
Examen ( juin )

Exercice 1 (20 points)

Une fusée s’approche de la Terre avec une vitesse inconnue. Le capitaine de la fusée communique
à la base terrestre le temps qui lui reste pour arriver sur terre, à partir du moment où le message
même est envoyé. Dans un premier message il dit que le temps qui reste est de 2h, dans le
deuxième de 1h45’. Le premier message est reçu sur terre à 15h00, et le deuxième à 15h02.

a) Quelle est la vitesse de la fusée ?
b) A quelle heure exacte la fusée arrivera sur Terre ?
c) Pendant son trajet vers la Terre, la fusée reçoit l’ordre de lancer un missile pour détruire

un vaisseau extraterrestre qui s’approche de la Terre. Dans le référentiel de la Terre, le
missile doit être lancé perpendiculairement par rapport à la trajectoire de la fusée, avec
un vitesse de 0.6 c. Avec quel angle par rapport à la trajectoire de la fusée le missile est
lancé dans le référentiel de la fusée ?

Corrigé

Nous commençons avec la définition du référentiel par rapport à la Terre S, et le référentiel par
rapport à la fusée S ′.

a) 6 points Les équations qui lient le temps d’envoi des signales par le capitaine de la fusée,
dans le référentiel de la Terre (tF1 , t

F
2 ), sont :{

tT1 = tF1 + x1
c

tT2 = tF2 + x2
c

(1)

Avec la différence des deux équations, nous obtenons :

∆tT = ∆tF − ∆x

c
= ∆tF − v∆tF

c
= ∆tF

(
1− v

c

)
= ∆tF

′
γ
(

1− v

c

)
(2)

avec ∆tT = tT2 − tT1 = 2min, ∆tF = tF2 − tF1 , ∆x/c = (x1 − x2)/c et ∆tF
′
= 15min.

⇒
(

∆tT

∆tF ′

)2

︸ ︷︷ ︸
∆

=

(
1− v

c

)2(
1− v2

c2

) =

(
1− v

c

)(
1 + v

c

)
1



Une autre façon de réfléchir est la suivant. Les premières deux messages nous indiquent
que après un intervalle de temps ∆tF

′
= 15min dans le référentiel de la fusée, qui

correspond à ∆tF = ∆tF
′
γ dans le référentiel de la Terre, la fusée a cumule un retard

spatial ∆X par rapport à la lumière, qui est parcouru dans 2 minutes par la lumière
mémé (∆X = c ∆tT︸︷︷︸

=2min

). Ce retard spatial peut être exprimé comme ∆X = ∆xc−∆xF =

c∆tF − v∆tF . On trouve donc :

c∆tT = c∆tF − v∆tF = (c− v)∆tF = (c− v)∆tF
′
γ , (3)

qui correspond a l’équation 2.

⇒ v

c
=

1−∆

1 + ∆
. ' 0.965. (4)

Application numérique :

∆ =

(
120

900

)2

= 0.0178 ⇒ v

c
=

1− 0.0178

1 + 0.0178
= 0.965 ⇒ v = 0.965 c.

b) 6 points Nous pouvons réfléchir de façon itérative. Si la fusée se déplace avec une vitesse
constante, la base terrestre doit recevoir un message à 15h14, ou le capitaine de la fusée
dit que le temps qui reste est de 15 minutes. Donc à 15h16 le message reçu dit que le
temps qui reste est de 0 minutes, qui signifie que la fusée est juste arrivée sur la Terre.
Dans ce dernier cas, le message est envoyé et reçu au même temps.
Une autre façons d’analyser le problème est la suivante. Quand la fusée envoie le deuxième
message, elle est temporellement plus proche à la Terre de 15 minutes dans son référentiel.
Au même temps, le première message qui se propage avec une vitesse c, il s’est éloigne
de 2 minutes par rapport à la fusée. Quand la fusée aura complété la distance temporelle
de 2h jusq’à la Terre, elle aura cumule une distance temporelle de ∆Ttot = 2min ×
(2h/15min) = 960s derrière le première message. Donc il arrive à tarrivée = 15h+ 960s =
15h16.
Nous pouvons résoudre ce problème de façon rigoureuse à partir du résultat de la question
a). Par rapport au premier message, le temps qui reste avant l’arrivée de la fusée (∆T F )
dans le référentiel de la Terre peut être écrit comme ∆T F = ∆T F

′
γ, avec ∆T F

′
= 2h.

