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Entropie, désordre et interprétation
statistique

Dans les leçons précédentes, nous avons vu une nouvelle variable d’état : l’entropie S ainsi que
la formulation du deuxième principe de la thermodynamique en termes de variation d’entropie.
Les conséquences du deuxième principe en termes d’entropie sont formidables : ∆S > 0 donne
la direction de la flèche du temps. Autrement dit, la direction dans laquelle le temps s’écoule
correspond à une augmentation d’entropie.

1.1 Entropie, désordre et ”mort thermique”

Comme illustré sur la figure de gauche ci-dessous, l’inégalité ∆S > 0 nous indique la vraie
séquence temporelles des images.

De plus, comme illustré par le cartoon ci-dessous, tous les phénomènes naturels correspondent à
une augmentation de l’entropie et ceci correspond à une augmentation du désordre du système.
Nous allons maintenant voir que cette augmentation correspond aussi à une perte de capacité
de travail.

Chaleur indisponible et mort thermique

Nous démontrons que la quantité de chaleur qui est rendue indisponible pour effectuer un
travail net vaut Qind. = TL∆Stot, où TL est la plus basse température atteinte lors du processus
et ∆Stot est la variation totale d’entropie de l’Univers pendant le processus.

Considérons un cycle qui opère entre deux températures TH et TL et qui transfère une
quantité de chaleur Q entre ces deux réservoirs, comme illustré ci-dessous :
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Calculons le changement d’entropie :
— Le réservoir chaud donne de la chaleur : Q < 0, donc ∆SH = − Q

TH
.

— Le réservoir froid reçoit la chaleur Q donc ∆SL = Q
TL

.
— La variation d’entropie sur le cycle est nulle puisque c’est une variable d’état.

Donc le changement d’entropie totale peut être calculée comme :

∆Stot = ����∆Scycle + ∆SH + ∆SL = Q

(
1

TL
− 1

TH

)
,

en multipliant par TL, on obtient :

TL∆Stot = Q

(
1

TL
− 1

TH

)
TL = Q

(
1− TL

TH

)
.

Mais Q
(

1− TL

TH

)
est le travail maximum d’un cycle de Carnot qui fonctionne entre TH et TL

en prenant la chaleur Q du réservoir à TH , donc :

Wmax. = ηCarnotQ = TL∆Stot.

Donc tout processus qui génère de l’entropie en transférant de la chaleur de TH à TL rend cette
chaleur indisponible pour faire le maximum du travail potentiel.

Par exemple, chaud et froid se mélangent et ceci empêche les moteurs thermiques, qui
ont besoin d’une source chaude et d’une source froide (deuxième principe), de fonctionner.
Rappelons-nous de l’oiseau buveur : quand la source chaude (environnement) est à la même
température que la source froide (eau qui s’évapore), l’oiseau ne fonctionne plus et arrête de
basculer (donc de produire du travail mécanique). Le même raisonnement peut s’appliquer
à l’Univers, dans lequel l’entropie augmente de façon continue. Tôt ou tard, il y aura une
situation dans laquelle l’entropie est maximale et aucun travail sera possible. Tous les échanges
thermiques ne seront plus possibles : mort thermique.

Question : Et si l’Univers n’est pas fini ?
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Entropie, ordre et désordre

Le concept d’entropie semble être très abstrait, mais en réalité, on peut le lier aux concepts bien
plus communs d’ordre et du désordre. Les processus réels sont irréversibles et correspondent
à des passages/transitions d’un état ordonné à un état moins ordonné. Par exemple, la tasse
(état ordonné) tombe et se casse en morceaux (état désordonné). Autre exemple, le cube de
glace (cristaux ≡ état ordonné) subit une transition de phase en formant de l’eau (état moins
ordonné) et en augmentant l’entropie. En résumé, le deuxième principe nous indique que les
systèmes ont la tendance à aller vers des états de désordre et on peut donc voir l’entropie
comme mesure du désordre.

