Examen de physique générale II — Section SV Prof. Furno

25 juin 2021 mis a jour le 14 juillet 2021 a 11:12

Cet examen comporte 5 exercices. Les exercices peuvent étre traités dans n’importe quel
ordre. Vous avez a disposition 5 feuillets, vous traiterez donc chaque exercice sur un feuillet
distinct. Inscrivez votre nom sur tous les feuillets que vous rendez.

Exercice 1 (20 points au total)

Deux voitures identiques A et B (masse au repos
m = 1000 kg, longueur au repos Ly = 10m) roulent,
a vitesse constante, vers I’Est sur une autoroute ter-
restre rectiligne, orientée Ouest-Est. Robert, un ob-
servateur dans le référentiel terrestre, mesure la vi-
tesse de chaque voiture : v4 = 4/5¢ et vg = 3/5c.
La voiture A veut dépasser la voiture B. Dans le réfé-
rentiel de Robert, la manceuvre de dépassement com-

mence quand 'avant de la voiture A et l'arriere de

la voiture B sont alignés a la direction Nord-Sud et — — e e

termine quand l'avant de la voiture B et D'arriere de

la voiture A sont alignés a la direction Nord-Sud.

a) Quelle est la durée de la manceuvre de dépassement mesurée dans le référentiel de Robert ?

b) Au début de la manceuvre, un photon est lancé vers I'Est depuis 'avant de la voiture A. On définit
I’événement suivant : le photon et ’avant de la voiture B sont alignés a la direction Nord-Sud dans
le référentiel de Robert. Combien de temps s’est-il écoulé depuis le lancement du photon, mesuré
dans le référentiel de Robert ? Méme question, mesuré dans le référentiel de la voiture B.

¢) Un photon est lancé depuis la voiture B. Dans le référentiel de Robert, le photon voyage vers le
Nord-Est. Sa trajectoire forme ainsi un angle de 7/4 avec la direction Ouest-Est. Dans le référentiel
de la voiture B, quelle est la valeur de I’angle que la trajectoire du photon forme avec un axe dirigé
selon la direction Ouest-Est 7

d) Pour atteindre la vitesse vp finale depuis une situation de repos dans le référentiel de Robert, la
voiture B a subi une phase d’accélération pendant laquelle une force constante F' = 2.25 x 10N,
parallele a I'autoroute et selon le sens de marche, a été appliquée. Dans le référentiel de Robert,
combien de temps a duré cette phase d’accélération ?

Indications : Vitesse de la lumiere : ¢ = 3 x 103 m/s.

Corrigé

a) (5 points)
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Dans le référentiel de Robert, les longueurs des voitures sont contractées par rapport a leur longueur
au repos :

L v 3 L v? 4 .
LA:—O:LO\/ _C_?IELO et LB:V_J::LO 1_C_§ZELUA'

YA

2.5 points méme si seulement un des deux est calculé. On en demande pas cela en fait
Comme indiqué sur la figure, dans le référentiel de Robert, la distance A séparant les deux événe-
ments peut s’écrire de deux facons :

Ar = v At — Ly = vgAt + Lp ]3 = At(UA —UB> = L+ Ly,

13
At — Lp+La _ Lo((45 +35)) = 7% 0.5 point |c. (1)
cs 75

donc

VA — UB

Application numérique : At ~2.33 x 107" s WD.
b) (6 points)




Dans le référentiel de Robert, la distance entre les deux événements peut s’écrire comme

Az = cAt = vgAt + L |1 point | = At(c —vp) = Lp,
At = =2 =2=— |1 point |p.
c— B c(l—%) c POI® ¢

Application numérique : At ~ 6.67 x 1078 Gs.

donc

Dans le référentiel de la voiture B, ce temps est donné par la transformation de Lorentz :

Atlp = g (At—i—fA) 2 points |y =5 <At—t—§Atc> = At (1—%)
_ S (1_5) _ 4
4 5 2

Application numérique : At|p ~ 3.333 x 108 1 S.

