Examen de Physique Générale II — Section SV — Prof. Furno — 21 juin 2019 — 08h15—-11h15
mis a jour le 29 juillet 2020 a 08:57

Cet examen comporte 5 exercices. Les exercices peuvent étre traités dans n’importe quel ordre.
Vous avez a disposition & feuillets, vous traiterez donc chaque exercice sur un feuillet distinct.
Inscrivez votre nom sur chacun des feuillets que vous rendrez.

Exercice 1

Deux vaisseaux spatiaux identiques V1 et V2 voyagent vers le restaurant galactique Hotel de Galaxie
(HAG) le long de la méme ligne droite mais dans des sens opposés. On appelle R, RP, R, les référentiels
de HdAG, V1 et V2, respectivement. Dans le référentiel R, le vaisseau V1 a une vitesse v; = 0.5¢ et sa
longueur vaut 100 m.

a) Quelle est la longueur propre des vaisseaux V1 et V27

b) Quelle est la vitesse de V2 dans R sachant que sa longueur, mesurée dans RO, vaut 75 m?
Les informations ci-apres sont données dans le référentiel R de HAG. Le restaurant HdG envoie un message
radio annoncant qu’il fermera dans 3 heures. Au moment de I’envoi, V1 se trouve a 2.5 x 10° km de HdG.

c) L’équipage de V1 arrivera-t-il & temps pour manger 7
La plan¢te d’eau PLOUF19, fixe par rapport a HdG, se trouve a la distance de 2 x 10° km de HdG, mesurée
dans R. Les axes HHG—PLOUF19 et HHG—V1 sont perpendiculaires.

d) Quelle est la distance PLOUF19 — V1, mesurée dans RO, au moment de la réception du message

par V17

Ayant décidé d’aller faire une baignade, V1 change de direction et se dirige vers PLOUF19 toujours a
la vitesse v; = 0.5¢, mesurée dans R. Malheureusement, a 'approche de PLOUF19, V1 perd le controle
et s’écrase a pleine vitesse dans Peau (me,, = 10'7 kg). Toute 1'énergie cinétique est convertie en chaleur
transférée a ’eau dont la température augmente de 50°C.

e) Quelle est la masse du vaisseau V17
Indications : Chaleur spécifique de I'eau liquide : ceay ~ 4184 J kgL,

Corrigé

Il est toujours utile de faire un dessin de la situation. Soit R, le référentiel lié & HAG et PLOUF19 et RP,
le référentiel 1ié & V1 en mouvement par rapport & R et R?, le référentiel lié & V2 en mouvement par
rapport & R. Les quantités mesurées et calculées dans RY (R?) sont notées @ (@).

R
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PLOUF19

a) Pour calculer la longueur propre de V1 L9, on utilise ’expression pour la contraction des longueurs :



U% L1
Li=LP\1-=5 = L°=L%=—==0Lm
C v?
1-4
Application numérique : y; = ——— = 1.1547 et L,%® = [1® = 110 x 1.1547 = 115.47m.

/ 2.2
1_0.5 c
c2

Tout d’abord il ne fait aucun doute que le signe de v, dans le référentiel R est négatif. On va
d’abord estimer la vitesse de V2 dans le référentiel R : v,@. 1’énoncé nous donne Lo® = 75 m et
au a) on a calculé L,?. La contraction des longueurs nous donne :

L2 L 1 Lo D)2 @ LD\ 2
L2®: 2 _0:>_:L: 1_(U2> = 1)2_: 1— L
o Lo c? c L,®

Application numérique : 1,Q ~ —0.75¢.

Pour répondre a la question posée (trouver la vitesse vy de V2 dans R), on va utiliser la transfor-
mation relativiste des vitesses entre le référentiel R et le référentiel RY qui se déplace & la vitesse
vy par rapport a R :

U2® + U1
Vg = D,
V: v
1 + 2C2 1
Application numérique : vy >~ :’J%% ~ —(0.41c.

Dans le référentiel R, on a toutes les informations nécessaires pour répondre a la question posée.
V1 voyage a la vitesse v; = 0.5¢ et la distance a parcourir avant la fermeture du restaurant est
Azy = 2.5 x 102 m. Le temps que va mettre V1 pour arriver sur HdG est donc
Ax
At =—2

Ul.

Application numérique : At = % ~ 1.67 x 10*s ~ 4 heures 37 minutes.

