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1.5 Règles pour une transformation adiabatique . . . . . . . . . . . . . . . . . . . . 10

Physique générale II 2020 2 Prof. Ivo Furno



Applications du premier principe de la
thermodynamique

1.1 Règles pour les transformations réversibles usuelles

Grâce au premier principe de la thermodynamique, nous pouvons calculer les échanges de travail
W et de chaleur Q d’un système aves son environnement pour différents types de transforma-
tions réversibles et ceci pour les gaz parfaits :

1. Isotherme ⇔ T = constante.

2. Isochore (1) ⇔ V = constante.

3. Isobare ⇔ p = constante.

Transformation isotherme réversible

Dans le cas d’une transformation isotherme (T = const.), la loi des gaz parfaits, pV = nRT ,
devient pV = const. puisqu’on considère un système fermé pour lequel le nombre de moles n
ne varie pas.
Le premier principe nous donne : δW = −dU + δQ mais dU = ν

2
nRdT = 0 puisque dT = 0.

Pour rappel, ν est le nombre de degrés de liberté. Donc pour une détente (le volume augmente),
δW = δQ > 0 : un travail d’expansion est fait par le gaz et ce dernier reçoit de la chaleur. Au
contraire pour une compression isotherme, un travail est fait sur le gaz (δW < 0) et celui-ci
perd de la chaleur (δQ < 0).
Calculons le travail fait lors d’une détente isotherme A → B réversible :

1. Du grec ancien iso, ”même” et khôra, ”place occupée, espace”.
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1.1 Règles pour les transformations réversibles usuelles 4

La variation de travail est donnée par : δW = pdV = nRT
V

dV où l’on a utilisé la loi des gaz
parfaits pV = nRT , et le travail total fait par le gaz lors de cette transformation est l’aire sous
le chemin Γ (zone hachurée en rouge sur la figure ci-dessus) :

WA→B =

∫ B

A,Γ

dW =

∫ VB

VA

nRT

V
dV = nRT

∫ VB

VA

dV

V
= nRT ln

(
VB

VA

)
.

On voit donc bien que si VB > VA, W > 0.

Transformations isochore et isobare réversibles

Lors de la transformation A → C, le volume ne varie pas donc dV = 0 donc δW = 0 et donc

WA→C = 0.
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1.2 Une transformation particulière : la transformation adiabatique 5

Lors de la transformation isobare, la pression ne varie pas et le travail fait par le gaz lors de cette
expansion est l’aire sous le chemin C → B (zone hachurée en rouge dans la figure ci-dessus) :

WC→B =

∫ B

C,Γ

dW =

∫ VB

VC

pdV = pB

∫ VB

VC

dV = pB (VB − VC) =
nRTB

VB

(VB − VC).

Le travail n’est pas une variable d’état !

Revenons sur le fait que le travail et la chaleur ne sont pas des variables d’état et donc leurs
variations dépendent du chemin suivi. Pour s’en convaincre, comparons le travail fait lors de la
détente isotherme A → B avec le travail fait lors de la transformation A → C → B composé
d’une isochore et d’une isobare. Puisque les 2 parcours nous amène de l’état A à l’état B,
peut-on dire que WA→B = WA→C +WC→B ? Bien sûr que non ! On peut le voir graphiquement
en comparant les aires sous chaque parcours ou bien à travers les formules que l’on vient de
calculer :

nRTB ln

(
VB

VA

)
̸= 0 +

nRTB

VB

(VB − VA) .

1.2 Une transformation particulière : la transformation

adiabatique

Une transformation adiabatique est caractérisée par une absence d’échange de chaleur (δQ = 0),
souvent parce que la transformation est très rapide.
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1.2 Une transformation particulière : la transformation adiabatique 6

”Détente de Joule” ou ”expansion libre”

C’est l’exemple typique de transformation adiabatique simple, et pourtant elle n’est pas
réversible. On considère un système de deux bouteilles séparés par une vanne. A l’état ini-
tial, le gaz se trouve seulement dans la bouteille 1 et la vanne est fermée. Le système est isolé :
pas d’échanges de chaleur avec l’environnement. On ouvre la vanne très rapidement et le gaz
remplit la bouteille 2. Question : Quelle est la température finale Tf ?

