B Swiss
PLASMA
CENTER

Faculté des Sciences de Base
Section de physique

Physique Générale 11

Applications du premier principe de la
thermodynamique

Prof. Ivo Furno

PPB 119
1015 Lausanne
Switzerland

Editées par Benoit Labit
mis a jour le 2023-03-27a 11:46:43

Avertissement : ces notes de cours ont été rédigées en urgence pendant la crise
covid-19 et la fermeture du campus EPFL. Des ”coquilles” peuvent s’étre glissées
et seront corrigées au fur et a mesure. Merci de votre compréhension.



Table des matieres

[1.1 Regles pour les transformations réversibles usuelles| . . . . . . ... ... .. .. 3
(1.2 Une transtormation particuliere : la transformation adiabatique] . . . . . . . .. 5)
(1.3  Exemples de transtormations adiabatiques| . . . . . . .. ... ... ... ... 7
(1.4 Chaleur spécifique molaire] . . . . . . . . .. .. ... L 7
(1.5 Regles pour une transtormation adiabatique| . . . . . . . . ... ... ... ... 10

Physique générale 11 2020 2 Prof. Ivo Furno



Applications du premier principe de la
thermodynamique

1.1 Regles pour les transformations réversibles usuelles

Grace au premier principe de la thermodynamique, nous pouvons calculer les échanges de travail
W et de chaleur ) d'un systeme aves son environnement pour différents types de transforma-
tions réversibles et ceci pour les gaz parfaits :

1. Isotherme < T = constante.
2. Isochore[®]  V = constante.

3. Isobare < p = constante.
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Transformation isotherme réversible

Dans le cas d'une transformation isotherme (7' = const.), la loi des gaz parfaits, pV' = nRT,
devient pV = const. puisqu’on considere un systeme fermé pour lequel le nombre de moles n
ne varie pas.

Le premier principe nous donne : W = —dU + 6Q) mais dU = $nRdT = 0 puisque dT" = 0.
Pour rappel, v est le nombre de degrés de liberté. Donc pour une détente (le volume augmente),
oW =6Q > 0 : un travail d’expansion est fait par le gaz et ce dernier recoit de la chaleur. Au
contraire pour une compression isotherme, un travail est fait sur le gaz (6W < 0) et celui-ci
perd de la chaleur (6Q < 0).

Calculons le travail fait lors d’une détente isotherme A — B réversible :

1. Du grec ancien iso, "méme” et khora, ”place occupée, espace”.
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1.1 Regles pour les transformations réversibles usuelles 4

La variation de travail est donnée par : dW = pdV = %d\/ ou l'on a utilisé la loi des gaz
parfaits pV = nRT, et le travail total fait par le gaz lors de cette transformation est I'aire sous
le chemin I' (zone hachurée en rouge sur la figure ci-dessus) :

B Ve nRT Ve qv %
Wap = / aw = [ “qv = nRT / & —nRTh <B>
AT Va 4 Va 4 Va

On voit donc bien que si Vg > Vy, W > 0.

Transformations isochore et isobare réversibles
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Lors de la transformation A — C, le volume ne varie pas donc dV = 0 donc W = 0 et donc

Wye = 0.
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1.2 Une transformation particuliere : la transformation adiabatique 5

Lors de la transformation isobare, la pression ne varie pas et le travail fait par le gaz lors de cette
expansion est ’aire sous le chemin C' — B (zone hachurée en rouge dans la figure ci-dessus) :

B Vs Vs nRT,
We . = / dW = pdV = pB/ AV =pp (Vg — Vo) = o B (Vg — Vo).
cr Vo Vo B

Le travail n’est pas une variable d’état !
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Revenons sur le fait que le travail et la chaleur ne sont pas des variables d’état et donc leurs
variations dépendent du chemin suivi. Pour s’en convaincre, comparons le travail fait lors de la
détente isotherme A — B avec le travail fait lors de la transformation A — C' — B composé
d’une isochore et d’une isobare. Puisque les 2 parcours nous amene de 1'état A a l’état B,
peut-on dire que W4 .5 = Wa_,c + We 5?7 Bien str que non! On peut le voir graphiquement
en comparant les aires sous chaque parcours ou bien a travers les formules que 'on vient de
calculer :

1% nRT.
B) £ 0+ —L (Vg — V).