Pour répondre completement a la question : non, V1 n’arrivera pas avant que le restaurant HAdG
ferme ses portes.

Dans R, on doit trouver a quelle distance Axz; de HAG se trouve V1 au moment de la réception
du message. Dans le référentiel RP, la distance HIG—PLOUF19, notée A, ne change pas car
perpendiculaire a la direction de propagation de V1. Par contre, la distance Ax; va se contracter.
On calculera alors I’hypothénuse du triangle rectangle formé par V1-HdG-PLOUF19. On a deux
équations pour trouver Axy :

Az cAxg Axg

= A.le = o
c+ vy c+ vy 14+ =2

A.I’l = CAtl et AIL’l = Al‘o — ’UlAtl = Atl =
Dans le référentiel R?, la distance V1—PLOUF19 est donnée par

2
D®:\/(Ax1®)2+A2:\/%( A$o> + A2

144

Application numérique : DO = \/1.1547 X (%)2 + (2 x 1012)2 ~ 2.7 x 10" m.

L’énergie cinétique du vaisseau V1 est donnée par Fey, 1 = (71 — 1)mic? ot my est la masse du
vaisseau que ’on cherche. De plus, I’énergie nécessaire pour augmenter la température de PLOUF19
de 50°C est donnée par : () = MeauCean AT. On obtient :

meau Ceau A T

- Ecin = —1 2= eau eauAT = = .
Q 1= (1 — 1)mic® = Meauc my e

. . . 17
Application numérique : m; = a }g 47f‘ﬁi‘§xx510016 ~ 15 x 10°kg.




Exercice 2

Apres le cours, de retour a la maison (considérée comme un réservoir a 20°C et a 1 bar), Ivo se prépare un
thé en chauffant 1 kg d’eau dans une bouilloire jusqu’a 100°C. Sitot cette température atteinte, la bouilloire
s’arréte et, fatigué, Ivo s’endort. Quand il se réveille, I'eau s’est refroidie a la température ambiante.

a) Calculez le changement d’entropie de 'univers causé par le refroidissement de 1’eau.
Cependant, Ivo a vraiment envie d’un thé. Il place 1 kg d’eau dans un four micro-onde (volume : 10 litres),
réglé a la puissance Proy = 1200 W. Avec sa porte fermée, le four est parfaitement hermétique et isolé
et transfere toute sa puissance a ’eau liquide uniquement. Malheureusement, Ivo s’endort a nouveau. Il
est réveillé par I'explosion du four lorsque la différence de pression entre ’extérieur et I'intérieur de celui-
ci atteint 3.7 bars. Dans ces conditions, la pression de vapeur saturante de 'eau varie selon pg, [bar] =
0.0438 T [K] — 15.3. On admet que la vapeur d’eau et I'air restent en équilibre thermique avec 'eau liquide.
De plus, on fait 'hypothese que la chaleur échangée dans le processus de thermalisation est négligeable.

b) Calculez la température de la vapeur et de ’eau au moment de 1’explosion du four.

c) Calculez la masse d’eau évaporée. Comparez celle-ci a la masse d’eau liquide initiale et discutez la

validité de I’hypothese suggérée.

d) Combien de temps Ivo a-t-il dormi?
Indications : On considere la vapeur d’eau et ’air comme des gaz parfaits. Négligez le volume d’eau liquide
par rapport au volume du four. Constante des gaz parfaits : R = 8.314Jmol ! K~!. Chaleur latente
d’évaporation de l'eau : L, = 2256.4kJkg~!. Chaleur spécifique de 'eau liquide : ceay ~ 4184 Jkg 1 K1,
Masse molaire de 1'eat My, = 18 gmol~!. 1 bar = 10° Pa.

Corrigé

a)

s 5@ _Qeau Tf E — Tf
ASUniv. - ASeau + ASlres. - /TZ ﬁ + Tres_ - eauCeau lIl (f) + meauceauTe&
Application numérique : ASypn;y. = 1 X 4184 X In (%) +1x 4184 x % ~ —1x102+1.14 x 103 =
0.14 x 103 JK~!
b) Le point-clé de cette question est que la pression totale a l'intérieur du four est la somme de la
pression de vapeur d’eau et de la pression de 'air : pyot;. = Pyap. + Pair- De plus, les deux gaz et I'eau
liquide sont a la méme température 17" que l'on cherche. La pression de la vapeur d’eau est donnée

par I’équation de I’énoncé tandis que la pression de I'air est donnée par I’équation des gaz parfaits.

