Physique II — Thermodynamique

Exercices 5

PROBLEME I TRANSFORMATIONS QUASI-STATIQUES

On considére n mols de gaz parfait (7 connu) dans un piston étanche, a Vp, Tp et pg. On
lui fait subir la suite de transformations quasi-statiques suivantes : Détente isotherme qui fait
passer le volume & 3V ; Compression adiabatique pour revenir a pg ; Transformation isochore

pour revenir a Tj.
1. Tracer la transformation dans un diagramme (p,V).
2. Déterminer le volume final en fonction des données.
3. Déterminer W et @ regus par le gaz au cours de la transformation en fonction de I'état

initial.

PROBLEME II MOTEUR DE JOULE OU CYCLE DE BRAYTON

On considére une machine thermique, utilisant comme fluide un gaz parfait de coefficient adia-
batique v=1.4, qui fonctionne selon le cycle indiqué dans la figure ci-dessus. Les transformations

de ce cycle, dit moteur de Joule ou cycle de Brayton, sont quasi-statiques et composées de deux



transformations adiabatiques, 1—2 et 3—4, et de deux transformations isobares, 2—3 et 4—1,
au cours desquelles le gaz se met progressivement a ’équilibre thermique avec la source chaude
a température T3 = 600 K ou la source froide a T1 = 300 K. Les pressions a 1’état 1 et a I'état
2 sont, respectivement, p; = 1 bar et po = 4 bar. On considérera une mole de gaz (n = 1) et
on notera Cp la capacité calorifique & pression constante, Cy la capacité calorifique a volume

constant et R la constante des gaz parfaits.

1. Le cycle correspond-il & un moteur thermique ou a une machine frigorifique ?

2. Trouver les expressions de la chaleur Q et du travail W échangés au cours du cycle en

fonction des données du probléme.

3. Calculer l'efficacité de cette machine en fonction des températures T, To, T3 et Ty4.

A.N.: On utilisera 0.25704/14 ~ 1.5 et 4704/14 ~ 0.67 ~ %

4. Comparer lefficacité du cycle du moteur de Joule avec celle d’un cycle de Carnot entre les

mémes sources aux températures T et Tj.

5. Exprimer I'éfficacité de cette machine en fonction du taux de compression a = %'

PrROBLEME III EXPERIENCE DE CLEMENT-DESORMES

Il est possible de déterminer le coefficient v d’un gaz parfait en mesurant les pressions obtenues
a l'aide d’une série de processus thermiques connus sous le nom d’expérience de Clément-
Desormes. Ici on considére que le gaz de quantité fixe reste confiné dans une enceinte dont
on fait varier le volume, illustré sur la figure ci-dessous.

Le tube en U permet de mesurer la pression du gaz grace au déplacement d’un liquide &
I'intérieur du tube. Le volume du tube est négligeable par rapport au volume V de la sphére.
Initialement, la vanne est ouverte et la pression pg est la pression atmosphérique, la température
Ty est la température ambiante et le volume Vj est le volume total de gaz dans la sphére et la
seringue. Ensuite, on ferme la vanne et le gaz qui se trouve dans la seringue est lentement injecté
dans la sphére. Ce processus est une compression isotherme. On mesure alors la différence de
la pression du gaz Apy entre la pression intermédiaire p; et la pression initiale pg. Ensuite, on

retire le piston de la seringue aussi rapidement que possible afin de ramener la pression du gaz



dans la sphére & sa valeur initiale py. Ce processus est une détente adiabatique. A la fin de la
détente adiabatique, le volume de gaz dans la sphére et la seringue est V5 et le systéme atteint
un état d’équilibre thermique durant une compression isochore. On mesure alors la différence
de pression Aps entre la pression finale ps et la pression initiale pg. On peut montrer que les
différences de pressions mesurées peuvent étre utilisées pour déterminer le coefficient v d’aprés

la relation,

y AP
- Apr — Ape

Cette approximation est satisfaite dans la limite ot Ap; < pg et Apy <K pg et un développement
limité au 1°" ordre en Ap;/po et Apa/poy doit étre appliqué pour établir ce résultat.

Analyser les transformations en utilisant les instructions suivantes :
1. Esquisser le diagramme (p, V') pour les trois processus que le systéme subit.
2. Déterminer la température 75 et le volume V5.

3. Déterminer le travail total W effectué par ces transformations.

PrROBLEME IV  CYCLE D’ATKINSON

James Atkinson était un ingénieur anglais qui a congu plusieurs moteurs & combustion. Le

cycle thermodynamique qui porte son nom est une modification du cycle d’Otto, congue pour



améliorer son rendement. Le prix a payer pour parvenir & un meilleur rendement est une diminu-
tion du travail effectué par cycle. Le cycle idéalisé d’Atkinson est constitué des six processus

réversibles :

e 1 —> 2 : compression adiabatique

e 2 — 3 : échauffement isochore

e 3 — 4 : échauffement isobare

e 4 — 5 : détente adiabatique

e 5 — 6 : refroidissement isochore

e 6 — 1 : refroidissement isobare

On suppose que le cycle a lieu sur un gaz parfait est caractirisé par,

c+1
c

pV =nRT U =cnRT vy =

ou ¢ est un paramétre sans dimension lié & la nature des constituants élémentaires du gaz et
égal & f/2. Les grandeurs physiques suivantes qui caractérisent le cycle sont supposées connues :
volumes Vi, Vs et Vi, pressions py et p3, température Ty et le nombre de mols n de gaz. Analyser

ce cycle en utilisant les instructions suivantes :
1. Esquisser le diagramme (p, V') du cycle d’Atkinson.

