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Entropie et deuxieme principe

1.1 Une nouvelle variable d’état : I’entropie S

Nous avons discuté plusieurs aspects du 2eme principe mais pas encore une solide formulation
mathématique. Les différents énoncés du deuxieme principe sont basés sur 1’observation que
meéme si certains processus sont permis par le premier principe, ils n’ont pas lieu spontanément
dans la nature. Par exemple :

— La chaleur ne passe pas spontanément d’un corps froid a un corps chaud.

— On ne peut pas transformer entierement de la chaleur en travail mécanique.

— Le rendement d’un moteur est strictement inférieur a 1.

— La nature semble étre irréversible : jamais une tasse brisée au sol ne se reconstruit toute

seule !

Le but de ce cours est de formuler ces regles empiriques en loi plus générale, mathématiquement
précise. Ceci nous amenera a la définition d’'une nouvelle variable d’état : ’entropie S.

Reprenons le cycle de Carnot (ci-dessus) qui, pour rappel, est réversible et peut donc fonctionner
comme réfrigérateur. Le rendement d'un moteur de Carnot vaut

Q] Ty |Qu T

=1 =1- = = —,
Q| Ty |Qul Tm
avec les signes
—% = % moteur et — % = & réfrigérateur.
Ty, Ty Th 17,
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1.1 Une nouvelle variable d’état : I’entropie S 4

Donc sur le cycle de Carnot, on peut écrire

Qu  Qr _ Q _ : %562_
TH+TL_0 = ZT—O,oublen T—O.

Note 1 Pour démontrer le théoreme de Carnot, nous avons utilisé uniquement le fait que le
cycle de Carnot est réversible.

Note 2 Nous avons trouvé le méme rendement que le cycle de Stirling ”idéalisé” (sans
pertes), donc réversible. Donc, pour autant que un cycle soit réversible et il "travaille”
(échange) chaleur entre les deux températures fixes Ty et Ty, il semble que l'on puisse
appliquer la formule de Carnot. En effet, les résultats de Carnot sont tres généraux car
tout cycle réversible peut étre vu comme une somme de cycles ”infinitésimaux” de Carnot.
Démontrons ce résultat du point de vue graphique ci-dessous :

La chaleur rejetée par le cycle i — 1 est regue par le cycle ¢. Les échanges ”intermédiaires” se
compensent donc

4]
]{ ?Q = 0 pour tout cycle réversible.
rev

Si §, % =0, alors fﬁrev % est indépendant du chemin suivi (réversible).

Démonstration :
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1.1 Une nouvelle variable d’état : I’entropie S

Pour le cycle ci-dessus, on a

Sy G

T Jar, T Jpr, T

mais le cycle est réversible donc le chemin I's peut étre parcouru dans le sens inverse :

/A 5@ /B 5@ /B 5@ B 5@
== =S S . )
B,I's,rev. T A,I'g,rev. T AT T Al T

Autrement dit
/ PoQ _ [P

an, T Ar, T

pour tous les chemins I'y et [y réversibles. Donc l'intégrale ne dépend du parcours suivi.

La quantité ffrev‘ ‘%Q représente la variation d’une variable d’état : I’entropie S.
B
) )
Sp—S4 = / —Q et dS = —Q est un différentiel exact.
Arev. T T rev.

) 1z ) : J i cal
L’unité de I'entropie est 3 ou parfois <.

Remarque : L’entropie est une variable d’état donc AS = Sgual — Sinitial €St toujours vrai, ce-

pendant, ce n’est uniquement sur un chemin réversible que I'on peut calculer AS avec |,

final §Q
initial T °

Bonne nouvelle! Nous avons donc une nouvelle quantité pour décrire un systeme ther-
modynamique : p, V, T, n et S, et dans la section suivante, nous allons dériver une équation

d’état pour les gaz parfaits avec S.
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1.2 Entropie pour un gaz parfait 6

1.2 Entropie pour un gaz parfait

En se rappelant que le premier principe de la thermodynamique s’écrit dU = 6Q) — W, que
OW = pdV et que dU = nCydT', on peut écrire

~0Q _dU + oW AU + pdV pdV
B T rev. N T B T T

De plus, la loi des gaz parfaits pV = nRT donne : d(pV) = Vdp + pdV = nRdT (pas de
variation de quantité de matiere) soit pdV = nRdT — Vdp. Ce qui donne

T dr d
dS =nCy = +nR— — v

dr

dS == TLCV ?

rev. rev. rev. rev.