Un exemple de système très ordonné est l’ensemble des molécules complexes qui forment
l’ADN et donc la vie ! Mais si l’entropie augmente tout le temps, comment peuvent survivre
les êtres vivants dans leur état très ordonné ? Grâce au métabolisme qui n’est pas seulement
un échange de matière et d’énergie mais aussi un échange d’entropie. L’échange d’entropie
est fondamental pour maintenir un système ordonné. Chaque être vivant (si isolé) aurait la
tendance à augmenter son entropie et donc à se dégrader à un état désordonné. La seule
possibilité est de prendre de l’environnement (puisque l’être vivant n’est pas isolé) l’entropie
négative en augmentant encore plus l’entropie de l’Univers.

1.2 Interprétation statistique de l’entropie

Nous introduisons le concept de micro-état comme l’ensemble des détails microscopiques d’une
particule i ”individuelle” comme sa position xi ou sa vitesse vi et le concept de macro-état
comme l’ensemble des propriétés macroscopiques d’un système comme la pression, le volume
et la température. Avec ces ”définitions”, on peut admettre que plusieurs micro-états peuvent
décrire un même macro-état, comme illustré dans la figure ci-dessous où en échangeant une bille
rouge et une bille noire entre les parties gauche et droite, le macro-état reste inchangé mais le
micro-état est différent !

Voici un autre exemple. Nous avons 4 pièces de monnaie et on tire chaque pièce à pile (≡ 0) ou
face (≡ 1) et on regarde le résultat. Combien de macro- et micro-états possibles ?

Macro-état Σ Micro-états possibles Nombre de micro-états
4× ”1” et 0× ”0” (1111) 1
3× ”1” et 1× ”0” (1110), (1101), (1011), (0111) 4
2× ”1” et 2× ”0” (1100), (1001), (1010), (0101), (0110), (0011) 6
1× ”1” et 1× ”0” (0001), (0010), (0100), (1000) 4
0× ”1” et 4× ”0” (0000) 1
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Le nombre de macro-état est 5 tandis que le nombre de micro-état est 16= 24. Comme les pièces
ne sont pas truquées, chacun des micro-états a la même probabilité. Donc, sur quel macro-état
voulez-vous parier ? Evidemment sur le macro-état pour lequel un maximum de micro-états
sont possibles donc ”2×piles et 2×faces”.
Un autre exemple est la détente adiabatique (irréversible) de Joule illustrée ci-dessous. Dans
cette expérience, chaque particule peut être décrite pas un état binaire : ”A gauche” ou ”A
droite”.

On ne s’intéresse pas à savoir si la particule #27543 est à gauche ou à droite (micro-état)
mais plutôt combien sont à gauche et combien sont à droite (macro-état). Pour la détente de
Joule, l’intuition nous dit que de l’état initial (N ,N) : ”N particules à gauche sur N particules
au total”, on va arriver à l’état final (N

2
, N) : ”la moitié des particules à gauche”. Comment

calculer ceci ? Commençons d’abord par introduire la multiplicité de la configuration (1) WN
N0

qui par définition, dans notre cas, est le nombre de micro-états avec N0 particules à gauche sur
un total de N . Calculons la multiplicité de la configuration ”N0 particules à gauche, noté ’0’”

N Macro-état Σ Micro-états Configuration WN
N0

# total
#0 (00) (2,2) 1

2 #1 (10), (01) (1,2) 2 4=22

#2 (11) (0,2) 1

#0 (000) (3,3) 1
#1 (110), (101), (011) (2,3) 3

3 #2 (110), (101), (011) (2,3) 3 16=23

#3 (111) (0,3) 1

#0 (1111) (0,4) 1
#1 (1110), (1101), (1011), (0111) (1,4) 4

4 #2 (1100), (1001), (1010), (0101), (0110), (0011) (2,4) 6 16=24

# 3 (0001), (0010), (0100), (1000) (3,4) 4
#4 (0000) (4,4) 1

etc...

1. Dans une configuration non binaire, cette quantité est notée Ω
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Donc en général, la probabilité d’un macro-état est
WN

N0

2N
. La probabilité de n’avoir que des ”1”

ou que des ”0” décroit très rapidement avec N : 1
2N
→ 0 quand N →∞ puisque WN

N = WN
0 = 1.

La probabilité d’avoir un état très ordonné (que des ”1” par exemple) tend vers 0 lorsque N est
très grand tandis que la situation de moindre ordre (50 :50) devient très vite la plus probable
comme illustré sur la figure ci-dessous.