Remarque : on peut arriver au méme résultat en remarquant que dans le référentiel de la voiture

B, celle-ci est au repos. Donc le photon doit parcourir la distance Lg a la vitesse a ¢ : At|p = % =
0 _ -8

(5.5 points)

La trajectoire du photon forme un angle de 6 = w/4 avec 'axe = dans le référentiel de Robert. Les

composantes de la vitesse du photon s’écrivent :

2 2 _
Uphgy = COSO X ¢ = gc et Uphy = SIN0 X ¢ = gc K

En considérant le référentiel de la voiture B, avec 2’ Ouest-Est et ¢/ selon Sud-Nord, les composantes
de la vitesse du photon sont modifiées selon les transformations de Lorentz L. On peut

exprimer les composantes dans ce référentiel :

Uph,x — UB : Uph, -
Vopw = ;’_ﬂm Lpoint fyy et v, = el _p vz};vph,,) 1 point |y (2)

c? o2
et donc
U/ v h
0 =tan~ ! [ 2Y | = tan~! ( P2y ) . |1 point 3
(i ol —vp)) L2 @
V3
. . . A . -1 5 ~ ° B

Application numérique : § = tan (—125 ( \f%)) ~ 79 p :
(3.5 points)

La quantité de mouvement de la voiture B, lorsque sa vitesse vaut vg est donnée par ’expression
relativiste pg = ypmpup Q.

Pour augmenter la quantité de mouvement de la voiture B, une force F constante est appliquée
pendant un temps At :

d mpv
d_Zt) = F' = Intégration :p — pg = FAt =pg — 0 R = At= VB%. 0.5 point g
. . . 8 .
Application numérique : At = 1'25X1(2)9205XX01‘8§3X10 =1x10%s |0.5 point fr.




Exercice 2 (20 points au total)

Etat initial Un récipient & parois rigides et thermiquement isolées est

fermé par un piston mobile qui peut coulisser sans frotte-
ment et qui permet d’échanger de la chaleur mais pas de
matiere. Le récipient est encore divisé en deux chambres
(A et B) par une paroi interne fixe, rigide et thermique-
ment isolante et qui ne permet pas d’échange de matiere.
Dans I’état initial, les deux chambres ont le méme volume
VA = VB = (0.664 m3.
La chambre A contient n4 = 40 moles d’un gaz parfait di-atomique & la pression p4, = 2 bar. La chambre
B contient ng = 40 moles d’un gaz parfait mono-atomique a la pression pg = 1.6 bar. Chaque chambre,
individuellement, est a I’équilibre. Dans cet exercice, on arrondit la valeur de la constante des gaz parfaits
a R=8.3J/K/mol.
Le gaz de la chambre B subit une compression isotherme réversible jusqu’a I’état final qui correspond a la
pression pp s = 16 bar.
a) Donnez les valeurs de la température, de la pression et du volume du gaz dans chaque chambre a
I'état final (fin de la compression isotherme réversible).
b) Pour le gaz de la chambre B, calculez la chaleur échangée et le travail effectué lors de la compression
isotherme réversible.
Au cours de la compression isotherme réversible, le gaz de la chambre B échange de la chaleur seulement
avec un bloc de glace de masse de 2 kg, a travers le piston. A I’état initial, la température de la glace est
200 K.
c) Calculez, entre 1’état initial et I’état final, le changement d’entropie du gaz dans chaque chambre
ainsi que celui de I'univers.
d) Représentez la transformation pour le gaz B dans un diagramme 7" — S.
Une fois 1’état final atteint, le piston devient instantanément thermiquement isolant et est bloqué dans
sa position. Dans ces conditions, la paroi interne qui sépare les deux chambres se brise et les deux gaz se
mélangent jusqu’a I’équilibre a la température Ty = 370 K.
e) Calculez le nombre de degrés de liberté des molécules di-atomiques du gaz de la chambre A.
Indication : Chaleur spécifique de la glace cgace = 2.44kJ/kg/K; Négligez I’épaisseur et la masse de la
paroi interne et du piston mobile.

Récipient

Bloc de glace

A

paroi interne
ve)
Piston mobile

Corrigé

a) (4.5 points)

— Chambre A : Aucun changement pour le gaz dans la chambre A apres la compression isotherme
du gaz de la chambre B, puisque la paroi interne ainsi que la paroi du récipient sont fixes, rigides
et thermiquement isolantes.

— V4 = 0.664m? (donné)
— pa = 2 bar (donné)
— La température est donnée par la loi des gaz parfaits :

Application numérique :

2 x 0.664 -
Ta= g — 400K 0.5 point |

— Chambre B :



b)

— pression : pg = 16 bar (donné)
— Comme la transformation est isotherme, la température du gaz dans la chambre B est calculée
avec I’équation des gaz parfaits avec les conditions initiales :

Application numérique :

1.6 x 10° x 0.664 .