RIgln | —
n BH(VA VB

1.2 Une transformation particuliere : la transformation
adiabatique

Une transformation adiabatique est caractérisée par une absence d’échange de chaleur (6Q) = 0),
souvent parce que la transformation est tres rapide.
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1.2 Une transformation particuliere : la transformation adiabatique 6

”Détente de Joule” ou ”expansion libre”

C’est I'exemple typique de transformation adiabatique simple, et pourtant elle n’est pas
réversible. On considere un systeme de deux bouteilles séparés par une vanne. A I'état ini-
tial, le gaz se trouve seulement dans la bouteille 1 et la vanne est fermée. Le systeme est isolé :

pas d’échanges de chaleur avec I'environnement. On ouvre la vanne tres rapidement et le gaz
remplit la bouteille 2. Question : Quelle est la température finale 7' 7

Vawnwve ferwee
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Pour répondre a la question, utilisons le premier principe de la thermodynamique appliqué a
notre systeme constitué des bouteilles 1 et 2 : AU = @ —W = —W, mais combien vaut le
~—

922(1p)  gae(Y

@

=0

travail 7 I vaut zero (W = 0) puisque le volume du systeme (bouteilles 1 et 2) ne change pas
(dV = 0). En conclusion, la variation d’énergie interne est nulle pour une expansion libre :
AU = 0. Donc il n’y a pas de variation de température AT = 0. Cependant, ceci est vrai
seulement une fois que le systeme a atteint un nouvel état d’équilibre (77 = T3). Pendant la
détente, le systeme n’est pas a ’équilibre ps # p; et T} # T5. Une conséquence pratique est
que cette transformation (détente de Joule) ne peut pas étre représentée dans un diagramme
p — V car elle n’est pas une succession d’états proches de I’équilibre : c¢’est une transformation
wrréversible.
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1.3 Exemples de transformations adiabatiques 7

1.3 Exemples de transformations adiabatiques

Briquet a gaz : compression adiabatique avec changement de volume

On place un coton inflammable dans le cylindre et on enfonce le piston violemment : le coton
prend feu! Pourquoi? Le systéme (air) n’a pas le temps d’échanger de la chaleur avec son
environnement donc

AU = —W = —(—Wioumi) >0 = AU >0 AT >0,

la température augmente au-dela de la température d’ignition du coton+alcool.

Comvessi tbenk
V!r — ()f«;l’ow : R _—ah}m ‘

Air | (¢ e €=_6"_—‘_9

__ cylindre

@ Thevwocouple (T)
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Compression et détente adiabatique

Un piston peut bouger dans un cylindre et la température de I’air est mesurée par un ther-
mocouple : AU = —W,, = —(—Wpiston) donc AU est positif lors de la compression et la
température de l'air augmente et AU est négatif lors de la détente et la température de lair
diminue.

Question pour se challenger un peu!

Pour refroidir quelque chose, pourquoi est-il plus judicieux de souffler dessus avec la bouche
quasi-fermée (levres pincées) qu’avec la bouche grande ouverte ?

Pour décrire les transformations adiabatiques, nous avons besoin d’introduire une nou-
velle quantité : la chaleur spécifique molaire.

1.4 Chaleur spécifique molaire

Pour les liquides et les solides, nous avons vu que la chaleur () peut s’écrire comme () = mcAT
ol ¢ est la chaleur spécifique. Pour les gaz, cette expression de la chaleur ne suffit pas et on doit
considérer le type de transformation : la chaleur spécifique sera différente selon que le processus
est a volume constant ou pression constante. On définit donc les chaleurs spécifiques molaires
Cy et C, telles que Q = nCy AT a V = const. et Q = nC,AT pour un processus a p = const.

