Ty — 13)




10

PROBLEME V  CHAUFFE-EAU

Chaque seconde dans le chauffe-eau entrent 25 m/¢ d’eau. Sa température augmente de 40°C

ou 40 K. En considérant que la pression est constante, la chaleur nécessaire est donnée par :

25g

= Rama T 72 JK 'mol ™" - 40K = 4.18kJ
g mo

Q= neaucp,eauAT

Cette quantité d’énergie doit étre fournie par la combustion du méthane. Les limitations tech-
niques impliquent que le transfert de la chaleur produite par la réaction chimique vers I'eau a

chauffer s’effectue avec un rendement de 90%, d’ou :

Q = 0-9Qréaction — Qréaction = 4.64kJ

A pression atmosphérique, la combustion d’une mol de méthane libére 881kJ. Alors :

4.64kJ

= m = 527 X 10_3 mOl
mo

NCH,

Par la loi des gaz parfaits, on trouve le volume correspondant du méthane par seconde et donc

le débit volumique V a 15°C :

Ven, 1500 = 126 mé/s

PROBLEME VI CAPACITE THERMIQUE EN FONCTION DE LA TEMPERATURE

Si Cv, m, Cp, m sont les capacités thermiques molaires & volume constant et pression constante

respectivement, la relation de Mayer donne :

Alors, si on veut avoir la relation entre les capacités thermiques massiques (Cym, Cp ), on doit
diviser chacune par la masse molaire du CO :

_ R
Mco

Cvm = Cpm

Dans ce cas le volume reste constant. Ainsi, la variation de I’énergie interne est égale & la chaleur

regue par le CO.

(5@ =dU = mCQCVM drT



Puisque la capacité thermique varie selon la température, la chaleur est donnée comme :

T
Al AQ R
= Ag— —+ — — —— T
Q mco/<0 T+T2 Mco>d

in

R AQ Tr=400 K
T—AInT — =2
Mm) L ]

T

Q = mco [(Ao -

Tin=300K

PROBLEME VII LA METHODE DE RUCKHARDT (FACULTATIF)

1. Bilan des forces: md = P + fi + f;, avec :

e le poids P = —Mygey

. fl = _p055x
e les forces de pression

f2 = pséy

ou €, dénote le vecteur unitaire le long de l'axe vertical Oz, orienté vers le haut.

projette cette égalité sur Ox :

d%x
m@ = S(p —po) —mg

A T'équilibre: 0 = s(pe. — po) — mg

De =Dpo + —

mg
S

2. Pour une évolution adiabatique, quasi-statique :

Au voisinage de (po, Vo) :

dp __m
dv Vo
3. On en déduit :
P—Dpo _ p7:>p_p _ @Sx
V_1, ’YV 0 7V0

11
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4. On reporte dans la projection de la relation fondamentale de la dynamique.

d?x Do
m—s =58 |—y=—=sx| —m
2
D’ou: ‘(1127%” + Zﬁ% r = —g qui est I’équation caractéristique d’un mouvement oscillatoire

harmonique sans frottements.

5. La pulsation est :

w = 7]?082
mWy

et donc :
2 \Z
0= el 2m m 02 .
w YPos
On en déduit :
~ mW 472
7= pos? 62 |

PROBLEME VIII LIMITE A LA COMPRESSIBILITE BRUTALE D’UN GAZ (FACULTATIF) (EXA-

MEN 2015, AUTRE PROFESSEUR)

1. Le rapport volumétrique est défini comme a = % et le taux de compression comme k = Z;—g.
Pour une transformation isotherme pV = cst et donc %) = % et Qisotherme = K, qui tend

vers 'infini quand k tend vers l'infini. Pour une transformation adiabatique pV"? = cst et

v . . . . .
donc (%) = %{) et Gadiabatique = K/ 7, qui tend vers I'infini quand k tend vers I'infini.

2. On ne peut pas utiliser la loi de Laplace pV7 = cst car la transformation n’est plus quasi-

statique, il faut utiliser ’expression générale du travail :
1
W= —p1(V1 — Vo) = —kpoVo i

Pour un gaz parfait U ne dépend que de la température et donc:

nRk
v—1

AU = nC’V,m(Tl — To) = (T1 — To)
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nR 1 1 Vo [k
AU = T\~ Ty) = Ty — nRTp) = —— (Vi — poVi) = =1
U 7—1( 1 —To) 7_1(nR 1 — nRTp) ,Y_l(plvl poVo) — (a )

Comme AU = W on en déduit :
k 1
vy—1\a a

ok
(vy=—1k+1

et aprés simplification:
a =

qui tend vers une valeur limite a = ﬁ quand k tend vers l'infini. Lors de la compression
brutale le gaz devient incompressible, ce qui n’est pas le cas lors d’une compression quasi-

statique.

. Un calcul élémentaire en utilisant la loi des gaz parfaits donne :
1 -1
ﬂ—<+7k>%
8 v

AN: pour un gaz parfait monoatomique v =5/3 et Ty = 1380 K.