L’horaire de l’arrivée su la Terre est donnée par :

tarrivée = tF1 +∆T F = tT1 −
∆T Fv

c
+∆T F = tT1 +∆T F

′
γ

(
1− v

c

)
= tT1 +∆T F

′

√√√√√
(

1− v/c
)

(
1 + v/c

)
(5)

ou nous avons utilisée le fait que :

tT1 − tF1 =
x1

c
=

∆T Fv

c
(6)

En utilisant l’eq (4), nous trouvons :

tarrivée = tT1 + ∆T F
′
(

∆tT

∆tF ′

)
(7)

Application numérique :

tarrivée = 15h+ 2h× 2min

15min
= 15h+ 960s = 15h16
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c) 8 points En sachant que la vitesse du missile doit être uy = 0.6c dans le référentiel de
la Terre, les composantes de la vitesse du missile dans le référentiel de la fusée peuvent
être calculées avec les transformations inverse de Lorentz :

u′x =
ux − v

1− (uxv)/c2
=︸︷︷︸

ux=0

−v u′y =
uy

γ
[
1− (uxv)/c2

] =︸︷︷︸
ux=0

uy
γ

(8)

L’angle avec lequel le missile doit être lance dans le référentiel de la fusée est :

α = arctan

(
u′y
u′x

)
= arctan

(
uy
γv

)
(9)

Application numérique :

α ' arctan

(
0.6c

3.81× 0.965c

)
' 0.16 rad ' 9◦
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Exercice 2 (20 points)

Un cylindre avec piston contient 3 moles de gaz idéal diatomique. Le cylindre est à l’équilibre
thermique avec 100 litres d’eau à TA = 100 ◦C. Le gaz est comprimé de façon réversible à
température constante, en restant en contact avec l’eau, jusqu’à un volume de VB = VA/3.
Ensuite, une transformation adiabatique réversible ramène le gaz au volume initial VA. Enfin,
la température du gaz est ramenée à TA en remettant le cylindre en contact avec l’eau, et en
maintenant le volume constant.

a) Dessiner le cycle sur un diagramme p− V .
b) Calculer le travail nécessaire pour effectuer un cycle complet.
c) Combien de cycles sont-ils nécessaires pour faire évaporer 1 litre d’eau du réservoir ?
d) Quelle est la variation d’entropie du gaz et de l’eau dans la transformation isochore ?
e) Quelle est l’énergie inutilisable sur un cycle pour fournir du travail ?

Indications : Constante des gaz parfaits R = 8.314 J mol−1 K−1. Chaleur latente de vaporisation
Lv = 2250 kJ kg−1.

Corrigé

a) 4 points Diagramme p− V

Notez que la transformation C → A est irréversible, donc on ne peut pas l’indiquer
directement dans un diagramme p-V, comme on est pas continuellement dans un état
de quasi-équilibre définé par les deux variables d’état. L’indication des chaleurs et types
de transformations n’est pas obligatoire, mais très utile pour le reste.
Le sens du parcours du cycle nous indique qu’il s’agit d’un réfrégirateur.
Le gaz est diatomique donc ν = 5 et donc γ = ν+2

ν
= 7

5
.

b) 5 points Le travail effectué par ou sur le gaz au cours du cylcle s’écrit :

W = WAB +WBC +WCA avec Winitial→final ≡
∫ final

initial

p dV

A→ B : Pour l’isotherme de ce gaz idéal, on trouve, en utilisant pV = nRT et VB =
VA
3

:

WAB =

∫ VB

VA

pdV = nRTA

∫ VB

VA

dV

V
= nRTA ln

(
VB
VA

)
= −nRTA ln(3).
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B → C : Sur l’isentrope on a P V γ = cst., on trouve (avec TB = TA et VC = VA = 3VB
)

WBC = PBV
γ
B

∫ VC

VB

dV

V γ
= PB

(
VA
3

)γ
1

1− γ

(
V 1−γ
A −

(VA
3

)1−γ
)

=
1

1− γ
PAVA(31−γ − 1) =

31−γ − 1

1− γ
nRTA.

où on a encore utilisé le loi des gaz parfaits et le fait que pV = cst. sur l’isotherme
pour trouver PB.

C → A : Même si cette transformation est irréversible, on a WCA = 0 comme dV = 0
sur une isochore.