— Le volume final de la chambre B est donné par la loi des gaz parfaits avec les conditions

finales : RT
npg B .
Ve, = 1 point |
= o
Application numérique : Vg ; = 0.0664 m®. F
(2 points)

C’est une transformation isotherme donc d’apres le premier principe de la thermodynamique la
variation d’énergie interne est nulle (A7 = 0) donc la chaleur dégagée par le gaz correspond au
travail effectué sur le gaz. Pour un gaz parfait, cela correspond a :

y
Q=W = natTihn (24 [Tpant | (1)

B.,i

Application numérique : W = 40 x 8.3 x 320 x In(0.1) ~ —244.6kJ | 1 point .

Comme attendu le signe du travail est négatif (travail fait sur le gaz).
(8.5 points)
Le gaz dans la chambre A ne subit aucune transformation. Il reste dans son état d’équilibre, sa

variation d’entropie est donc nulle :
A, =0 [Tpont | o

Le gaz dans la chambre B subit une compression isotherme. Etant un gaz idéal, le changement
d’entropie peut étre calculé comme suit :

A8y =na R 1n ({22 [Tpoint |, (6)

Application numérique : ASp = —0.7645kJ/K |1 point k.

Le changement d’entropie de l'univers est la somme du changement d’entropie du gaz dans la
chambre B et du changement d’entropie du bloc de glace.

ASunivers = ASA +ASB + ASglace L> (7>

=0
avec

Tglace,f 5Q Tgrace,f dT Tglace,f .
ASglace = ? = MyglaceCglace ? = Mglace Cglace In T M' (8)

Tglace,i Tglace,i glace,l

La température du bloc de glace augmente car il recoit toute la chaleur dégagée par le gaz :

Q .
Tglace,f = Tglace,i T — N- (9)

MglaceCglace



Applications numériques :

244.6 x 10°
T, =2 ~ 250K | 0. [
glace,f 00 + 2 % 2.44 x 103 50 0.5 point |o,

250 .
ASglace = 2 X 2.44 x 10° In (%) ~ 1.09 x 10*J/K |1 point |y,
ASunivers — T64.5 4 1.09 x 10* ~ 324.44 J/K [ 1 point .

L’entropie de I'univers augmente comme attendu.

d) (2 points) Enlever un point si sens de parcours pas indiqué

Le gaz A ne subit aucune transformation. Le gaz B subit une transformation isotherme réversible
que l'on peut représenter dans le diagramme 7" — S comme suit :

Ta/N\

320F — — * ®
Bf < Bi

N

7
S KI/KI' [ points |

e) (3 points)

D’ou partir pour répondre a la question posée? On nous dit que le gaz est di-atomique donc sa
molécule peut avoir 5 ou 7 degrés de liberté. En conséquence la réponse "v4 = 5 car le gaz est
di-atomique” n’est pas valable!
On doit donc estimer cy 4 = =
Lorsque la paroi se brise et que les 2 gaz se mélangent jusqu’a thermalisation, il n’y a pas d’échange
de chaleur avec l'extérieur (parois isolantes) et pas de travail effectué (volume total constant). En

conséquence, la variation totale d’énergie interne est nulle :

AU =0« AUy = —AUj |1 point | (10)
T, —T :
MCV,A(Tf - TA) = _%CV,B(T]’ - TB) = Cyv,A = _CV,Bf—,_TB T

Ty —Ta

avec les valeurs numériques obtenues au point a) pour les températures, on obtient :

370 —-320 5
Cv,A Cv.B 370 — 400 3CV,B point 1y

Or la valeur de cy g est connue et non-ambigiie : le gaz B est monoatomique donc cy p = %R.

Finalement,
5 5
Cv,A = EgR = §R = v4=29.|0.5 point |y (11)



Exercice 3 (20 points au total)

Un gaz idéal mono-atomique subit un cycle moteur constitué d’une expansion adiabatique irréversible d'un
état A avec volume V4 = 1m?, pression p4 = 2 bar & un état B avec Vz = 2m3, suivi d'une compression
isobare réversible jusqu’a un état C' et enfin d’une transformation isochore réversible jusqu’a 1’état initial
A. Dans les états A, B et C, le gaz est a I’équilibre.

2)
b)

Représentez le cycle ABCA sur un diagramme p — V.

