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Table des matières

1.1 Une nouvelle variable d’état : l’entropie S . . . . . . . . . . . . . . . . . . . . . 3
1.2 Entropie pour un gaz parfait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Le diagramme T − S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Exemples de calcul de l’entropie . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Physique générale II 2020 2 Prof. Ivo Furno



Entropie et deuxième principe

1.1 Une nouvelle variable d’état : l’entropie S

Nous avons discuté plusieurs aspects du 2ème principe mais pas encore une solide formulation
mathématique. Les différents énoncés du deuxième principe sont basés sur l’observation que
même si certains processus sont permis par le premier principe, ils n’ont pas lieu spontanément
dans la nature. Par exemple :

— La chaleur ne passe pas spontanément d’un corps froid à un corps chaud.
— On ne peut pas transformer entièrement de la chaleur en travail mécanique.
— Le rendement d’un moteur est strictement inférieur à 1.
— La nature semble être irréversible : jamais une tasse brisée au sol ne se reconstruit toute

seule !

Le but de ce cours est de formuler ces règles empiriques en loi plus générale, mathématiquement
précise. Ceci nous amènera à la définition d’une nouvelle variable d’état : l’entropie S.

Reprenons le cycle de Carnot (ci-dessus) qui, pour rappel, est réversible et peut donc fonctionner
comme réfrigérateur. Le rendement d’un moteur de Carnot vaut

η = 1− |QL|
|QH |

= 1− TL
TH
⇒ |QL|
|QH |

=
TL
TH

,

avec les signes

−QL

TL
=
QH

TH
moteur et − QH

TH
=
QL

TL
réfrigérateur.
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1.1 Une nouvelle variable d’état : l’entropie S 4

Donc sur le cycle de Carnot, on peut écrire

QH

TH
+
QL

TL
= 0 ⇒

∑ Q

T
= 0, ou bien

∮
δQ

T
= 0.

Note 1 Pour démontrer le théorème de Carnot, nous avons utilisé uniquement le fait que le
cycle de Carnot est réversible.

Note 2 Nous avons trouvé le même rendement que le cycle de Stirling ”idéalisé” (sans
pertes), donc réversible. Donc, pour autant que un cycle soit réversible et il ”travaille”
(échange) chaleur entre les deux températures fixes TH et TL, il semble que l’on puisse
appliquer la formule de Carnot. En effet, les résultats de Carnot sont très généraux car
tout cycle réversible peut être vu comme une somme de cycles ”infinitésimaux” de Carnot.
Démontrons ce résultat du point de vue graphique ci-dessous :

La chaleur rejetée par le cycle i − 1 est reçue par le cycle i. Les échanges ”intermédiaires” se
compensent donc

∮
rev

δQ

T
= 0 pour tout cycle réversible.

Si
∮

rev
δQ
T

= 0, alors
∮ B
A,rev

δQ
T

est indépendant du chemin suivi (réversible).

Démonstration :
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1.1 Une nouvelle variable d’état : l’entropie S 5

Pour le cycle ci-dessus, on a

∮
rev

δQ

T
=

∫ B

A,Γ1

δQ

T
+

∫ A

B,Γ2

δQ

T
= 0,

mais le cycle est réversible donc le chemin Γ2 peut être parcouru dans le sens inverse :

∫ A

B,Γ2,rev.

δQ

T
= −

∫ B

A,Γ2,rev.

δQ

T
⇒

∫ B

A,Γ1

δQ

T
−
∫ B

A,Γ2

δQ

T
= 0.

Autrement dit ∫ B

A,Γ1

δQ

T
=

∫ B

A,Γ2

δQ

T
,

pour tous les chemins Γ1 et Γ2 réversibles. Donc l’intégrale ne dépend du parcours suivi.

La quantité
∫ B
A,rev.

δQ
T

représente la variation d’une variable d’état : l’entropie S.

SB − SA =

∫ B

A,rev.

δQ

T
et dS =

δQ

T

∣∣∣∣
rev.

est un différentiel exact.

L’unité de l’entropie est J
K

ou parfois cal
K

.

Remarque : L’entropie est une variable d’état donc ∆S = Sfinal − Sinitial est toujours vrai, ce-

pendant, ce n’est uniquement sur un chemin réversible que l’on peut calculer ∆S avec
∫ final

initial
δQ
T

.

Bonne nouvelle ! Nous avons donc une nouvelle quantité pour décrire un système ther-
modynamique : p, V , T , n et S, et dans la section suivante, nous allons dériver une équation
d’état pour les gaz parfaits avec S.
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1.2 Entropie pour un gaz parfait 6

1.2 Entropie pour un gaz parfait

En se rappelant que le premier principe de la thermodynamique s’écrit dU = δQ − δW , que
δW = pdV et que dU = nCV dT , on peut écrire

dS =
δQ

T

∣∣∣∣
rev.