, ) Ly cal J
avec, pour rappel, n est le nombre de moles. L'unité de Cy et C), est % ou ——.
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1.4 Chaleur spécifique molaire 8

Valeurs numériques des chaleurs spécifiques molaires (a 15°C) [cal/mol/K]

Mono-atomique | Di-atomique Tri-atomique Poly-atomique
H, N, No Oy | COy | HyO (100°C) CyHg
Cyv 2.98 2.98 4.96 | 5.03 | 6.80 6.20 10.30
C, 4.97 4.97 6.95| 7.03 | 8.83 8.20 12.35
C,—Cy | 1.99 1.99 1.99 | 2.00 | 2.03 2.00 2.05

Dérivation de Cy et C,

Du tableau ci-dessus on observe que C, > Cy et que C, — Cy ~ 2 cal/mol/K. Pourquoi ?
Pour un gaz idéal, le premier principe de la thermodynamique nous dit que, pour une trans-
formation isochore, dU = §@Q) puisque 0W = pdV = 0 donc Q| _.onee. = AU ly—eonst. X AT 0 A
volume constant, toute la chaleur recue augmente 1’énergie interne et donc la température. Par
contre, pour une transformation isobare, Q| pconst. = AU | p—const. T PAV 1 & pression constante,
la chaleur recue sert a augmenter ’énergie interne mais également le volume occupé, donc,
intuitivement, la température augmente moins. On en conclut : C}, > Cy.

De plus, une méme variation de température AT donne une méme variation d’énergie in-
terne :AU = AUly_ng. = AUl _eonse. done Qly_ong. = Qlp—conse. — PAV. En utilisant
les définitions de Cy et C,, on obtient nCy AT = nC,AT — pdV = n(C, — Cy)AT =
pAV = nRAT et en simplifiant : X7n(C, — Cy) = wRAT', on trouve

gaz parfaits
C, — Cy = R =8.315J/mol/K = 1.99 cal/mol /K,

qui est exactement la valeur expérimentale!

Conséquence pratique : comme en général AU = AU|,_. .. = AU |p:const. et que
AUly—onst. = NCyAT (U est uniquement fonction de T7), on peut écrire pour toutes les
transformations et pas seulement les transformations isochores :

AU =nCy AT et dU = nCydT.

Une autre observation importante : pour tous les gaz, la valeur de C, (et Cy) est la méme pour
un méme nombre de molécules. Pour expliquer ceci, nous allons utiliser la théorie cinétique des
gaz et le principe d’équipartion de I'énergie.

Considérons un gaz parfait qui subit une transformation isochore (AV = 0), le travail est nul
et la variation d’énergie interne est égale a la chaleur recue :

1%
AU = C2|V:const. ~ §nRT < nchT,
gaz parfaits déf. de Cy,

donc

Cy = gR, ou v est le nombre de degrés de liberté.

Pour un gaz mono-atomique : v = 3, Cy = %R ~ 2.98 cal/mol/K tandis que pour un gaz di-
atomique : v = 5 (pas d’oscillations selon r), Cy = 2R ~ 5 cal/mol/K. On retrouve les valeurs
expérimentales en utilisant le principe d’équipartition. On voit également que la valeur de Cy
(et donc C}) ne dépend pas de la substance étudiée.
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1.4 Chaleur spécifique molaire

Question challenge
Pour un gaz di-atomique, on mesure Cy = gR a basse température et Cy = %R a haute

température. Pourquoi ?

=

C i)
4:\ Hyr,‘.fﬂ;!ne Hz

SF'} 4 J 1£Hvﬂ.l U;'bl'al';au

2R / _ J' n.devoraviow
R 5 : jEn-oh Framelaviow

o Vo looo ’ T)

— A basse température, ’énergie est insuffisante pour exciter les degrés de liberté de rota-
tion : seulement la translation est ”active” : I’énergie est emmagasinée uniquement dans
3 degrés de liberté.

— A haute température, en plus des degrés de liberté de rotation et translation, on excite
aussi ceux de vibration. Mais pourquoi 2 degrés de liberté de vibration? Un oscila-
teur posséde une énergie cinétique (o< %) et une énergie potentielle (o< p?) oll p est
la constante du ressort. Donc un oscillateur possede 2 degrés de liberté dont chacun

contribue avec %R.

Comment se comportent les solides ?