T T
ou l'on a laissé tomber la notation |, pour plus de clarté. De plus, toujours par la loi des gaz
parfaits, on peut écrire % = %, ce qui donne
dr dp Cy\ dT'" dp
dS=mnCy+nR)— —nR—=nR||1+— | ———]|.
(nCy +nR) T ) n [( = ) T

En intégrant, on obtient :

T+
S=nR [ln (T”CTY) — ln(p)] + const. = nR1In < - ) + const.

p
En exprimant ’exposant de T en fonction de 'index adiabatique v : 1 + c_}¥ = R*—RCV = % =
C—é’g—‘v’ = vc—hi,f = %/ v—-1)=1= %’ = ,Y—il = 1+ﬁ = 77, on obtient finalement une autre

équation d’état pour les gaz parfaits avec les variables d’états p, T, n et S :

T
S=nRln < > + const.
p

1.3 Le diagramme 7' — S

Comme l’entropie est une variable d’état, elle peut étre utilisée pour représenter ’état d’un
systeme dans un diagramme. On utilise souvent le diagramme T'—.S. Toutes les autres grandeurs
peuvent s’exprimer en fonction de T et S : U = U(T,S), p = p(T,S5), V = V(T,S5), etc... Un
exemple de diagramme 7" — S est donné sur la figure ci-dessous :

Etat aliguilibre = goiuk A e T-$

Tl s e Mo TS

4

— J

T
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1.4 Exemples de calcul de ’entropie 7

Ce diagramme est utile pour calculer les chaleurs mises en jeu, puisque

B

0Q =TdS (rév.), Q= TdS — aire sous la courbe I'.
Ayxrév,I’

Pour un cycle (figure de droite ci-dessus), I’aire sous la courbe I'y correspond a |Qy| et laire
sous la courbe I'y correspond a|Q |, donc Qeyee = W = aire (moteur) = |Qp| — |QL|.
Diagramme 7' — S d’un cycle de Carnot

Pour rappel, ce cycle est constitué de 2 isothermes et 2 adiabatiques. Dans le diagramme T — 5,
le cycle de Carnot a 'allure représentée ci-dessous :

T a !5&]’&

A A

TwhF-— \\
\ - adiak. riv.

"“‘“*U(/

2N
AN

S'n-.i v S-mw

o

Note : Pour une transformation adiabatique réversible, 6 = 0 < dS = 0, donc une adiaba-
tique réversible est une transformation iso-entropique.
Pour le cycle de Carnot

W= Q = (Smax - Smin) X (TH - TL) = QH = (Smax - Smin) X THa

et retrouver le rendement connu de ce cycle :

|Qul (Semae—min) X T Ty

1.4 Exemples de calcul de I’entropie

Liquéfaction ”réversible”

Supposons un réservoir thermique a 7' = 0°C en contact avec 1 kg de glace a 0°C. La glace
fond entierement en restant ~ a la méme 7' = 0°C. Le tout est isolé de I'environnement. Quelle
est la variation d’entropie de la glace ? Quelle est la variation d’entropie totale ?

5@ 1 Qtt myL 1 x 80
ASpuee = | 22 2 [ so= 1St Mot — 0.3keal /K
S /réV_T T /;_Q T T o7 O3keal/K,

=const
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1.4 Exemples de calcul de ’entropie 8

ou le signe "+ indique que la chaleur est recue par la glace et L, est la chaleur latente de
fusion. Pour le réservoir :

1 Qtot my L
ASyes. = = 0Q = — =29 ~ (.3kecal /K
ou le signe "-” indique que la chaleur est perdue par le réservoir. La variation totale d’entropie

est donc :

ASior. = ASglace + ASyss, = 0 (processus réversible).
—_——

>0 <0

Deux corps a température différente mis en contact thermique

Cette situation plus "réaliste” est illustrée par la figure ci-dessous :

Foves s ~—-- - 1

fyjb}ue Y,{J‘HM(’
g 1508¢ 4 1sofe’

\& .
-“p - 7 '
grabiwikidl ayav J*W!&'f
Il s’agit d’une transformation irréversible. Ce n’est pas une succession d’état d’équilibre car les

deux températures sont différentes. Sans faire les calculs, on peut déterminer le signe de ASi.
Apres avoir remarqué que pour la température finale Tr, on a : T, < Tp < Ty, on peut écrire

00| / 00|
ASior = —/ — + —_— .
ot Hrév TJ N L,rév T

(.