Pour répondre à la question, utilisons le premier principe de la thermodynamique appliqué à
notre système constitué des bouteilles 1 et 2 : ∆U = Q︸︷︷︸

=0

−W = −W , mais combien vaut le

travail ? Il vaut zero (W = 0) puisque le volume du système (bouteilles 1 et 2) ne change pas
(dV = 0). En conclusion, la variation d’énergie interne est nulle pour une expansion libre :
∆U = 0. Donc il n’y a pas de variation de température ∆T = 0. Cependant, ceci est vrai
seulement une fois que le système a atteint un nouvel état d’équilibre (T1 = T2). Pendant la
détente, le système n’est pas à l’équilibre p2 ̸= p1 et T1 ̸= T2. Une conséquence pratique est
que cette transformation (détente de Joule) ne peut pas être représentée dans un diagramme
p− V car elle n’est pas une succession d’états proches de l’équilibre : c’est une transformation
irréversible.
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1.3 Exemples de transformations adiabatiques 7

1.3 Exemples de transformations adiabatiques

Briquet à gaz : compression adiabatique avec changement de volume

On place un coton inflammable dans le cylindre et on enfonce le piston violemment : le coton
prend feu ! Pourquoi ? Le système (air) n’a pas le temps d’échanger de la chaleur avec son
environnement donc

∆U = −W = −(−Wfourni) > 0 ⇒ ∆U > 0 ∆T > 0,

la température augmente au-delà de la température d’ignition du coton+alcool.

Compression et détente adiabatique

Un piston peut bouger dans un cylindre et la température de l’air est mesurée par un ther-
mocouple : ∆U = −Wair = −(−Wpiston) donc ∆U est positif lors de la compression et la
température de l’air augmente et ∆U est négatif lors de la détente et la température de l’air
diminue.

Question pour se challenger un peu !

Pour refroidir quelque chose, pourquoi est-il plus judicieux de souffler dessus avec la bouche
quasi-fermée (lèvres pincées) qu’avec la bouche grande ouverte ?

Pour décrire les transformations adiabatiques, nous avons besoin d’introduire une nou-
velle quantité : la chaleur spécifique molaire.

1.4 Chaleur spécifique molaire

Pour les liquides et les solides, nous avons vu que la chaleur Q peut s’écrire comme Q = mc∆T
où c est la chaleur spécifique. Pour les gaz, cette expression de la chaleur ne suffit pas et on doit
considérer le type de transformation : la chaleur spécifique sera différente selon que le processus
est à volume constant ou pression constante. On définit donc les chaleurs spécifiques molaires
CV et Cp telles que Q = nCV∆T à V = const. et Q = nCp∆T pour un processus à p = const.
avec, pour rappel, n est le nombre de moles. L’unité de CV et Cp est cal

mol.K
ou J

mol.K
.
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1.4 Chaleur spécifique molaire 8

Valeurs numériques des chaleurs spécifiques molaires (à 15◦C) [cal/mol/K]

Mono-atomique Di-atomique Tri-atomique Poly-atomique
He Ne N2 O2 CO2 H2O (100◦C) C2H6

CV 2.98 2.98 4.96 5.03 6.80 6.20 10.30
Cp 4.97 4.97 6.95 7.03 8.83 8.20 12.35

Cp − CV 1.99 1.99 1.99 2.00 2.03 2.00 2.05

Dérivation de CV et Cp

Du tableau ci-dessus on observe que Cp > CV et que Cp − CV ≃ 2 cal/mol/K. Pourquoi ?

