
Physique II – Thermodynamique

Exercices 5

Problème I Transformations quasi-statiques

On considère n mols de gaz parfait (γ connu) dans un piston étanche, à V0, T0 et p0. On

lui fait subir la suite de transformations quasi-statiques suivantes : Détente isotherme qui fait

passer le volume à 3V0 ; Compression adiabatique pour revenir à p0 ; Transformation isochore

pour revenir à T0.

1. Tracer la transformation dans un diagramme (p,V ).

2. Déterminer le volume final en fonction des données.

3. Déterminer W et Q reçus par le gaz au cours de la transformation en fonction de l’état

initial.

Problème II Moteur de Joule ou cycle de Brayton

On considère une machine thermique, utilisant comme fluide un gaz parfait de coefficient adia-

batique γ=1.4, qui fonctionne selon le cycle indiqué dans la figure ci-dessus. Les transformations

de ce cycle, dit moteur de Joule ou cycle de Brayton, sont quasi-statiques et composées de deux
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transformations adiabatiques, 1→2 et 3→4, et de deux transformations isobares, 2→3 et 4→1,

au cours desquelles le gaz se met progressivement à l’équilibre thermique avec la source chaude

à température T3 = 600 K ou la source froide à T1 = 300 K. Les pressions à l’état 1 et à l’état

2 sont, respectivement, p1 = 1 bar et p2 = 4 bar. On considérera une mole de gaz (n = 1) et

on notera CP la capacité calorifique à pression constante, CV la capacité calorifique à volume

constant et R la constante des gaz parfaits.

1. Le cycle correspond-il à un moteur thermique ou à une machine frigorifique ?

2. Trouver les expressions de la chaleur Q et du travail W échangés au cours du cycle en

fonction des données du problème.

3. Calculer l’efficacité de cette machine en fonction des températures T1, T2, T3 et T4.

A.N.: On utilisera 0.25−0.4/1.4 ≈ 1.5 et 4−0.4/1.4 ≈ 0.67 ≈ 2
3

4. Comparer l’efficacité du cycle du moteur de Joule avec celle d’un cycle de Carnot entre les

mêmes sources aux températures T1 et T3.

5. Exprimer l’éfficacité de cette machine en fonction du taux de compression a = p1
p2

.

Problème III Expérience de Clément-Desormes

Il est possible de déterminer le coefficient γ d’un gaz parfait en mesurant les pressions obtenues

à l’aide d’une série de processus thermiques connus sous le nom d’expérience de Clément-

Desormes. Ici on considère que le gaz de quantité fixe reste confiné dans une enceinte dont

on fait varier le volume, illustré sur la figure ci-dessous.

Le tube en U permet de mesurer la pression du gaz grâce au déplacement d’un liquide à

l’intérieur du tube. Le volume du tube est négligeable par rapport au volume V de la sphère.

Initialement, la vanne est ouverte et la pression p0 est la pression atmosphérique, la température

T0 est la température ambiante et le volume V0 est le volume total de gaz dans la sphère et la

seringue. Ensuite, on ferme la vanne et le gaz qui se trouve dans la seringue est lentement injecté

dans la sphère. Ce processus est une compression isotherme. On mesure alors la différence de

la pression du gaz ∆p1 entre la pression intermédiaire p1 et la pression initiale p0. Ensuite, on

retire le piston de la seringue aussi rapidement que possible afin de ramener la pression du gaz



3

dans la sphère à sa valeur initiale p0. Ce processus est une détente adiabatique. A la fin de la

détente adiabatique, le volume de gaz dans la sphère et la seringue est V2 et le système atteint

un état d’équilibre thermique durant une compression isochore. On mesure alors la différence

de pression ∆p2 entre la pression finale p2 et la pression initiale p0. On peut montrer que les

différences de pressions mesurées peuvent être utilisées pour déterminer le coefficient γ d’après

la relation,

γ ≃ ∆p1
∆p1 −∆p2

Cette approximation est satisfaite dans la limite où ∆p1 ≪ p0 et ∆p2 ≪ p0 et un développement

limité au 1er ordre en ∆p1/p0 et ∆p2/p0 doit être appliqué pour établir ce résultat.

Analyser les transformations en utilisant les instructions suivantes :

1. Esquisser le diagramme (p, V ) pour les trois processus que le système subit.

2. Déterminer la température T2 et le volume V2.

3. Déterminer le travail total W effectué par ces transformations.

Problème IV Cycle d’Atkinson

James Atkinson était un ingénieur anglais qui a conçu plusieurs moteurs à combustion. Le

cycle thermodynamique qui porte son nom est une modification du cycle d’Otto, conçue pour
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améliorer son rendement. Le prix à payer pour parvenir à un meilleur rendement est une diminu-

tion du travail effectué par cycle. Le cycle idéalisé d’Atkinson est constitué des six processus

réversibles :

• 1 −→ 2 : compression adiabatique

• 2 −→ 3 : échauffement isochore

• 3 −→ 4 : échauffement isobare

• 4 −→ 5 : détente adiabatique

• 5 −→ 6 : refroidissement isochore

• 6 −→ 1 : refroidissement isobare

On suppose que le cycle a lieu sur un gaz parfait est caractirisé par,

pV = nRT U = cnRT γ =
c+ 1

c

où c est un paramètre sans dimension lié à la nature des constituants élémentaires du gaz et

égal à f/2. Les grandeurs physiques suivantes qui caractérisent le cycle sont supposées connues :

volumes V1, V2 et V6, pressions p1 et p3, température T5 et le nombre de mols n de gaz. Analyser

ce cycle en utilisant les instructions suivantes :

1. Esquisser le diagramme (p, V ) du cycle d’Atkinson.

2. Déterminer les pressions p2, p4, p5, p6, les volumes V3, V4, V5 et les températures T1, T2, T3, T4, T6,

en termes des grandeurs physiques connues.