irR irR
DPtot. —al — b+ -22p — <a+na >T_bu

four
Pair
avec a = 4.38 x 103, b = 15.3 x 10° car p doit étre exprimé en Pascals. Le volume occupé par I’air

est égal au volume du four puisque on néglige le volume occupé par 'eau liquide.
Le four explose lorsque piot. — Pext. = Ap avec Ap = 3.7 bars et pey. la pression de I'air ambiant (1

bar). Donc
nairR ex._l'A +b
o+ 0= (a2 ) oy o g Lot ORED
four a‘f‘ﬁ

Que vaut n,;, 7 On utilise la loi des gaz parfaits au moment ot Ivo met son eau a chauffer : Iair est

encore a la température et a la pression ambiantes : n,;, = pj,t’ftj,—:fz’“.
T Pext. T Ap+b
- Dext. :
a + Text

La température ne dépend pas du volume du four.

. . s . 5 5 5
Application numérique : T = Lx1043:5x107415.3x107 ~ 493 K = 150°C.
4.38 %1034 1x10°
: 293




c) Le four étant toujours en marche, il va apporter de la chaleur a I'eau liquide. L’eau liquide va
s’évaporer, faisant monter la pression dans le four. Or la température de vaporisation de 1’eau varie
avec la pression donc le four fournit non seulement de la chaleur pour la transition de phase elle-
méme mais également pour chauffer ’eau liquide jusqu’a la température de vaporisation. On cherche
donc a savoir quelle masse d’eau a été évaporée lorsque la pression atteint 3.7 bars de plus que la
pression atmosphérique dans le four. On utilise simplement la loi des gaz parfaits :

o Dvap. ‘/four
Nyap. = RT

(CLT - b)‘/four
RT ’

aonc

((IT - b)Meaqufour
RT ‘

Myap. = Meaunvap. =

. ‘s ) _ (4.38x103x451—15.3x10°
Application numérique : Nvap. = 8.314x451) X102

1073 kg.
La masse d’eau vaporisée est tres petite devant la masse d’eau liquide initiale.

~ 0.9mol et My, = 18 X 1073 x 0.9 = 16.2 x

Pour vérifier I’hypothese donnée dans I’énoncé, on doit calculer la quantité de chaleur absorbée par
Pair pour se réchauffer et la comparer a la chaleur absorbée par ’eau liquide pour se chauffer et
s’évaporer :

5 5 Pext. Viour T' — Text. 5 1— TeTxt
air — Mair AT = a,ir_R T — Tex = — = D Vour—
Q n CV n 2 ( t.) 2 Text. T 2p t. Vf Text

La quantité de chaleur aborbée par I’eau liquide est donnée par

Qeau = mvavaap. + MeauCeau (T - Text):

ou 'on a négligé la variation d’eau liquide a chauffer puisque Mmyap << Meay.

293
Application numérique : Q. = 2.5 x 10° x 10*21;#ﬁ ~ 1100J et Qean = 1.8 x 1072 x 2256.4 x
10% 4 4184 x 1 x (423 — 293) ~ 5.8 x 10° J.

Qair <K Qean donc 'hypothese est bien justifiée.

d) Le temps nécessaire est donné par At X Pioyr = Qean :
At _ Qeau _ Meaunvap.Lvap. + meauceau(T - Text)
7Dfour 7)four
5.8x10°

Application numérique :At = =77

~ 480s = 8 minutes.




Exercice 3

Un cycle thermodynamique est composé des 4 transformations suivantes, considérées comme réversibles :

A — B : Compression adiabatique depuis (T4 = 27°C, psa = 100kPa) jusqu'a (Ts,pg) tel que le
rapport de compression est r = i—’j = 6.25.

B — C : Transformation isobare jusqu’a T = 800 °C.

C — D : Expansion adiabatique jusqu’a p4.

D — A : Transformation isobare.

a) Tracez le cycle dans les diagrammes p — V' et 7" — S. Justifiez brievement 'allure des différentes
courbes.

b) Calculez, pour une mole d’air, les chaleurs échangées et le travail du cycle.