Finalement, :

Wcycle = WAB +WBC +WCA = −nRTA ln(3)+
31−γ − 1

1− γ
nRTA = nRTA

(
−5

2
(3
−2
5 − 1)− ln(3)

)
Application numérique :

Wcycle = 3× 8.314 × 373.15× (−0.21) = −1951 J.

Comme Wcycle < 0, le travail est fait sur le gaz.

c) 6 points L’eau va s’évaporer si elle reçoit plus de chaleur du gaz qu’elle n’en donne à
celui-ci. Les échanges de chaleur se font sur les transformations A → B et C → A car
B → C est adiabatique. Calculons les échanges de chaleur sur ces 2 transformations :
A→ B : Le premier principe de la thermodynamique s’écrit : ∆U = Q −W . Or pour

une isotherme, ∆U = 0, donc

QAB = WAB = −nRTA ln(3).

Cette quantité est négative : il s’agit donc de chaleur perdue par le gaz (donc reçue
par l’eau).

C → A : En utilisant le premier principe, on trouve ∆UCA = QCA puisque WCA = 0.
Donc :

QCA =

∫ TA

TC

nCV dT = n
R

γ − 1
(TA − TC) = n

R

γ − 1
TA

(
1− TC

TA

)
.

où on vient d’utiliser R = Cp − CV et γ = Cp

CV
.

Que vaut TC ?
Pour une transformation adiabatique, on a TV γ−1 = cst., donc TCV

γ−1
C = TBV

γ−1
B . Or,

TB = TA (isotherme), VC = VA (isochore) et VB = VA/3. Donc :

TCV
γ−1
C = TBV

γ−1
B ⇒ TCV

γ−1
A = TA

(
VA
3

)γ−1

= TA
V γ−1
A

31−γ ⇒ TC
TA

= 31−γ.

Finalement,

QCA = n
R

γ − 1
TA
(
1− 31−γ) .

Cette quantité est positive c’est donc une quantité de chaleur reçue par le gaz (donc
perdue par l’eau).
Le bilan de chaleur échangée au cours du cycle s’écrit donc :

Qcycle = nRTA

(
(1− 31−γ)

γ − 1
− ln(3)

)
= 3× 8.314× 373× (−0.21) = −1951 , J.
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A chaque cycle, le gaz perd cette quantité de chaleur qui va servir à évaporer l’eau.
On aurait pu arriver directement au résultat en appliquant le premier principe de la
thermodynamique au cycle complet :

∆Ucycle = Qcycle −Wcycle ⇒ Qcycle = Wcycle,

car l’énergie interne est une variable d’état et donc ∆Ucycle = 0. Ce raisonnement est
également une solution parfaitement valable.
Finalement, le nombre de cycles Ncyc se calcule comme suit :

Ncyc =

∣∣∣∣Qévap.

Qcycle

∣∣∣∣ =

∣∣∣∣meau Lv
Qcycle

∣∣∣∣ .
Application numérique :

Ncyc =
1 × 2250

1.95
= 1153.8 où on a supposé ρ100◦C

eau = 103 kg m−3.

Il faut donc 1154 cycles pour faire évaporer 1 litre d’eau complètement.

d) 3 points La transformation isochore est irréversible, mais comme l’entropie est une va-
riable d’état, on peut toujours choisir une transformation réversible pour aller de C à A.
La variation d’entropie pour le gaz s’écrit :

∆SgazCA =

∫ A

C

δQ

T
=

∫ TA

TC

nCV
dT

T
= n

R

γ − 1
ln

(
TA
TC

)
= n

R

γ − 1
ln
(
3γ−1

)
.

Application numérique :

∆SgazCA = 3× 8.314

2/5
× 0.439 = 27.4 J K−1.

Pour l’eau, que l’on peut bien traiter comme un réservoir parfait à température constante,
on trouve

∆SeauCA =

∫ A

C

δQ

T
=

1

TA

∫ A

C

δQ =
−QCA

TA

où le signe ”-” indique que cette chaleur est perdue par l’eau.
Application numérique :

∆SeauCA = − 8274

373
= − 22.2 J K−1

e) 2 points De d), il est clair que ∆SuniversCA ≡ ∆SgazCA + ∆SeauCA > 0 en accord avec la trans-
formation irréversible : pendant cette transformation, de l’énergie est fournie au gaz et
dissipée. Elle devient donc inutilisable pour une conversion en travail. Comme les deux
autres transformations sont réversibles, c’est la seule perte. Comme vu au cours en dé-
tail (série 09, exercice 1), on trouve en toute généralité (pour un cycle à 1 réservoir avec
TH = TL = TA)

Qindisp = TL ∆SuniversABCA = TA S
univers
CA .