Pour un gaz idéal, le premier principe de la thermodynamique nous dit que, pour une trans-
formation isochore, dU = δQ puisque δW = pdV = 0 donc Q|V=const. = ∆U |V=const. ∝ ∆T : A
volume constant, toute la chaleur reçue augmente l’énergie interne et donc la température. Par
contre, pour une transformation isobare, Q|p=const. = ∆U |p=const.+ p∆V : à pression constante,
la chaleur reçue sert à augmenter l’énergie interne mais également le volume occupé, donc,
intuitivement, la température augmente moins. On en conclut : Cp > CV .

De plus, une même variation de température ∆T donne une même variation d’énergie in-
terne :∆U = ∆U |V=const. = ∆U |p=const. donc Q|V=const. = Q|p=const. − p∆V . En utilisant
les définitions de CV et Cp, on obtient nCV∆T = nCp∆T − pdV ⇒ n(Cp − CV )∆T =
p∆V =︸︷︷︸

gaz parfaits

nR∆T et en simplifiant : ���∆T�n(Cp − CV ) =�nR�
��∆T , on trouve

Cp − CV = R = 8.315 J/mol/K = 1.99 cal/mol/K,

qui est exactement la valeur expérimentale !

Conséquence pratique : comme en général ∆U = ∆U |V=const. = ∆U |p=const. et que
∆U |V=const. = nCV∆T (U est uniquement fonction de T ), on peut écrire pour toutes les
transformations et pas seulement les transformations isochores :

∆U = nCV∆T et dU = nCV dT.

Une autre observation importante : pour tous les gaz, la valeur de Cp (et CV ) est la même pour
un même nombre de molécules. Pour expliquer ceci, nous allons utiliser la théorie cinétique des
gaz et le principe d’équipartion de l’énergie.

Considérons un gaz parfait qui subit une transformation isochore (∆V = 0), le travail est nul
et la variation d’énergie interne est égale à la chaleur reçue :

∆U = Q|V=const. =︸︷︷︸
gaz parfaits

ν

2
nRT =︸︷︷︸

déf. deCV

nCV∆T,

donc

CV =
ν

2
R, où ν est le nombre de degrés de liberté.

Pour un gaz mono-atomique : ν = 3, CV = 3
2
R ≃ 2.98 cal/mol/K tandis que pour un gaz di-

atomique : ν = 5 (pas d’oscillations selon r), CV = 5
2
R ≃ 5 cal/mol/K. On retrouve les valeurs

expérimentales en utilisant le principe d’équipartition. On voit également que la valeur de CV

(et donc Cp) ne dépend pas de la substance étudiée.
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1.4 Chaleur spécifique molaire 9

Question challenge

Pour un gaz di-atomique, on mesure CV = 5
2
R à basse température et CV = 7

2
R à haute

température. Pourquoi ?

— A basse température, l’énergie est insuffisante pour exciter les degrés de liberté de rota-
tion : seulement la translation est ”active” : l’énergie est emmagasinée uniquement dans
3 degrés de liberté.

— A haute température, en plus des degrés de liberté de rotation et translation, on excite
aussi ceux de vibration. Mais pourquoi 2 degrés de liberté de vibration ? Un oscila-
teur possède une énergie cinétique (∝ µ̇2) et une énergie potentielle (∝ µ2) où µ est
la constante du ressort. Donc un oscillateur possède 2 degrés de liberté dont chacun
contribue avec 1

2
R.

Comment se comportent les solides ?

Etant donnée la puissance de l’interprétation microscopique et du théorème d’équipartition,
essayons de les appliquer aux solides. Combien de degrés de liberté dans un solide ? Chaque
atome dans un réseau a 6 voisins donc 6 degrés de liberté pour l’énergie potentielle et 6 degrés
pour l’énergie cinétiques mais pour ne pas compter deux fois le même atome, on doit diviser
par 2 soit au final 6 degrés de libertés pour un solide. Donc pour un solide :

CV =
6

2
R = 3R ≃ 6 cal/mol/K Loi de Dulong et Petit
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Que se passe-t-il à basse température ?
La structure du réseau devient de plus en plus ”rigide” et donc le nombre de degrés de liberté
”actifs” est réduit. En réalité, pour une description physique précise, il faut faire appel à la
physique quantique. On touche ici aux limites fondamentales de notre modèle simplifié : atomes
= boules, liaisons = ressorts, ...)