Lors de l’expansion adiabatique A — B, la variation d’énergie interne vaut AUsp = —0.9 x 10° J.
Calculez la pression du gaz en C.

Calculez les chaleurs échangées lors des transformations B — C et C' — A ainsi que le rendement
du cycle.

Calculez le rendement du cycle de Carnot idéal qui échange de la chaleur avec deux sources aux
températures extrémes du cycle ABCA considéré.

Sur le diagramme du cycle ABCA de la question a), dessinez 'adiabatique réversible A — B’
subissant le méme changement de volume que lors de la transformation A — B.

Soit une transformation adiabatique irréversible d'un gaz parfait, a partir d’un état d’équilibre initial
avec pression Piitial €6 volume Viiar jusqu’a un état d’équilibre final avec pression pgn. et volume
Vinal- Un résultat tout a fait général est : panaVia > Dinitial Vi O 77 st Uexposant adiabatique.
Démontrez cette relation.

Corrigé

(4 points) : ‘3 points ‘A—i— ‘ 1 point ‘B : 1 point par transformation + 1 point pour sens de parcours
Le cycle en question est un cycle moteur donc le sens de parcours est sens horaire. La transformation
adiabatique irréversible ne peut pas étre dessinée avec un trait plein! Le diagramme est :

P/N\

(4 points)
Notons tout d’abord que la pression en C est égale a la pression en B car le processus BC est isobare.

Le processus A — B étant une transformation adiabatique irréversible, il n’est pas possible d’utiliser
I’équation pV7 = const. D

Si quelqu’un utilise pV'7 mais dit clairement que c’est faux car la transformation n’est pas réversible,
il regoit le 1/2 point D.

On part de la variation de ’énergie interne :

AUAB == TLCV(TB - TA) E-

Avec la loi des gaz parfaits pV = nRT on peut remplacer T4y = paVa/nR et Tg = pgVp/nR.
Le nombre de moles n’est pas donné dans 1’énoncé donc on doit le garder comme une variable
F. En fait comme on le voit ci-apres le nombre de moles en jeu et la constante des gaz

7



parfaits (cy = %R pour gaz mono-atomique) se simplifient systématiquement. Aucune information
ne manquait dans 1’énoncé!

3
(pBVB — paVa) = ?ﬁ (p8VB — paVa) (12)

A peVB  paVa wcy
Uap=nev (2 =Sk ) = R

Ce qui donne :

2AUyp + paV,
3 A?/ AVa ~ e (13)
B

G pour équations ou , méme si une hypothese sur la valeur de n a été faite. Dit

autrement, quelqu’un qui a supposé un nombre de moles (n = 1 par exemple) et fait tout juste,
gagne tous les points sauf le point F.
Application numérique :

2% (=0.9%x10°)+2x10° x 1 —0.6 +2) x 10° -
py = 82 ) = OO DX 7 10° Pa = 0.7bar [05 point s

(4.5 points)
Pour calculer Q¢ on applique le premier principe de la thermodynamique au processus isobare :

pPB =

AUpc = Qpc —Wpe = Qe = AUpc + Wae

= Qpc=ncy(Te —Tp) +pp(Vo — VB)I

Le 1/2 point I est aussi obtenu si on écrit : Qpc = ncy,(Te — Tg).

pcVe  peVp cy
- - Vo — Vi) = p(Ve — V, (- 1),
8)%] ncv( R R )+p3( c—Vs) =ps(Ve — Va) I +
c D :
= Quc = pu(Ve = Va) (55 +1) = 3ps(Ve — V)05 point | (14)
Remarque : On peut également partir de I'expression QQpc = nc,AT pour une transformation

isobare.

Note pour correction : Si quelqu’un a supposé un nombre de moles (n = 1 par exemple) et fait tout
juste, il gagne les points [ et J

Pour calculer Q¢4 on utilise & nouveau le premier principe de la thermodynamique sachant que le
travail est nul car V, = V.

: V. Ve
Alcs = Qoa = Qoa = nev(Ta = To) 05 point |« = Qe = ney (szA - pZRC) |
c 3 .
Qoa = ﬁVVA(pA —pc) = 5Valpa _pC)L' (15)

Note pour correction : Si quelqu’un a supposé un nombre de moles (n = 1 par exemple) et fait tout
juste, il gagne les points K et L
Applications numériques :

) .