Application numérique :
Qindisp = 373 × 5.23 = 1951 J.

Ceci ne veut PAS indiquer que dans chaque cycle moteur ou réfrigerateur Qindisp =
Win = Qout − Qin. Généralement, on trouve des résultats, qui dependent de toutes les
transformations.
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Exercice 3 (20 points)

Un glaçon à température −15 ◦C est plongé dans un récipient de forme cylindrique, dont on
néglige les pertes thermiques, contenant 1 kg d’eau à 30 ◦C. Uniquement les parois verticales du
récipient sont sujettes aux déformations thermiques et sont à la même température que l’eau.
A 30�, le récipient a une capacité de 1.35 litres.

a) Quelle est la masse maximale de glace qui peut fondre dans l’eau ? Justifiez votre réponse.
Dans la suite, on supposera que la masse initiale du glaçon est égale à la masse maximale
trouvée au a).

b) Quelle est la variation d’entropie du système dans ce cas ?
c) A l’aide de la courbe ci-dessous, déterminer si l’eau déborde du récipient une fois l’équi-

libre thermique atteint.
Indication : chaleur spécifique de l’eau ceau = 4186 J kg−1◦C−1 ; chaleur spécifique de la glace
cglace = 2050 J kg−1◦C−1 ; chaleur latente de fusion de la glace Lf = 333.5 kJ kg−1 ; coefficient
de dilatation linéaire du matériau du récipient α = 80× 10−6 K−1.
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Corrigé

a) 6 points Les valeurs possibles pour la température d’équilibre (finale) sont Tf ≥ 0 ◦C. En
effet, Tf < 0 ◦C n’est pas possible car la glace doit fondre.
Si Tf ≥ 0 ◦C :

cglacemglace(0− Tglace) +mglaceLf + ceaumglace(Tf − 0) = ceaumeau(Teau − Tf )

⇒ mglace =
ceaumeau(Teau − Tf )

cglace(0− Tglace) + Lf + ceau(Tf − 0)
(10)

La quantité maximale de glace qui peut fondre est trouvée lorsque le numérateur est
maximum (et le numérateur minimum), c’est à dire à Tf = 0.
Par conséquent,

mglace =
ceaumeauTeau

cglace|Tglace|+ Lf
. (11)

Application numérique :

mglace =
4186× 1× 30

2050× 15 + 333.5× 103
= 0.345kg
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Une autre façon de justifier Tf = ◦C est de dire que toute la chaleur perdue par l’eau
sert à fondre de la glace, mais que l’eau ne doit pas se transformer en glace.

b) 8 points La variation d’entropie du système doit être calculée en 3 étapes :
1.- Réchauffement de la glace de −15 � à 0 �

La quantité infinitésimale de chaleur pour chauffer la glace de dT est :

δQ = m0cglace dT. (12)

Donc, la variation d’entropie de la glace s’écrit :

∆S1 =

∫ f

i

δQ

T
= m0cglace

∫ Tf

Ti

dT

T
= m0cglace ln

(
Tf
Ti

)
. (13)

2.- Fusion de la glace à 0 � en eau à 0 �
La chaleur transférée à la glace pour la fondre est :

Q = m0Lf . (14)

Ainsi, la variation d’entropie de la glace lors de sa fonte (c.-à.-d. à température
constante) est :

∆S2 =

∫ f

i

δQ

T
=

1

T

∫ f

i

δQ =
Q

T
=
m0Lf
T

. (15)

3.- Refroidissement de l’eau de 30 � à 0�
On obtient pour la variation d’entropie de l’eau refroidie :

∆S3 = meauceau

∫ Tf

Ti,eau

dT

T
= meauceau ln

(
Tf
Ti,eau

)
. (16)

Application numérique :

∆S1 = m0 × 2050× ln

(
273

258

)
= 115.85m0 J K−1.

∆S2 =
m0 × 3.335× 105

273
= 1221m0 J K−1.

∆S3 = 1× 4186× ln

(
273

303

)
= −436.43 J K−1.