Formule générale de WN
N0

Considérons N = 100 pièces de monnaie avec le côté ”face” visible. On va retourner N0 pièces
du côté ”pile” (noté ”0”). Le nombre total de micro-états est 2100 et le nombre de macro-états
est 101. Considérons maintenant les 4 premiers macro-état :

— Etat 0×”pile” : aucune pièce n’a été retournée : W 100
0 = 1.

— Etat 1×”pile” : 1 seule pièce a été retourné côté ”pile” : il y a 100 possibilités de choisir
1 pièce parmi les 100 disponibles.

— Etat 2×”pile” : 2 pièces sont retournées côté ”pile” : combien de possibilités de choisir 2
pièces parmi 100 à retourner ? Pour la première pièce retournée, il existe 100 possibilités
et donc pour la deuxième pièce à retouner il ne reste plus que 99 possibilités. Mais pour
ne pas compter à double, il faut diviser par 2. On a donc W 100

2 = 100×99
2

.
— Etat 3×”pile” : 3 pièces sont retournées parmi 100 : 100 choix pour la première, 99 pour

la deuxième et 98 pour la troisième. Mais attention, chaque triplet peut être chois de
différentes façons : 3 possibilités pour la première pièce à tourner et pour chacune de
ces possibilités, 2 possibilités pour tourner la 2ème pièce. Donc le nombre de triplets
distincts est donc : W 100

3 = 100×99×98
3×2

.
— On trouve ainsi la règle générale pour le coefficient binomial

W 1
N0

00 =
100× 99× ...× (100−N0 + 1)

N0 ×N0 − 1× ...× 2× 1
=

100!
(100−N0)!

N0!
=

100!

(100−N0)!N0!
,

où l’on a introduit la notation factorielle ” !”.
On peut encore plus généraliser pour N pièces au lieu de 100 :

WN
N0

=
N !

N0!(N −N0)!
=

(
N
N0

)
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La multiplicité du macro-état avecN0×”pile” correspond au nombre de possibilités de choisirN0

objects parmi un total de N objets, sans considérer l’ordre. Par exemple, pour N = 3 et N0 = 2,
on obtient W 3

2 = 3!
2!(3−2)!

= 3 et pour N = 4 et N0 = 3, W 4
3 = 4!

3!(4−3)!
= 4. On remarquera

également que WN
N = N !

N !(N−N)!
= WN

0 = N !
0!(N−0)!

= 1 et aussi que WN
N−1 = WN

1 = N .

Probabilité maximale

Intéressons nous maintenant à une question importante : quel est le maximum de WN
N0

qui
désigne la configuration la plus problable ? Nous devons trouver le maximum de WN

N0
= Ω, ou

pour simplifier le calcul de ln(Ω). Or trouver un extremum revient à dire que la dérivée à ce
point-là est nulle :

d ln(Ω)

dN0

=
d

dN0

{
ln

(
N !

N0!(N −N0)!

)}
=

d

dN0

{ln(N !)− ln(N0!)− ln((N −N0)!)}

= − d

dN0

{ln(N0)!− ln((N −N0)!)}

= − d

dN0

{N0 lnN0 −��N0 + (N −N0) ln(N −N0)− (N −��N0)}

= − d

dN0

{N0 lnN0 + (N −N0) ln(N −N0)}

= −

{
lnN0 +

�
�
�N0

N0

− ln(N −N0)−
�
�

�
��N −N0

N −N0

}
= − lnN0 + ln(N −N0)

= 0,

où l’on a utilisé la formule de Stirling (2) : ln(n!) → n lnn − n quand n → ∞. Le maximum
correspond à l’annulation de la dérivée donc

lnN = ln(N −N0)⇔ N0 = N −N0 ⇒ N0 =
N

2
.

L’état le plus probable correspond à l’état avec la moitié des par particules à droite et l’autre
moitié à gauche, ce qui correspond au macro-état le plus désordonné. Si on remplace cette
valeur dans l’expression du coefficient binomial et en utilisant une autre formule de Stirling
n! '

√
2πn

(
n
e

)n
, on obtient :

Ωmax = WN
N/2 '

√
2

πN
2N

qui augmente rapidement avec N et la probabilité

Ωmax

2N
=

√
2

πN
.

2. Pas Robert, celui du cycle ! Mais James, un mathématicien écossais du 18ème siècle
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