¢) Démontrez que le rendement de ce cycle ne dépend que du rapport de compression r et de ’exposant
adiabatique v du gaz considéré. Calculez ce rendement pour l'air.

d) La chaleur perdue par ce cycle est rejetée dans une riviere avec un débit d’eau Dy, = 1000kgs™?,
dont I'augmentation de température ne peut dépasser AT}, = 0.2°C. Calculez la puissance méca-
nique maximale que I'on peut extraire de ce cycle.

Indications : Considerez I'air comme un gaz parfait avec 5 degrés de liberté. Constante des gaz parfaits :
R = 8.314 Jmol~! K1, Chaleur spécifique de I'eau liquide : ceay ~ 4184 Jkg P K1

Corrigé

a) Diagrammes dans p — V et T — S avec v = “2 = g =14:

p T A
B @,
pox VT
P
A D _
v
p [Pal V [m?]
A 100 x 103 Vy = "f% =25 x 1072
1 1
B | 6.25p4 = 625 x 10° Va(2) =va(}) =67x10°8 Ty (1) ~ 506
C PB nRTo/pp ~ 14.3 x 1072 1073
1 1
D DA Ve (g—g) T =Ve <Z—’j> 7= V0T% ~52x%x1072| Terd=M/7~ 635
b) Weyce = Wap + Wae + Wep + Wpa
Qap=CQcp =0

Ve Vb 1% Va\'lT? Vv 1\ =7/
Wap = / pdV = pAV,Z/ vody = DAl (—B> _p | = At (—) -1].
Va Va 1—7 Va 1—7 T

AUpp =0—Wyp.

Ve
Wee = / pdV = pc(Ve — V).

142}

b}
AUBC = QBC — WBC = chAT = n§R(TC — TB)

7
QBC = ncpAT = ncP(TC — TB) = ngR(TC — TB) = AUBC + WBC-



Vb Vb V. V; 1=y
WCD = / pdV = p(jvg/ V=rdV = eade (—D> —1] = —AUBC.
Ve Ve 1 B ’Y VC

Va
Wpa = / pdV =pp(Va — Vp).

Vb
)
AUDA = QDA - WDA == chAT == H§R<TD — TA)

Qpa = TLCPAT = ncp(TD — TA) = Wpas +AUpa4.

Applications numériques : Wap ~ —4291J; Wpe ~ 4711J; Qpc ~ 16.5k]J; AUgc ~ 11.8kJ;
Wep ~9091J; Wpa >~ —=2790J; AUpa ~ —6976 J; Qpa ~ —9767J; Weyae =~ 6720 J.

Remarque : On pouvait avoir tous les points de la question en calculant simplement Qgc et Qpa
et chcle = QH - QL = QBC - QDA'

_1_ 1Qc] _ Qpal _ | nep|Ta—Tp| . Tall —Tp/T4l _q,_Ia
[Qul [OFZve] ney|Te — Th| Tp|Tc/Tp — 1| Tp’
puisque
Ip _To aypp o le__ Te _Te ampn gope o _lc
Ty TA s T, (;)(1—7)/7 Tx T, Tx
On _obtient donc
_ Ty —1 Ts 1 -7y
= _T_Bi _TA(l)(lfv)/'Y -
Application numérique : v = %2 =Ll=14:n=1-6. 2575 ~ (0.41.

chcle ~ 6720 ~ O 41

— 16500 —

On peut vérifier notre résultat en calculant n= ‘

d) 0= |ge| = W] = niQu| mais [Qu| = W] + Qs done (W] + |Qx]) = W] soit

A =n)W[=nlQL] = [W[= —IQLl

La puissance mécanique demandée Py... est la dérivée temporelle du travail fourni par le cycle. Elle
est limitée par la variation de température maximale que peut supporter 1'eau de la riviere.

d|\W d dMean
Pmec. = | ’ = 7 |QL| = d CeauATriv. m = 7 CeauATriv.Driv.
dt 1—n dt 1—n dt 1—n

Application numérique : Prec, = 72557 X 4184 X 0.2 x 1000 ~ 5.8 x 10° W = 580 kW.




Exercice 4

Une mole de gaz parfait, a 1’équilibre thermique avec un réservoir, subit une compression isotherme ré-
versible a partir de ’état initial (pa, T4, V) jusqu’au volume Vg < V4. Elle subit ensuite une expansion
adiabatique irréversible qui la ramene a ’état initial A.

a) Représentez les deux transformations dans les diagrammes p — V et T' — S.

b) Pour chaque transformation, calculez la variation d’énergie interne, le travail et la variation d’en-
tropie du gaz. Une fois les deux transformations effectuées, calculez le changement d’entropie de
I'univers.

