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À noter: Cette série est assez longue. Nous n’attendons pas de vous d’être capable de tout

résoudre dans les trois heures de la séance d’exercices. Nous vous conseillons tout de même de

lire tous les problèmes, pour pouvoir poser vos questions si quelque chose n’est pas clair.

Problème I Poussée d’Archimède II

On imagine un ballon parfaitement sphérique rempli d’hélium. Le diamètre est de 1 m, et le

ballon ne se dilate pas.

En dérivant la formule du nivellement barométrique à température constante et de la poussée

d’Archimède, calculer l’altitude maximale que le ballon peut atteindre, en faisant les mêmes

suppositons sur l’atmosphère que nous avons faites en classe.

Constantes à utiliser:

• Densité de He : ρHe = 0.634 kg/m3

• Masse moléculaire moyenne de l’air (voir cours): M=0.0289644 kg/mole

• T=300 K

• g=9.80665 kg·m/s2

• R=8.3144598 J/(K·mol)

• La pression atmosphérique est de 1 atm
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Problème II Montgolfière miniature

Dans une pièce à 20 ◦C, à pression de 1 bar, on veut faire décoller une montgolfière miniature

en la gonflant avec de l’hélium (He = 4g/mol). On considère l’air de la pièce comme un gaz

parfait constitué, en pourcentages molaires, de 80% d’azote (N2 = 28 g/mol) et de 20% d’oxygène

(O2 = 32 g/mol).

1. Quelles sont, dans cette pièce, les masses de 1 ℓ d’air et de 1 ℓ d’hélium ?

2. En supposant la masse de la montgolfière vide égale à 10 g (son volume à vide est nég-

ligeable) et en considérant la pression à l’intérieur du ballon égale à 1 bar (on néglige la

surpression due à la tension superficielle de la membrane du ballon), calculer le volume

minimal d’hélium dans le ballon pour faire décoller la montgolfière.

3. Que deviendrait ce volume si on remplaçait l’hélium par de l’air chaud à 100 ◦C ?

Problème III Cycle thermodynamique

Supposons une transformation cyclique d’un gaz parfait à travers 4 états :

• Point A : p=1 bar; V= 1 L; T=300 K

• Transformation A−→B est une expansion isothermique jusqu’à p=0.5 bar.

• Transformation B−→C est un refroidissement isobare jusqu’à 200 K.

• Transformation C−→D est un isothermique, de retour à 1 bar.

Produire un tableau contenant p, T , et V pour les 4 points du cycle. Dessiner un diagramme

p-V et montrer le cycle et ses transformations. Montrer, ensuite, le cycle dans des diagrammes

p-T et T -V .

Problème IV Fonctions d’état?

Indice: ∆U = Q+W , de plus, pour un gaz parfait monoatomique U = 3
2nRT
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On suppose une transformation cyclique à quatres étapes d’un gaz parfait monoatomique.

• Point A est à p = 103 Pa ; V = 1 cm3; T = 373 K

• A −→ B est une compression isochore jusqu’à p = 104 Pa,

• B −→ C est une expansion isotherme jusqu’à V = 2.5 cm3,

• C −→ D est une compression isobare jusqu’à V= 1 cm3.

Calculer le travail, la chaleur, et le changement d’énergie interne pour chacune des transfor-

mations. Quelle est la variation totale de chaque quantité?

On suppose maintenant que le passage de B à C est divisé en deux sous-étapes. Pour cela on

définit un point C′ à p = 104 Pa et V = 2.5 cm3. Calculer le travail total, la chaleur totale, et le

changement totale de l’énergie interne pour le cycle A→B→C′ →C→D→A. Comparer avec les

résultats du cycle original. Quelles sont les conclusions de cette comparaison ?

Problème V Transformation d’un gaz parfait

On comprime de façon quasi-statique un piston contenant une mole de gaz parfait, initialement

à température TA = 300 K et pression pA = 1 bar, jusqu’à une température TA = TB et une

pression pB = 5 bar. La compression se produit de trois façons différentes, comme indiqué sur la

figure ci-dessous. La première compression AB est isotherme, la deuxième suit le chemin ADB,

et la troisième suit le chemin ACB. Calculer le travail reçu par le gaz de l’environnement au

cours des transformations AB, ADB et ACB et commenter les résultats trouvés.
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Problème VI Variation de l’énergie interne après mélange de deux gaz parfaits

On considère un gaz parfait placé dans deux compartiments de même volume V, aux pressions

respectives p1 = 2 bar et p2 = 1 bar, et à la même température initiale T. Le réservoir est

rigide et adiabatique (sans échange de chaleur, i.e. Q=0). On met en communication les deux

compartiments et on attend l’équilibre.

1. Calculer la variation d’énergie interne de l’ensemble.

2. A partir de considérations sur l’énergie interne du système, montrer que la température

ne change pas dans l’enceinte.

3. Calculer la pression finale.