Qpc = 3 x 0.7 x10° x (1 =2) = —1.75 x 10° J = —175kJ 0.5 point |y < 0 comme attendu.
3 .

Qea = g % 1x(2—0.7) x 10° = 1.95 x 10° J = 195kJ| 0.5 point |x > |Qpc| car cycle moteur

Etant donné qu’il n’y a pas d’échange de chaleur lors de la transformation A — B, le rendement
du cycle peut alors étre calculé en utilisant la chaleur absorbée et la chaleur libérée :

oo 19y 19 by, o ogp ) "

8




d) (3 points)
Le rendement d’un cycle de Carnot ideal est défini comme :

T,
1=1- 2 [05 pant o 1

ou 17, et Ty sont les températures plus basse et plus élevée du cycle, respectivement.
Dans notre cas les deux températures extrémes sont T4 et T comme on peut le voir sur la figure
ou sont indiquées les isothermes :

P/N\

N
Vv
Encore une fois, nous utilisons la loi des gaz parfaits pour obtenir :

A

paVa

e) (2 points) :U si completement juste, zero sinon. On ne demandait pas de justification.
Pour une transformation adiabatique réversible pVV? = const. ce qui donne :

VA v VA v 1 v
T = v = e = —
paV, ) =ppV3 = pp =pa (VB’> =pA <VB> Pa 5 < PB

Le diagramme est :

f) (2.5 points)
Pour démontrer que la quantité pV7 dans le cas d'un processus adiabatique irréversible ne peut
qu’augmenter, contrairement au cas réversible ou elle reste constante, on part de la définition de
I’entropie et on utilise le deuxieme principe de la thermodynamique sur une transformation réver-

sible :

) dT dV .
d5 = 5 = nev'T + (05 point

Maintenant nous intégrons dS pour trouver la différence d’entropie entre deux états génériques 1 et

2, et on utilise la loi des gaz parfaits pV = nRT, et ¢, = cy + R = %R—i—R = gR, ety = CC—C =3=2:

3

roleolen

2 d T,
/dS /ncv— /nR “//“ :>A512—ncvln7—,+ann¥l—ncvlnpl“;l—i- Rln “2




V 1% V;
= ASjs = ncvln@ —|—ncvln72 —i—annv2 = ncvln@ +n(cy + R) 1nv2x-

b1 1 1 b1 1
De la, on obtient :

2 5
A5, :In@—l—c—plnE zln@—i—ln <E) R (pz‘%) .
ney P11 Cy 1 D1 Vi mVi

Or nous savons que lors d’une transformation irréversible, I’entropie de 'univers augmente, donc :

. paVy
ASyuivens = AS1> > 0[05 point |y = In <ﬁ) -0 (19)
= In(pVy) > In(pVy') = p2Vy' > plvfz- (20)

Dans le cas réversible AS1s = 0 et donc poVy = pi V]’ = const.

10



Exercice 4 (20 points au total)

Ivo part en voyage vers une planete lointaine possédant une atmosphere et un grand océan qui ne sont
pas a I’équilibre thermique entre eux. Au cours de sa phase d’approche, la fusée traverse I’atmosphere et
se chauffe jusqu’a la température Tee. L’atmosphere, considérée comme un gaz parfait isotherme, est
constituée d’azote (masse d’une molécule d’azote m, = 5.34 x 10720 kg) a la température de 80°C et a la
pression de 1 bar, a la surface de la planete. L’océan est constitué d’eau.
Pour mesurer la température de 'eau de 'océan, Tyccan, Ivo fait 1'expérience suivante, a la surface de la
planete : une barre de métal de la fusée (longueur L = 1m, masse m = 4kg) est plongée dans un bain
de 20 kg d’eau de I'océan. La chaleur est uniquement échangée entre la barre de métal et ’eau de ce bain
jusqu’a ce que 'équilibre thermique entre les deux soit atteint. A ce moment-la, Ivo constate que 1 kg
d’eau a été évaporé et la barre de métal s’est rétrécie de AL =1.6 cm.
a) Calculez Thesan €t Thusse-
b) En considérant la barre de métal comme un corps noir, représentez graphiquement de maniere
qualitative son émittance spectrale €, en fonction de la longueur d’onde A\ avant sa plongée dans
I’eau du bain et apres sa thermalisation avec I’eau du bain. Justifiez ’allure des courbes.
c) En sachant que, sur cette planete, 'eau bout a 300 K a 2700 m d’altitude, calculez 1'accélération
de gravité a de la plancte.
Indications : Chaleur spécifique du métal cpea1 = 0.7 kJ/kg/K; chaleur spécifique de l'eau cepy =
4.186 kJ /kg/K; coefficient de dilatation thermique linéaire de la barre de métal o = 8 x 1076 K~ ; chaleur
latente de vaporisation de I'eau L, = 2.2 x 10% J /kg ; constante des gaz parfaits R = 8.314 J/K/mol ; masse
molaire de 'eau M = 18 g/mol ; constante de Boltzmann kz = 1.381072% J/K.
Faites I'approximation qu’a 100°C la pression de vapeur d’eau vaut 1 bar.
On rappelle que % = —p(z)a ou p est la pression atmosphérique, z est la coordonnée relative a I’altitude,
p(z) est la densité de 'atmosphere et a est I'accélération de gravité de la planete.