=
dU + δW

T

∣∣∣∣
rev.

=
dU + pdV

T

∣∣∣∣
rev.

= nCV
dT

T

∣∣∣∣
rev.

+
pdV

T

∣∣∣∣
rev.

.

De plus, la loi des gaz parfaits pV = nRT donne : d(pV ) = V dp + pdV = nRdT (pas de
variation de quantité de matière) soit pdV = nRdT − V dp. Ce qui donne

dS = nCV
dT

T
+ nR

dT

T
− V dp

T
,

où l’on a laissé tomber la notation |rev. pour plus de clarté. De plus, toujours par la loi des gaz
parfaits, on peut écrire V

T
= nR

p
, ce qui donne

dS = (nCV + nR)
dT

T
− nRdp

p
= nR

[(
1 +

CV
R

)
dT

T
− dp

p

]
.

En intégrant, on obtient :

S = nR
[
ln
(
T 1+

CV
R

)
− ln(p)

]
+ const. = nR ln

(
T 1+

CV
R

p

)
+ const.

En exprimant l’exposant de T en fonction de l’index adiabatique γ : 1 + CV
R

= R+CV
R

= Cp
R

=
CP
R

CV
CV

= γ CV
R
⇒ CV

R
(γ − 1) = 1⇒ CV

R
= 1

γ−1
⇒ 1+ 1

γ−1
= γ

γ−1
, on obtient finalement une autre

équation d’état pour les gaz parfaits avec les variables d’états p, T , n et S :

S = nR ln

(
T

γ
γ−1

p

)
+ const.

1.3 Le diagramme T − S
Comme l’entropie est une variable d’état, elle peut être utilisée pour représenter l’état d’un
système dans un diagramme. On utilise souvent le diagramme T−S. Toutes les autres grandeurs
peuvent s’exprimer en fonction de T et S : U = U(T, S), p = p(T, S), V = V (T, S), etc... Un
exemple de diagramme T − S est donné sur la figure ci-dessous :
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Ce diagramme est utile pour calculer les chaleurs mises en jeu, puisque

δQ = TdS (rév.), Q =

∫ B

A,rév,Γ

TdS → aire sous la courbe Γ.

Pour un cycle (figure de droite ci-dessus), l’aire sous la courbe Γ1 correspond à |QH | et l’aire
sous la courbe Γ2 correspond à|QL|, donc Qcycle = W = aire (moteur) = |QH | − |QL|.

Diagramme T − S d’un cycle de Carnot

Pour rappel, ce cycle est constitué de 2 isothermes et 2 adiabatiques. Dans le diagramme T −S,
le cycle de Carnot a l’allure représentée ci-dessous :

Note : Pour une transformation adiabatique réversible, δQ = 0 ⇔ dS = 0, donc une adiaba-
tique réversible est une transformation iso-entropique.

Pour le cycle de Carnot

W = Q = (Smax − Smin)× (TH − TL)⇔ QH = (Smax − Smin)× TH ,

et retrouver le rendement connu de ce cycle :

η =
|W |
|QH |

= (
(((

(((((Smax − Smin)× (TH − TL)

(((
((((

(
(Smax − Smin)× TH

= 1− TL
TH

.

1.4 Exemples de calcul de l’entropie

Liquéfaction ”réversible”

Supposons un réservoir thermique à T = 0◦C en contact avec 1 kg de glace à 0◦C. La glace
fond entièrement en restant ∼ à la même T = 0◦C. Le tout est isolé de l’environnement. Quelle
est la variation d’entropie de la glace ? Quelle est la variation d’entropie totale ?

∆Sglace =

∫
rév.

δQ

T
=

1

T︸︷︷︸
=const

∫
rév.

δQ = +
Qtot

T
=
mgLg
T
' 1× 80

273
= 0.3 kcal/K,

Physique générale II 2020 Prof. Ivo Furno



1.4 Exemples de calcul de l’entropie 8

où le signe ”+” indique que la chaleur est reçue par la glace et Lg est la chaleur latente de
fusion. Pour le réservoir :

∆Srés. =
1

T

∫
rév.

δQ = −Qtot

T
= −mgLg

T
' −0.3 kcal/K,

où le signe ”-” indique que la chaleur est perdue par le réservoir. La variation totale d’entropie
est donc :

∆Stot. = ∆Sglace︸ ︷︷ ︸
>0

+ ∆Srés.︸ ︷︷ ︸
<0

= 0 (processus réversible).

Deux corps à température différente mis en contact thermique

Cette situation plus ”réaliste” est illustrée par la figure ci-dessous :

Il s’agit d’une transformation irréversible. Ce n’est pas une succession d’état d’équilibre car les
deux températures sont différentes. Sans faire les calculs, on peut déterminer le signe de ∆Stot.
Après avoir remarqué que pour la température finale TF , on a : TL < TF < TH , on peut écrire

∆Stot = −
∫
H,rév

|δQ|
T︸ ︷︷ ︸

donne de la chaleur

+

∫
L,rév

|δQ|
T︸ ︷︷ ︸

reçoit de la chaleur

.