On a donc pour la variation totale d’entropie du système :

∆Ssyst. = m0cglace ln

(
Tf

Ti,glace

)
+
m0Lf
Tf

+meauceau ln

(
Tf
Ti,eau

)
S3 = 1337m0−436.43 J K−1. (17)

Avec m0 = 0.345 kg, ∆Ssyst. = 24.84 J K−1.
La variation d’entropie du système ”glace+eau” est positive car c’est un processus irréversible.
On peut aussi dire que le désordre a augmenté.

c) 6 points D’après la courbe donnée, le volume massique de l’eau à 0� est égal à 1.00018 l kg−1

donc la masse volumique de l’eau à 0� vaut ρeau = 1
1.00018

= 0.998 kg l−1 = 999.8 kg m−3.
A Tf , toute la glace a fondu donc la masse totale d’eau liquide est : meau = 1 + 0.345 =
1.345 kg donc le volume total d’eau est :

Veau(T = 0◦C) =
meau

ρeau
.

Application numérique :

Veau(T = 0◦C) =
1.345

999.8
= 1.3452× 10−3 m−3 = 1.3452 l.
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Seules les parois du récipient se sont raccourcies sous l’effet du refroidissement (pas sa
section) :

Vr,T=0◦C = Srhr,T=0◦C = Srhr,T=30◦C × (1 + α∆T ) = Vr,T=30◦C × (1 + α∆T ).

Application numérique :

Vr,T=0◦C = 1.35× (1 + 80× 10−6 × (−30)) = 1.3467 l.

Remarque : le récipient est un cylindre (section circulaire). Donc, on ne peut pas cal-
culer une expansion/contraction volumique en utilisant comme coefficient d’expansion
volumique β = 3α (ceci n’est valable que pour les parallélépipèdes).

A T=0�, le volume d’eau liquide est légèrement plus petit que le volume du récipient donc
l’eau ne déborde pas.
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Exercice 4 (20 points)

Trois moles d’un gaz parfait monoatomique suivent le cycle ABCA représenté par un triangle
rectangle dans le diagramme T − V (voir figure ci-dessous).

a) S’agit-il d’un moteur ou d’un réfrigérateur ?
b) En sachant que TB = 3TA, calculer le coefficient de performance ou le rendement du

cycle.
c) Calculer la variation d’énergie libre de Gibbs ∆G sur la transformation C → A et sur

tout le cycle pour TA = 80 ◦C.
Indications : Constante des gaz parfaits R = 8.314 J mol−1 K−1.

T

V

C

B

A

Corrigé

a) 6 points Pour savoir s’il s’agit d’un moteur ou d’un réfrigérateur, on peut examiner le
sens dans lequel tourne le cycle dans un diagramme p−V . Redessinons ce cycle dans un
diagramme p−V . Pour cela nous devons trouver les allures des courbes représentant les
transformations AB, BC et CA dans ce diagramme.
Transformation A→ B : D’après le cycle donné dans l’énoncé, la courbe de la transfor-
mation AB est une droite passant l’origine. L’équation de cette droite dans le diagramme
T − V est de la forme : T = αV , où α est une constante. En utilisant la loi des gaz
parfaits on trouve :

pV = nRT ⇒ T =
p

nR
V ⇒ α =

p

nR
.

On en déduit que la transformation A→ B est une isobare et peut donc être représentée
par un segment de droite horizontale dans le diagramme p− V .
Transformation B → C : Il s’agit d’une transformation isochore dont l’allure dans un
diagramme p− V ne changera pas.
Transformation C → A : C’est une transformation isotherme dont on connâıt l’allure
dans un diagramme p− V .

Le cycle dans le diagramme p − V , représenté ci-après, est parcouru dans le sens horaire : il
s’agit donc d’un moteur.

b) 8 points Comme il s’agit d’un moteur, on va calculer le rendement du cycle. Il est donné
par le rapport entre le travail du gaz sur le cycle Wcycle et la chaleur échangée avec la
source chaude QH :

η ≡ Wcycle

Qc

.

Calculons le travail effectué par ou sur le gaz et la chaleur échangée lors de chaque
transformation :
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Transformation A→ B :

WAB =

∫ B

A

pdV = pA (VB − VA) = pA

(
nRTB
pB

− nRTA
pA

)
= pA

(
3nRTA
pA

− nRTA
pA

)
⇒ WAB = 2nRTA = 2pAVA

QAB = ∆UAB +WAB = nCV (TB − TA) + 2nRTA =
3

2
nR(3TA − TA) + 2nRTA.