Corrigé

a) (9 points)
On utilise I’équation sur la dilatation thermique pour trouver la température initiale de la barre de
métal, c’est-a-dire la température de la fusée Tiuse,

AL : AL
a(TfUSée - Tf) = T A = Tfusée = Oé_L + Tf

ou T est la température finale de la barre de métal. Or la température finale est égale a la tempé-
rature d’équilibre entre la barre, I’eau et la vapeur et puisque il y a un équilibre thermique entre
I'eau et la vapeur a la pression py = 1 bar (a la surface de la planete), on a Ty = 100°C B.
Application numérique :

0.016 ) |
Tfusée - W + 100 = 2100 C(j. (2]_)

Pour calculer la température de I’eau avant de plonger la barre, ¢’est-a-dire la température de I'océan
Tocéan, on utilise Qi = Y Q = 0. On obtient

mmcm(Tfusée - Tf) = mece(Tf - Tocéan) + vav Da (22>

ou m,,, m. et m, sont les masses de la barre, de ’eau et de la vapeur, respectivement. On peut
donc calculer T, .¢a, de I’équation ,

vav - mmcm(Tfusée - Tf) vav - mmCmA_I[: .
Tocéan =T =T o 1 t g. 23
o b el o el i 29
Application numérique :
2.2 x 103 — 4 x 0.7 x 206,
Tocéan =100+ xaiss o = 594°C|L point (24)
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b) (4 points) G pour allure des courbes + H pour décalage correct + 1

pour réduction de 'emittance.

Les courbes demandées sont données sur la figure ci-apres. On peut justifier I’allure ainsi :

— J Un corps noir émet selon la loi de Planck.

ou

— K Selon la loi de Wien, la longueur d’onde correspondant a 1’émission maximale par
rayonnement d'un corps augmente si la température diminue, \,.<7" =const. L’émittance est

réduite lorsque la température du corps est plus faible : £ oc T4,
Emittance spectrale de la barre de métal

avant la plongée 7
dans l'eau -

apres
thermalisation

¢) (7 points) L’ébullition correspond & la condition de pression de vapeur égale a la pression ambiante
L. Pour déterminer I'accélération de gravité a de la planete, on utilise la loi de Pascal,

dp _

ou p est la pression de 'atmosphere, z est la coordonnée relative a I'altitude, p(z) est la densité de
I’azote et a est 'accélération de gravité de la planete, et la loi de Clausius-Clapeyron,

dp mLU . TI’LLU
P e [ point y A Y
ar — (v, — Ve)TM V.,T’

ou on néglige V, par rapport a V, parce que V, < V,,.
On integre I’équation de Pascal en considérant la température constante et on obtient (calcul fait

dans le cours)
mgh .
P = Poexp <— kBT0a> 1 point |, (25)

ol pg = 1 bar est la pression a la surface de la planete et T, = 80 °C est la température de
I’atmosphere.
En intégrant 1’équation de Clausius-Clapeyron, on obtient (calcul fait dans le cours)

ML, /1 1 .
Pf = Po exp{ i <ﬁ - ?f)] 1 point o, (26)
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ou T; = 373 K est la température d’ébullition de 'eau a la pression py = 1 bar et Ty = 300 K est la
température d’ébullition de I'eau a la pression py p.
L’accélération de gravité a peut étre obtenu des équations et ,

kgToMy (1 1 :
o= (7 7)ot @)

Application numérique :