La chaleur échangée lors de la compression isotherme est transférée, par un cycle de Carnot qui fonctionne
en mode réfrigérateur, du réservoir a Ty au réservoir a Ty > Ty4.

¢) Exprimez Ty, en fonction de T4, sachant que le coefficient de performance du réfrigérateur vaut 5.
Calculez le travail fait sur le gaz par le réfrigérateur sur un cycle complet.

En partant du méme état initial (pa, T4, Va), on pourrait aussi utiliser une compression adiabatique
réversible pour atteindre Vp.

d) En utilisant I'approche microscopique, expliquez qualitativement la différence de variation d’entropie
du gaz entre ces deux types de compression réversible.

Corrigé

a) Diagrammes p —V et T'— S
p |

B A

—_——————

2

v S
d’énergie interne et la variation d’entropie (n = 1)

B B
% 1%
Wip = / pdV = / nRT7 = nRT,In (%) <0

=

b) Expressions pour le travail, la chaleur, la variatio

A A A
AUA%B == TLCVAT == ch(TB - TA) =0
Vi
QAHBZAU—FWAQBIRRTAHI v <0
A
7 6Q Vg
AS :/ —:ann(—)<0
BT, Ta Va

Ce qui donne le sens de la fleche pour le diagramme 7" — S.

AUp_a = —AUy_,p =0 Variable d’état

@pB_a =0 Transformation adiabatique

Wpoa = QB%A —AUp,a=0

ASp_a=—-ASs.p=—-nRIn (%) > 0 Variable d’état
A




Changement d’entropie de I’Univers sur le cycle complet :

1
A

Vi
Ty 1 + Cigeal 6
Citent = 2 = Caeat(Toy — Ta) = T = Ty = — el O
) deal TH — TA d 1( H A) A H Cideal A 5 A
C
RT Vi
Cideal = QA = QA = chcle = QA' = 4 In (_B> .
QH - QA chcle Cideal b} VA

d) La définition microscopique de I'entropie est :
S =kglnQ

ou kg est la constante de Boltzmann et 2 est le nombre de micro-états associés a un macro-état.
En particulier, on sait que le nombre de micro-états est une fonction de la température (I'énergie)
du gaz ainsi que du volume occupé. De plus, ce nombre augmente avec la température ainsi qu’avec
le volume :

0N o002

Q:Q<T,V) et a_T>O et W>O

Donc :

— Compression isotherme : le volume diminue (Vz < Vj4) et la température ne varie pas donc le
nombre de micro-états diminue et donc ’entropie diminue.

— Compression adiabatique : le volume diminue de la méme maniere (2 Y\,) mais cette fois, la
température augmente (2 ) donc éventuellement on peut avoir un équilibre entre les deux
tendances opposées de telle sorte que la variation d’entropie soit nulle (AS = 0).



Exercice 5

Pour se rafraichir, nous allons faire une bataille de bombes a eau a T' = 0°C. Pour cela, on utilise des
sphéres indéformables (diametre intérieur : 40 cm) dont I’épaisseur de la coque en plastique vaut 3 mm. Les
spheres sont entierement remplies d’eau et placées au congélateur. Malheureusement, on a trop attendu
et toute l'eau est gelée a 0°C. Afin de faire fondre I'eau gelée, les spheres sont posées sur une table qui
se trouve a ’équilibre thermique avec l'air ambiant (T, = Tiape = 30°C). On veut calculer le temps
nécessaire Atgnie pour que I'eau fonde completement dans les cas suivants.
a) On fait I'hypothese que la surface extérieure de la sphére est immédiatement en équilibre thermique
avec l'air ambiant. Calculez At . Justifiez les approximations que vous faites.
b) On fait 'hypothese plus réaliste que la chaleur échangée entre la sphére et Iair ambiant se fait par
convection. Calculez Atgne. Justifiez les approximations que vous faites.
c¢) Si le vent souffle plus fort, le temps calculé au point b) va-t-il augmenter ou diminuer ? Justifiez
votre réponse.
Indications : On fait les hypotheses suivantes : on considere un régime stationnaire : %—{ = 0; la masse
volumique de l'eau (pean) est égale & la masse volumique de la glace (pgiace = 910kgm™); la chaleur qui
traverse la surface intérieure de la sphere est immédiatement transférée a toute la glace. Chaleur latente
de fusion de la glace Lgace = 334kJkg™!. Conductivité thermique du plastique kplas. = 0.03 Wm 1K1
Coefficient de transfert thermique air—plastique : h = 30 Wm 2K,

