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1.1 Du cycle réversible au cycle irréversible . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Le deuxième principe de la thermodynamique en terme d’entropie . . . . . . . . 5
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Entropie et irréversibilité

Commençons par un rappel sur les variations d’entropie en fonction de la réversibilité ou pas
des transformations :

Transformation réversible ∆Stot = 0
Transformation irréversible ∆Stot > 0

Cycle réversible
∮

rév.
δQ
T

= 0

Cycle irréversible
∑

irrév., cycle
δQ
T
< 0

1.1 Du cycle réversible au cycle irréversible

Système piston-cylindre avec 2 poids

Considérons la situation décrite ci-dessous où un poids de masse M est rajouté puis retiré d’un
piston sur lequel se trouve déjà un poids de masse M .

Quel le travail fait par le gaz (qui est égal et opposé au travail fait par la force externe) ?
Entre les équilibres (1) et (2), ce travail vaut W1→2 = pext.∆V = 2Mg

A
A(z2 − z1) = −2Mg(z1 −

z2)< 0 tandis qu’entre les équilibres (2) et (3), W2→3 = pext.∆V = Mg
A
A(z1 − z2) = Mg(z1 −
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z2)> 0. Le travail total vaut donc :

Wcycle = W1→2 +W2→3 = −2Mg(z1 − z2) +Mg(z1 − z2) = −Mg(z1 − z2) < 0.

Ce qui donne Qcycle = Wcycle < 0 et donc
∑

cycle
δQ
T
< 0 donc le cycle est irréversible.

Système piston-cylindre avec poids fragmentés

On étudie maintenant une situation presque identique (voir ci-dessous) sauf que le masse addi-
tionnelle est remplacée par N petits poids de masse ∆m = M

N
.

A chaque étape, le système se met hors-équilibre (mais de peu), le piston descend un peu et le
système retrouve un nouvel équilibre et ainsi de suite... une fois tous les petits poids posés, on les
retire lentement un par un. A la fin, le système a parcouru un cycle en revenant l’état d’équilibre
(1), équivalent à l’état d’équilibre (3). Cependant, le monde extérieur a changé : un petit poids
de masse ∆m a perdu de l’énergie potentielle ∆Epot. = −∆mg∆ztot. Le monde extérieur a fait
un travail sur le système |Wcycle| = ∆mg∆ztot donc le système |Qcycle| = ∆mg∆ztot (chaleur)
au monde extérieur. Dans la limite où N tend vers l’infini, ∆m tend vers 0 et donc |Qcycle| → 0,
soit finalement ∑

cycle

δQ

T
→

∮
rév.

δQ

T
= 0.

Donc une succession infinie d’états d’équilibre infiniment proches donne un cycle réversible.
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1.2 Le deuxième principe de la thermodynamique en

terme d’entropie

En plus des rappels du préambule, nous savons que
∮

δQ
T
> 0 est impossible et ∆Stot < 0 pour

un système isolé est aussi impossible. Nous allons démontrer l’équivalence de
∑

cycle
δQ
T
≤ 0 et

∆S ≥ 0 pour un système isolé. Pour cette démonstration, on considère un cycle composé de
deux transformations : une réversible et l’autre pas comme illustré ci-dessous. Comme le cycle
est irréversible, on sait que

∑
cycle

δQ
T

doit être négatif.

∑
cycle

δQ

T
=

B∑
A

δQ

T︸ ︷︷ ︸
irréversible

+
A∑
B

δQ

T︸ ︷︷ ︸
réversible

< 0⇒
B∑
A

δQ

T

∣∣∣∣
irrév.︸ ︷︷ ︸

ne correspond pas à ∆S!

+

∫ A

B,Γ

δQ

T
=

B∑
A

δQ

T

∣∣∣∣
irrév.

+(SA−SB) < 0

donc SB − SA >
∑B

A
δQ
T

∣∣
irrév.

⇔ dS > δQ
T

∣∣
irrév.

mais si le système est isolé : δQ = 0 et donc
SB − SA > 0⇒ ∆S > 0.

Discussion : Comme tous les processus réels sont irréversibles, on peut dire que l’entro-
pie de tout système plus celle de l’univers extérieur augmente à la suite de tout processus
naturel. Si l’entropie d’une partie de l’univers diminue, l’entropie d’une autre partie de l’univers
doit augmenter encore plus afin que l’entropie totale augmente toujours.

1.3 Equivalence avec l’énoncé de Clausius

Le deuxième principe de la thermodynamique en terme d’entropie est équivalent aux énoncés
de Clausius et Kelvin-Planck. Démontrons-le avec un raisonnement par l’absurde (figure ci-
dessous) : supposons un processus dans lequel la chaleur passe spontanément du corps froid au
corps chaud (en contradiction avec Clausius), alors

∆Stot =
Q

TH
− Q

TL
= Q

(
1

TH
− 1

TL

)
< 0! puisque TH > TL.

Donc, l’inégalité ∆Stot > 0, qui est équivalent au deuxième principe de la thermodynamique,
nous fournit la règle pour déterminer quelles transformations sont possibles. En effet, la seule
façon de déterminer la direction du temps est de savoir dans quelle direction temporelle, l’en-
tropie augmente.
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