1.38 x 1072% x 353 x 40 x 10° [ 1 1 m
- - ~ 118 =1 point |g. 28
“ 7T 748 % 10726 x 2700 x 8.314 (300 373) = |1 point (28)
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Exercice 5 (20 points au total)

Un cable cylindrique en cuivre de section circulaire de rayon R et de longueur L est parcouru par un
courant électrique /. Le cable est chauffé par effet Joule et sa conductivité thermique est notée k.. On
suppose que le cable est thermiquement isolé par une gaine en plastique d’épaisseur A et de conductivité
thermique k,. L’épaisseur A n’est pas négligeable par rapport a R. La température a la surface du cable
vaut Tj et la température a la surface externe de la gaine en plastique vaut 7;. On suppose que le transfert
de chaleur se fait en régime stationnaire et uniquement par conduction dans la direction radiale. On néglige
les transferts de chaleur aux extrémités du cable. On décrit la direction radiale par la coordonnée r > 0
associée a un repere cylindrique centré sur ’axe du cable.

Montrez que le flux de chaleur radial J(r) dans la gaine en plastique est donné par I’équation
différentielle £ (r.J(r)) = 0.

Calculez I'expression de la température T'(r) dans la gaine en plastique en fonction de Tp, T3, R, A.
Calculez I'expression du flux de chaleur J(r) dans la gaine en plastique en fonction de Ty, 77, R, A
et Kp.

Calculez I'expression du courant I en supposant qu’il est uniformément distribué dans le cable en
cuivre en fonction de Tp, 11, R, A, K, et pe.

Indications : La puissance par unité de volume produite par effet Joule dans le cable en cuivre est donnée
par P = p.j2, ol p. est la résistivité du cuivre et j la densité de courant.

a)

Corrigé

(7 points)
On considere un régime stationnaire |1 point |y. Dans ce régime et comme il n’y a pas de courant

(et donc pas d’effet Joule) dans la gaine en plastique B, il y a la conservation de

0Q :
% = S('/‘)J(’r’) = COIlSt.,C (29)

ou S(r) est la surface en r.
Méthode I : Comme §Q)/dt est une quantité conservée dans la gaine et est égale a la puissance
totale passsant a travers la gaine en plastique, le flux de chaleur J(r) est donné par 'Eq. ,

avec S(r) = 27r7"LD, c’est-a-dire

) = <§) 27717’L (30)

On peut donc écrire que

rJ(r) = (%) %LLE (31)

En évaluant la dérivée par rapport a r de I'Eq. et en utilisant 'Eq. (29), on obtient

5090 = 52 [ ()] = 0 [Zpoims (2
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Méthode II : La conservation de S(r)J(r) s’écrit entre r et 1’ (avec r,r" € [R, R + A])

S(r)J(r)=S@")J(r).

Or comme S(r) = 27rL, I'équation précédente devient

27t J(r) = 27tr’ J(r') = 0(;.

En posant ' = r + dr, on obtient

rd(r)—(r+dr)J(r+dr)=r[J(r)—Jr+dr)]—drJ(r+dr)=0.

Pour faire apparaitre la dérivée, on utilise ’approximation suivante :

0 J(r+dr)—J(r)

—J(r) ~ 0 = J(r) = J(r+dr) ~ —dr%J(r),H,

or
On obtient

r {—dr%J(r}] —drJ(r +dr) = —dr [r%](r) + J(r)} 0= % (rJ(r)) =02 points |. (33)

a bis) (8 points)
En partant de I’équation de la chaleur en coordonnée cylindrique,

1
1o (TET(T‘)> +Z = @QT‘ 2 points ‘J‘l point ‘K (34)
Ky Ot

Kp

En régime stationnaire | 1 point |, 0,7 = 0 0.5 point |1 et en I'absence de courant dans le cable en

plastique 1\', w = 0 0.5 point |n, on obtient avec J = —/fp(?er,
d
= (1) = 0[1 point g (35)

b) (7 points)
Le flux de chaleur s’exprime par la loi de Fourier,

%, :
Jp(r) = —K%TW.R (36)

La température est donnée par

B, 0 d :
5 (1) =0= — (—KPTET(T)) = 01 point s, (37)

avec r € [R, R+ A]. Pour trouver T'(r), il faut résoudre I’équation différentielle Par intégration
par rapport a r, on trouve