On peut approximer l’intégrale en utilisant une température moyenne (comme si on donnait la
même chaleur à température constante).

∆Stot ' −
∫
H,rév

|δQ|
TH

+

∫
L,rév

|δQ|
TL

= − 1

TH

∫
rév

|δQ| +
1

TL

∫
rév

|δQ| = −|Q|
TH

+
|Q|
TL

= |Q|
(

1

TL
− 1

TH

)
> 0,

car TL < TL < TF < TH < TH . Donc ∆Stot > 0, l’entropie totale augmente pour cette trans-
formation irréversible.
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1.4 Exemples de calcul de l’entropie 9

Détente de Joule

Nous avons déjà étudié cette transformation, représentée ci-dessus, dans le cadre du permier
principe de la thermodynamique comme exemple de transformation adiabatique irréversible :
Q = 0 et W = 0 donc ∆U = 0 et ∆T = 0 pour un gaz parfait à l’équilibre.
Même si le système passe à travers une série d’états hors-équilibre pour lesquels p, T et V ne sont
même pas définis, peut-on dire quelque chose concernant la variation d’entropie ? Par exemple,
peut-on dire que ∆Sgaz = 0 puisque δQ = 0 ? La réponse est non ! car la transformation
est irréversible et on ne sait calculer une variation d’entropie que pour les transformations
réversibles : ∆Sgaz =

∫ fin.

ini.
δQ
T

∣∣
rév.

. Mais l’entropie est une variable d’état ! on peut donc choisir
n’importe quel chemin réversible qui nous amène du même état initial au même état final et
ainsi évaluer la variation d’entropie de la détente de Joule. Prenons, par exemple, la détente
isotherme pour laquelle dU = 0 puisque T est constant :

∆Sgaz =

∫ fin.

ini.

δQ

T

∣∣∣∣
rév.

=

∫ fin.

ini.

δW

T
=

∫ fin.

ini.

pdV

T
=

1

T

∫ fin.

ini.

pdV.

On termine le calcul en utilisant la loi des gaz parfaits pV = nRT et en remarquant que
Vfin. = 2Vini. :

∆Sgaz =
1

T

∫ fin.

ini.

pdV =
1

��T

∫ fin.

ini.

nR��T
dV

V
= nR ln

(
Vfin.

Vini.

)
= nR ln(2)> 0.

Nous aurions pu trouver le même résultat en utilisant l’expression de l’entropie pour les gaz
parfaits.

Cycle réfrigérateur (irréversible) dans la cuisine

⇒ ⇒

⇒ ⇒
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1.4 Exemples de calcul de l’entropie 10

L’idée de l’exercice consiste à faire un cycle i.e. arriver à un état final identique à l’état initial
en débranchant et rebranchant le réfrigérateur.

— On part de l’état initial (vignette #1, ci-dessus) pour lequel T1,i > T2,i (par exemple :
T1,i = 20◦C et T2,i = 5◦C).

— On débranche le réfrigérateur : la chaleur δQ passe de la cuisine au réfrigérateur (vignette
#2) selon le deuxième principe et le transfert de chaleur s’arrête quand les températures
du réfrigérateur et de la cuisine sont égales : T1 = T2 = TF (vignette #3). Calculons la
variation d’entropie

dStot = dScuisine + dSréfrigérateur ' −
|δQ|
T1

+
|δQ|
T2

> 0,

puisque T2 < T1. Remarquons que ce processus est irréversible. Une fois l’équilibre
thermique atteint, nous avons une cuisine plus froide et un réfrigérateur plus chaud.
Donc, pour boucler le cycle, il faut rebrancher le réfrigérateur.

— Ok, c’est fait. Le compresseur extrait de la chaleur du réfrigérateur et l’injecte dans la
cuisine... mais pour cela il faut du travail δW (vignette #4) ! Pour revenir à T2,i, il faut
extraire la quantité δQ du réfrigérateur. La cuisine reçoit quant à elle : δQ1 = δQ+δW >
δQ donc la température dans la cuisine est supérieure à la température initiale : T ′1 > T1,i

donc le système n’est pas revenu à l’état initial !
— Pour revenir à l’état initial et donc compléter le cycle, il faut évacuer la chaleur δQ′1 en

surplus de la cuisine vers le monde extérieur (vignette #5)
Nous avons donc complété un cycle irréversible. Quelle est la variation de la quantité δQ

T
du

système cuisine + réfrigérateur ? ∑
cycle irrev.

δQ

T
' δQ′1

T ′1
< 0,

car δQ′1 est perdue par le système. Donc pour un cycle irréversible, on a∑
cycle irrev.

δQ

T
6= ∆S.
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