3. Déterminer les travaux W12,W23,W34,W45,W56,W61 et le travail W effectué par cycle.

4. Déterminer les transferts de chaleur Q12, Q23, Q34, Q45, Q56, Q61 et la chaleur fournie par

la source chaude Q+ = Q23 +Q34 au gaz.

5. Déterminer le rendement du cycle d’Atkinson,

ηA = − W

Q+
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Problème V Chauffe-eau

Un chauffe-eau fonctionne à la combustion du méthane (CH4) que l’on considérera comme

un gaz parfait. L’eau entre dans le chauffe-eau à 15 ◦C et en sort à 55 ◦C avec un débit de

25mℓ/s. Calculer le débit gazeux nécessaire en litre de méthane (mesuré à 15 ◦C et sous 1 bar)

par seconde en supposant que le transfert de la chaleur produite par la combustion vers l’eau à

chauffer s’effectue avec un rendement de 90%.

Données : Cp,eau = 1 cal g−1K−1. La chaleur de combustion du méthane sous la pression

atmosphérique est de −881 kJmol−1.

Problème VI Capacité thermique en fonction de la température

Aux faibles pressions, la capacité thermique massique à pression constante du monoxyde de

carbone CO, gaz diatomique supposé parfait, est fonction de la température absolue T selon la

loi :

Cp = A0 −
A1

T
+

A2

T 2

Pour CO les valeurs numériques sont : A0 = 1.41 JK−1g−1, A1 = 492 Jg−1 et A2 = 1.6 ×

105 JK · g−1.

Calculer la chaleur reçue par une mol de monoxyde de carbone (MCO = 28 g/mol) lorsque ce

gaz est chauffé, à volume constant, de 27 ◦C à 127 ◦C.
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Problème VII La méthode de Ruckhardt (facultatif)

La méthode de Ruckhardt permet de déterminer γ en étudiant le mouvement d’une bille dans

un tube en verre. La bille métallique, de diamètre très voisin de celui du tube, se comporte

comme un piston étanche. On néglige les frottements. Lorsqu’on lâche la bille dans le tube de

section s, on observe des oscillations autour d’une position d’équilibre. La méthode consiste à

mesurer la période d’oscillation θ du mouvement de la bille. On note V0 le volume de gaz lorsque

x = 0 et on note respectivement p0 et T0 la pression et la température extérieures.

1. En appliquant la deuxième loi de Newton à la bille, établir l’équation de son mouvement.

Préciser, en particulier, la pression à l’équilibre.

2. D’un point de vue thermodynamique, le phénomène est considéré comme pratiquement

quasi-statique et adiabatique. L’air contenu dans la bouteille est assimilé à un gaz parfait.

Déterminer dp
dV au voisinage de l’état (p0, V0).

3. Les écarts de pression et de volume étant faibles, on approxime dV par V − V0 = sx et dp

par p− p0. En déduire p− p0 en fonction de x.

4. En déduire l’équation différentielle du mouvement vertical de la bille.

5. Déterminer l’expression de la période θ et en déduire l’expression du coefficient γ.
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Problème VIII Limite à la compressibilité brutale d’un gaz (facultatif) (Exa-

men 2015, autre professeur)

Soit un gaz parfait de coefficient adiabatique γ, de capacité calorifique molaire à volume

constant Cvm et Cpm à pression constante. Un piston contient n moles de ce gaz à la pression

p0 et la température T0.

1. On fait varier la pression sur le piston de manière réversible. Calculez le rapport

volumétrique, a = V0
Vf

, en fonction du taux de compression, k =
pf
p0

dans le cas où la

compression est isotherme et le cas où elle est adiabatique. Vérifiez que, pour autant

que l’approximation des gaz parfaits reste valide, le rapport volumétrique, a, augmente

indéfiniment et n’est pas limité en fonction du taux de compression, k.

2. On fait maintenant varier brutalement la pression sur le piston à une nouvelle valeur

constante p1. Après un temps assez court le piston se stabilise et le gaz occupe maintenant

un volume Vf = V0
a . Comme la transition est très rapide le gaz n’échange pas de chaleur

avec l’extérieur. Déterminer a en fonction de γ et k et montrer que a tend vers une limite

supérieure quand le taux de compression tend vers l’infini.

3. Dans le cas de la compression brutale, calculez la température finale Tf en fonction de γ,

k et T0 pour un gaz parfait monoatomique, T0 = 300 K et k = 10.


	Physique II – Thermodynamique
	Transformations quasi-statiques
	Moteur de Joule ou cycle de Brayton
	Expérience de Clément-Desormes
	Cycle d'Atkinson
	Chauffe-eau
	Capacité thermique en fonction de la température
	La méthode de Ruckhardt (facultatif)
	Limite à la compressibilité brutale d'un gaz (facultatif) (Examen 2015, autre professeur)