0 .
r2r(r) = {05 ot &S
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ou C' est une constante d’intégration a déterminer. Une seconde intégration par rapport a r donne

T(r):/ dr'%%—D

_ C'lnr + D[05 point |, (3)

ou D est une deuxiéme constante d’intégration. Les constantes C' et D sont a déterminer. Pour
cela, il faut utiliser les conditions au bord telles que T'(R) = Ty et T(R + A) = T;. On obtient un
systeme de deux équations,

Ty=ClnR+ D, (40a)

Ty = Cln(R+ A) + D1 point |, (40D)

On peut écrire

(TO — Tl) =Cln <R—|—LA) =(C = % 1 point W (41)

R+A

En injectant C' dans on peut en déduire D telle que

D =T, - ClnR[1 point |x. (42)

La température T'(r) dans la gaine est donc donné par la fonction

T, —T InR(Ty — T
T(r):—( 0 = Y lnr+T0——nR( OR D
In (7%) In (7ix)

In r
<<>) &
n

R+ A
On peut vérifier que T(R) = Ty et que T(R+ A) = T3.

T(r)=(To — Th)

b bis) (6 points)

Le flux de chaleur s’exprime par la loi de Fourier,

Jp(r) = —/ﬂp%T('r’). (44)

La température est donnée par

% (rJ(r)) =0= % (—/ﬁ:prgT(r)) = 01 point |4, (45)

avec r € [R, R+ AJ. Pour trouver T'(r), il faut résoudre I’équation différentielle 45| Par intégration
par rapport a r, on trouve

0 .
r21(r) = {05 ot 10
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ou C' est une constante d’intégration a déterminer. Une seconde intégration par rapport a r donne

T(r)= / dr'g, +D
r

— Cnr + D[05 point |, (47)

ol D est une deuxieme constante d’intégration. Les constantes C' et D sont a déterminer. Pour
cela, il faut utiliser les conditions au bord telles que T'(R) = Ty et T(R 4+ A) = T;. On obtient un
systeme de deux équations,

To=ClnR+ D, (48a)

Ty = Cln(R+ A) + D1 point | (48D)

On peut écrire

(TO—Tl):Cln(RfA)jC:%1point E- (49)

En injectant C' dans on peut en déduire D telle que

D =T, - ClnR|1 point . (50)

La température T'(r) dans la gaine est donc donné par la fonction

. (TO—Tl) nr o 1HR(T0—T1)
TG T T NG
In r
T(r)=(To - T1)<—g> + TO-G (51)
m<R+A>

On peut vérifier que T'(R) = Ty et que T(R + A) = T3.

¢) (2 points)
Le flux de chaleur J,(r) dans la gaine en plastique est donné par la loi de Fourier exprimée en
coordonnée cylindrique,

Tr) =~y o T(r).

En utilisant Eq. , on déduit

C Ty —1T7)1 .
Jp(r) = —hp - = —ﬁp%; 2 points . (52)

R+A

d) (4 points)
En régime stationnaire, la puissance totale, P, générée par effet Joule dans le volume du cable
de cuivre doit étre égale a la totale puissance qui traverse le cable en r = R, c’est-a-dire P,,;. La
puissance totale P, générée par effet Joule, est donnée par

Pion = PV = PL?’[1 point | (53)
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avec P = p.j%, la puissance volumique associée & leffet Joule, et V, = L7 R? le volume du cable
du cuivre. j est la densité de courant dans le cable de cuivre. Comme [ est uniformément distribué
dans le cable de cuivre, la densité de courant j peut s’écrire

J = [ Lpaint ). (54

on trouve que

, I \? Lp I?
Piot = pej’LmR? = p, (W—RQ> LrR* = :RQ (55)

La puissance qui traverse dans le cable en r = R s’écrit comme
P = SJ,(R), (56)

avec S = 2rRL la surface externe du cable de cuivre. Le flux de chaleur J,(R) peut s’exprimer par
la loi de Fourier

0 C

To(R) =~y o T(R) =~y 57)
ou on a utilisé Eq. . Ainsi, la puissance totale qui sort du cable de cuivre en r = R est
P, =21RL |C|—2L C 58
out = 2Lt " = 2m kp|Cl. (58)
En égalisant les 2 puissances : P,,; = PtotK, on tire I'expression pour [ :
Lp.I?
e 21 Lk, |C|
Lo 212k, |C|R? _ 212K, R? (59)
\ Pe \/ Pe
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