Etant donnée la puissance de l'interprétation microscopique et du théoreme d’équipartition,
essayons de les appliquer aux solides. Combien de degrés de liberté dans un solide ? Chaque
atome dans un réseau a 6 voisins donc 6 degrés de liberté pour 1’énergie potentielle et 6 degrés
pour I’énergie cinétiques mais pour ne pas compter deux fois le méme atome, on doit diviser
par 2 soit au final 6 degrés de libertés pour un solide. Donc pour un solide :

Cy = gR = 3R ~ 6cal/mol/K Loi de Dulong et Petit

o f o
£

“ |
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1.5 Regles pour une transformation adiabatique 10
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Que se passe-t-il a basse température ?

La structure du réseau devient de plus en plus "rigide” et donc le nombre de degrés de liberté
"actifs” est réduit. En réalité, pour une description physique précise, il faut faire appel a la
physique quantique. On touche ici aux limites fondamentales de notre modele simplifié : atomes
= boules, liaisons = ressorts, ...)

1.5 Regles pour une transformation adiabatique

Considérons cette transformation pour un gaz parfait. Le premier principe de la thermody-
namique nous dit AU = —W car Q = 0. Ce qui donne dU = —6W = —pdV or, et c’est
toujours valable, dU = nCydT donc nCydl = —pdV = nCydT 4+ pdV =0 or p = # donc
wCydT + %%dv = 0, que 'on peut arranger comme suit :

ar _ Rdv._
T Cy,V

En intégrant, on obtient In7" + % InV =1In (TV*) = const., soit
R
TV ¢ = const.

De plus, T' = % donc %VR/CV = const. or nR = const. donc pVI*+E/ V) = const.. En
résume :

pV7 = const. et TV ! = const.,

out 'on a introduit I'exposant adiabatique v définit comme

o1 B _GrrR G

_ v
cv - oy Oy

Quelques remarques :
(1+%)R/ — 24v

1.7: %/}{ v "
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1.5 Reégles pour une transformation adiabatique 11

5/2R __

2. Que vaut 7 pour un gaz mono-atomique? Cy = 3/2R et C, = 5/2R donc v = 3R =

3. 11 est utile de remarquer que pour une méme réduction de pression, le volume final
atteint par une transformation adiabatique est plus petit que celui atteint pour une
transformation isotherme puisque 7 > 1, que l'on peut interpréter du point de vue
physique ainsi : dans la détente adiabatique, la température diminue donc le gaz ”occupe”
moins de volume pour la méme pression.

*?‘- A adiab.

4. Nous avons fait I’hypothese que la transformation est réversible c.a.d. quasi-statique,
¢’est une succession d’états d’équilibre. Sans cette hypothese, on ne pourrait pas dessiner
la transformation dans le diagramme p — V.

5. On remarque que lors d'une transformation adiabatique, la température varie mais pour-
tant aucun échange de chaleur n’est fait. Pouvez-vous donner une explication en utilisant
le premier principe de la thermodynamique ?

Exemple de calcul de détente adiabatique

On considere un gaz idéal a T; = 27°C. Il subit une expansion de 5 fois son volume initial V; :
Vy = 5V;. Quelle est la température finale?

Soit on se rappelle que TV?~! = const., soit on part de pV? = const. : p;V, = p;V;) = % = “;—Z:
1 f'
mais pfV; = nRTy et p;V; = nRT; donc pr—‘f/f =nR = plTVZ Ce qui donne : Ty = Tpfvf =
v\ !
ﬂv’Y V; - E <vf> .
Apphcations numériques selon le type de gaz :
. Cny = D2R 5 1)5/3-1
— Gaz mono-atomique : v = 3R = 3 = (5) ~ 103 K.

— Gaz di-atomique sans vibrations : v = +” = % puisque on a v = 5 degrés de liberté : 3
de translation et 2 de rotation. Ty ~ 158 K.

— Gaz di-atomique avec vibrations : v = 2+” = = puisque on a v = 7 degrés de liberté : 3
de translation, 2 de rotation et 2 de v1brat10ns. Ty ~ 189 K.

Attention : Il faut utiliser les températures absolues exprimées en Kelvin et pas en °C!

9
7
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1.5 Regles pour une transformation adiabatique

12
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