Corrigé

a) Pour que la glace fonde, la chaleur de I’air ambiant doit traverser la coque en plastique. Le temps
que l'on cherche est le rapport entre la chaleur nécessaire a fondre toute la glace sur le taux de
chaleur qui arrive depuis 'air a travers la coque : Atgonte = 35’;‘;

De maniere générale, la loi de Fourier en géométrie sphérique s’écrit :

_1dQ _Q _ T
CAdt A Tdr

J

Pendant 1’échange de chaleur, le taux de chaleur échangée (Q) ne varie pas, contrairement au flux
J. Ceci est valable tant que les températures de la glace et de la coque restent constantes. Ce qui
est bien le cas pendant la transition de phase de la glace. On cherche donc a évaluer le taux de
chaleur échangée :

: dT dT Q dr
= —A(r)k— = —4mr?k— —— = —kdT
Q (r) - T - = 1 ,

et I'on doit maintenant intégrer entre ri,;. = R et rog. = R+ d :

. Fext. (Text.) '
Q dr _ _k/T ar = Q( Lo ) = =k [T(rext.) = T(rint.)]

4m Tint. r? T (Tint.) 4 Tint. Text.
- ext.! int. R(R d
= Q = 47T—Tr t.TTt k [T<Tint.) - T(TeXt~)] - 471—%]{; (Tglace - TairD
ext. = Tint.

puisque I’énoncé nous dit que la surface externe de la coque est a la température de I'air. La chaleur
nécessaire pour fondre toute la glace est donnée par :

4
3
Qfonte = mglaceLglace = pglace‘/sphereLglace - gﬂ—R pglaceLglace-

Finalement :

Atfonte - %WR?’ Pelace Lglace — dR2 P glaceL glace
47 R(?d) k (Tyace — Toir) 3R+ )k (Tgace — Tair)




— 3x1079x0.22x910x334x10° _ 5 65 » 104

Application numérique : Atgonte = 350050300 .03 30 s ~ 18 heures.

Remarque : L’approximation plane A(r) = A peut-étre acceptée si elle est justifiée : dpls. <

Rsphere .

Si la convection entre 'air et la coque est considérée, la température extérieure de celle-ci n’est
pas égale a celle de 'air. C’est la le point-clé de cette question. Le taux de chaleur échangée par
convection est donné par _

Qconv. - 47T(R + d)Qh [T<Text4) - Tair] .

De plus comme rappelé au a), le taux de chaleur échangée est conservé donc

R(R+d)

d k [Tglace

CQcond. = Qconv. = 47 - T<Text.)] - 47T(R + d)zh [T<rext.) - Tair] 5

ou dans 'expression de Qconda. 0N a gardé T'(rey. ), la température extérieure de la coque. De 1'équa-
tion précédente, on obtient :

%kTglace + (R + d)hTair

T(Text.) -
(R+d)h+ Lk

x0.03%27340.203x 30X 303
0.203x30+ 3= x0.03

0.2
Application numérique : T'(7ey.) = L0082

~ 295K < T,;. On remplace cette

valeur soit dans Qeong. SOit dans Qeony. €t on trouve Atgopie :

At _ dR2 pglaceLglace _ R3 pglaCeLglace
T 3R+ Ak (Tynee — Do) 3R + ?h (T(rext.) — Tuir)
Q;;te Qfovnte
dQcong./dt dQconv./dt

-3 2 3
_ 3x107°x0.22x910x334x10° _ 8.79 x 104

Application numérique : Atgonie = 30203 x0.03 % (273 205.7) s ~ 24 heures.

Le temps de fonte trouvé au b) va donc étre réduit. En effet, la vitesse du vent va générer de la
turbulence autour de la coque, ce qui va améliorer le transfert de chaleur par convection entre 1’air
et la coque. L’épaisseur de la couche limite va diminuer et le coefficient de transfert de chaleur h va
augmenter. Le cas a) représente le cas limite d'une convection parfaite (h — 00).

a) b)
couche limite
plastique

air

plastique

Text — 300 C

T 50°C T 0°¢C