Vv Vo
donne de la chaleur  recoit de la chaleur

On peut approximer l'intégrale en utilisant une température moyenne (comme si on donnait la
méme chaleur a température constante).

0Q) / 0Q 1 / 1 / Q] 1Q 1
ASOZ—/ e + _ = = 6@ + = 5@ :—:+::Q _ — =
ot H,rév TH L,rév TL TH rév ’ ’ TL rév | | TH TL | | TL TH

car T;, < T;, < Tp < Ty < Ty. Donc AS,,, > 0, 'entropie totale augmente pour cette trans-
formation irréversible.
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1.4 Exemples de calcul de ’entropie 9

Détente de Joule

$227) gae(i)

El'aPér'mdﬂ ©

Nous avons déja étudié cette transformation, représentée ci-dessus, dans le cadre du permier
principe de la thermodynamique comme exemple de transformation adiabatique irréversible :
Q=0et W =0donc AU =0 et AT = 0 pour un gaz parfait a I’équilibre.

Meéme si le systeme passe a travers une série d’états hors-équilibre pour lesquels p, T" et V' ne sont
méme pas définis, peut-on dire quelque chose concernant la variation d’entropie ? Par exemple,
peut-on dire que ASg,, = 0 puisque 6¢) = 07 La réponse est non! car la transformation
est irréversible et on ne sait calculer une variation d’entropie que pour les transformations
réversibles : ASg,, = li:l ‘%Q o Mais I'entropie est une variable d’état! on peut donc choisir
n’importe quel chemin réversible qui nous amene du méme état initial au méme état final et
ainsi évaluer la variation d’entropie de la détente de Joule. Prenons, par exemple, la détente

isotherme pour laquelle dU = 0 puisque T est constant :

fin. fin. fin. fin.
sl W ffpav 1
ssw= [ CF| =L T T,

ini. T
On termine le calcul en utilisant la loi des gaz parfaits pV = nRT et en remarquant que
Vﬁn. = 2‘/Eni. :

1 fin. 1 fin. d n
ASya, = T/ pdV = = nRTVV =nRIn (:;ﬁ

ini. ini.

) =nRIn(2)> 0.

Nous aurions pu trouver le méme résultat en utilisant ’expression de ’entropie pour les gaz
parfaits.

Cycle réfrigérateur (irréversible) dans la cuisine

Cuisine | Frigo Quisine | Frigo Cvisine | Frigo
—_—
Cvisine Sw Cuisine Feigo
L >k T i
%]
= =
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1.4 Exemples de calcul de ’entropie 10

L’idée de I'exercice consiste a faire un cycle i.e. arriver a un état final identique a 1’état initial
en débranchant et rebranchant le réfrigérateur.

— On part de I'état initial (vignette #1, ci-dessus) pour lequel T7; > T5; (par exemple :
Ty, =20°C et Ty; = 5°C).

— On débranche le réfrigérateur : la chaleur §() passe de la cuisine au réfrigérateur (vignette
#2) selon le deuxiéme principe et le transfert de chaleur s’arréte quand les températures
du réfrigérateur et de la cuisine sont égales : T} = Ty = Tr (vignette #3). Calculons la
variation d’entropie

a1, il

— >0,

dStot - dScuisine + dsréfrigérateur = Tl Tz

puisque T, < T;. Remarquons que ce processus est irréversible. Une fois 1’équilibre
thermique atteint, nous avons une cuisine plus froide et un réfrigérateur plus chaud.
Donc, pour boucler le cycle, il faut rebrancher le réfrigérateur.

— Ok, c’est fait. Le compresseur extrait de la chaleur du réfrigérateur et 'injecte dans la
cuisine... mais pour cela il faut du travail 6W (vignette #4)! Pour revenir a Ty, il faut
extraire la quantité 0() du réfrigérateur. La cuisine recoit quant a elle : =0Q+oW >
0() donc la température dans la cuisine est supérieure a la température initiale : 77 > 71 ;
donc le systeme n’est pas revenu a 1’état initial !

— Pour revenir a I’état initial et donc compléter le cycle, il faut évacuer la chaleur en
surplus de la cuisine vers le monde extérieur (vignette #b5)

Nous avons donc complété un cycle irréversible. Quelle est la variation de la quantité % du
systeme cuisine + réfrigérateur ?

o 0@
v
T T

cycle irrev.

car 0()] est perdue par le systeme. Donc pour un cycle irréversible, on a

Z%#AS

cycle irrev.
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