1.5 Règles pour une transformation adiabatique

Considérons cette transformation pour un gaz parfait. Le premier principe de la thermody-
namique nous dit ∆U = −W car Q = 0. Ce qui donne dU = −δW = −pdV or, et c’est
toujours valable, dU = nCV dT donc nCV dT = −pdV ⇒ nCV dT + pdV = 0 or p = nRT

V
donc

�nCV dT +�nRT
V
dV = 0, que l’on peut arranger comme suit :

dT

T
+

R

CV

dV

V
= 0.

En intégrant, on obtient lnT + R
CV

lnV = ln
(
TV R/CV

)
= const., soit

TV
R

CV = const.

De plus, T = pV
nR

donc pV
nR

V R/CV = const. or nR = const. donc pV (1+R/CV ) = const.. En
résumé :

pV γ = const. et TV γ−1 = const.,

où l’on a introduit l’exposant adiabatique γ définit comme

γ ≡ 1 +
R

CV

=
CV +R

CV

=
Cp

CV

> 1.

Quelques remarques :

1. γ =
(1+ ν

2
)�R

ν
2�R

= 2+ν
ν
.
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1.5 Règles pour une transformation adiabatique 11

2. Que vaut γ pour un gaz mono-atomique ? CV = 3/2R et Cp = 5/2R donc γ = 5/2R
3/2R

=
5
3
≃ 1.66.

3. Il est utile de remarquer que pour une même réduction de pression, le volume final
atteint par une transformation adiabatique est plus petit que celui atteint pour une
transformation isotherme puisque γ > 1, que l’on peut interpréter du point de vue
physique ainsi : dans la détente adiabatique, la température diminue donc le gaz ”occupe”
moins de volume pour la même pression.

4. Nous avons fait l’hypothèse que la transformation est réversible c.à.d. quasi-statique,
c’est une succession d’états d’équilibre. Sans cette hypothèse, on ne pourrait pas dessiner
la transformation dans le diagramme p− V .

5. On remarque que lors d’une transformation adiabatique, la température varie mais pour-
tant aucun échange de chaleur n’est fait. Pouvez-vous donner une explication en utilisant
le premier principe de la thermodynamique ?

Exemple de calcul de détente adiabatique

On considère un gaz idéal à Ti = 27◦C. Il subit une expansion de 5 fois son volume initial Vi :
Vf = 5Vi. Quelle est la température finale ?

Soit on se rappelle que TV γ−1 = const., soit on part de pV γ = const. : pfV
γ
f = piV

γ
i ⇒ pf

pi
=

V γ
i

V γ
f

mais pfVf = nRTf et piVi = nRTi donc
pfVf

Tf
= nR = piVi

Ti
. Ce qui donne : Tf = Ti

pfVf

piVi
=

Ti
V γ
i

V γ
f

Vf

Vi
= Ti

(
Vi

Vf

)γ−1

.

Applications numériques selon le type de gaz :

— Gaz mono-atomique : γ = 5/2R
3/2R

= 5
3
: Tf = Ti

(
1
5

)5/3−1 ≃ 103 K.

— Gaz di-atomique sans vibrations : γ = 2+ν
ν

= 7
5
puisque on a ν = 5 degrés de liberté : 3

de translation et 2 de rotation. Tf ≃ 158 K.
— Gaz di-atomique avec vibrations : γ = 2+ν

ν
= 9

7
puisque on a ν = 7 degrés de liberté : 3

de translation, 2 de rotation et 2 de vibrations. Tf ≃ 189 K.

Attention : Il faut utiliser les températures absolues exprimées en Kelvin et pas en ◦C !
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