2. Déterminer les pressions ps, p4, ps, Ps, les volumes V3, Vy, Vs et les températures 11, 1o, 15,14, T,

en termes des grandeurs physiques connues.
3. Déterminer les travaux Wio, Wog, W3y, Wys, Wi, We1 et le travail W effectué par cycle.

4. Déterminer les transferts de chaleur Q12, Q23, @34, Q45, @56, Q61 €t la chaleur fournie par

la source chaude QF = Qa3 + Q34 au gaz.

5. Déterminer le rendement du cycle d’Atkinson,

w
UA:—@



PROBLEME V  CHAUFFE-EAU

Un chauffe-eau fonctionne a la combustion du méthane (CH,) que l'on considérera comme
un gaz parfait. L’eau entre dans le chauffe-eau a 15°C et en sort & 55°C avec un débit de
25m//s. Calculer le débit gazeux nécessaire en litre de méthane (mesuré a 15°C et sous 1 bar)
par seconde en supposant que le transfert de la chaleur produite par la combustion vers I'eau a

chauffer s’effectue avec un rendement de 90%.

Données : Cpeau = 1cal g 'K~!'. La chaleur de combustion du méthane sous la pression

atmosphérique est de —881kJmol ™.

PROBLEME VI CAPACITE THERMIQUE EN FONCTION DE LA TEMPERATURE

Aux faibles pressions, la capacité thermique massique a pression constante du monoxyde de
carbone CO, gaz diatomique supposé parfait, est fonction de la température absolue T selon la

loi :

A A
=t

Pour CO les valeurs numériques sont : Ag = 1.41JK 'g=1 A; = 492Jg7 ! et Ay = 1.6 x
10°JK - g~ 1.

Calculer la chaleur regue par une mol de monoxyde de carbone (Mo = 28 g/mol) lorsque ce

gaz est chauffé, & volume constant, de 27°C a 127°C.



PROBLEME VII LA METHODE DE RUCKHARDT (FACULTATIF)

po, To

T

La méthode de Ruckhardt permet de déterminer v en étudiant le mouvement d’une bille dans
un tube en verre. La bille métallique, de diamétre trés voisin de celui du tube, se comporte
comme un piston étanche. On néglige les frottements. Lorsqu’on lache la bille dans le tube de
section s, on observe des oscillations autour d’une position d’équilibre. La méthode consiste a
mesurer la période d’oscillation # du mouvement de la bille. On note Vj le volume de gaz lorsque

x = 0 et on note respectivement pgy et Ty la pression et la température extérieures.

1. En appliquant la deuxiéme loi de Newton & la bille, établir I’équation de son mouvement.

Préciser, en particulier, la pression & 1’équilibre.

2. D’un point de vue thermodynamique, le phénoméne est considéré comme pratiquement
quasi-statique et adiabatique. L’air contenu dans la bouteille est assimilé & un gaz parfait.

Déterminer 5—5 au voisinage de 'état (pg, Vo).

3. Les écarts de pression et de volume étant faibles, on approxime dV par V — Vi = sx et dp

par p — po. En déduire p — pg en fonction de x.
4. En déduire I’équation différentielle du mouvement vertical de la bille.

5. Déterminer I'expression de la période 6 et en déduire 'expression du coefficient ~.



PROBLEME VIII LIMITE A LA COMPRESSIBILITE BRUTALE D'UN GAZ (FACULTATIF) (EXA-

MEN 2015, AUTRE PROFESSEUR)

Soit un gaz parfait de coeflicient adiabatique v, de capacité calorifique molaire & volume
constant Cym et Cpm & pression constante. Un piston contient n moles de ce gaz & la pression

po et la température Tp.

1. On fait varier la pression sur le piston de maniére réversible. Calculez le rapport
volumétrique, a = %, en fonction du taux de compression, k = % dans le cas ou la
compression est isotherme et le cas ol elle est adiabatique. Vérifiez que, pour autant
que l'approximation des gaz parfaits reste valide, le rapport volumétrique, a, augmente

indéfiniment et n’est pas limité en fonction du taux de compression, k.

2. On fait maintenant varier brutalement la pression sur le piston a une nouvelle valeur
constante p;. Aprés un temps assez court le piston se stabilise et le gaz occupe maintenant
un volume Vy = % Comme la transition est trés rapide le gaz n’échange pas de chaleur
avec l'extérieur. Déterminer a en fonction de v et k& et montrer que a tend vers une limite

supérieure quand le taux de compression tend vers I'infini.

3. Dans le cas de la compression brutale, calculez la température finale Ty en fonction de -,

k et Tp pour un gaz parfait monoatomique, Ty = 300 K et k£ = 10.
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