QAB = 5nRTA > 0⇒ échange avec la source chaude

Transformation B → C :

WBC =

∫ C

B

pdV = 0 car transformation isochore.

QBC = ∆UBC +WBC = nCV (TC − TB) =
3

2
nR (TA − 3TA) = −3pAVA

QBC = −3nRTA < 0⇒ échange avec la source froide

Transformation C → A :

WCA =

∫ A

C

pdV =

∫ A

C

nRT

V
dV = nRTA ln

VA
VC

= pAVA ln
VA
VC

Or d’après la loi des gaz parfaits :

pAVA
TA

=
pBVB
TB

⇒ pAVA
TA

=
pAVC
3TA

⇒ VA =
VC
3

Donc :
WCA = −pAVA ln(3) = −nRTA ln(3).

QCA = ∆UCA +WCA = nCv (TC − TA)− pAVA ln 3

QCA = −nRTA ln(3) < 0⇒ échange avec la source froide

Finalement :

Wcycle = 2nRTA + 0− nRTA ln(3) = nRTA(2− ln(3)).

QH = QAB = 5nRTA.

η =
Wcycle

QH

=
nRTA(2− ln(3))

5nRTA
=

2− ln(3)

5
' 0.18.
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c) 6 points La variation d’énergie libre de Gibbs lors de la transformation CA s’écrit :

∆GCA =

∫ A

C

dG =

∫ A

C

dH − SdT − TdS

=

∫ A

C

δQ− δW + pdV + V dp− SdT − TdS

Comme δW = pdV et que la transformation isotherme CA peut être considérée quasi-
statique (

∫ A
C
TdS = QCA) alors :

∆GCA =

∫ A

C

V dp = nRTA

∫ A

C

1

p
dp = pAVA ln

(
pA
pC

)
= pAVA ln

(
nRTB
nRTA

)
= pAVA ln(3).

⇒ ∆GCA = nRTA ln(3).

Application numérique : ∆GCA = 3× 8.314× 353× ln(3) ' 9.67 kJ.
L’énergie libre de Gibbs est une fonction d’état, donc ∆Gcycle = 0J .
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Exercice 5 (20 points)

Un four à pizza de forme semi-sphérique (diamètre : 5 m) est maintenu à une température de
380 ◦C par un feu de bois. La température extérieure est de 20 ◦C. Les parois du four sont faites
d’une couche interne en briques thermo-réfractaires, d’épaisseur 15 cm, et d’une couche externe
en fer de 1 cm. La densité d’énergie du bois qui brûle est de 14 MJ kg−1.

a) En supposant qu’une pizza ait besoin de 4 minutes pour cuire, qu’une seule pizza rentre
dans le four à la fois, quelle masse de bois sera brûlée pendant une soirée où l’on doit
servir 120 pizzas ? Faites l’hypothèse que la seule perte de chaleur se fait par conduction
à travers les parois du four, sans aucune perte sur la base du four et que la masse de la
pizza est négligeable.

b) En supposant que les pizzas, de forme circulaire (rayon : 25 cm), sont des corps gris,
quelle est la différence de puissance due au rayonnement des parois du four absorbée par
une pizza Margherita (e = 0.8) et absorbée par une pizza Quatre-fromages (e = 0.6). On
fera le calcul lorsque les pizzas sont encore à température ambiante sitôt placées dans le
four. On fera l’approximation que les parois du four rayonnent comme un corps noir.

c) Laquelle des deux pizzas sera cuite plus rapidement ? Justifier votre réponse
Indications : Constante de Stefan-Boltzmann σB = 5.670×10−8 W m−2 K−4 ; Conductivité ther-
mique des briques kbrique = 0.84 W m−1K−1 ; Conductivité thermique du fer kfer = 60.2 W m−1K−1.

Corrigé

r

Tfour = 380 ◦C

Text = 20 ◦C

kb, ∆b

kf , ∆f

Rfour

a) 12 points L’apport de bois sert uniquement à compenser les pertes par conduction afin
de maintenir la température à 380�.
Selon la loi de Fourier, la densité de flux thermique, c’est-à-dire le flux par unité de
surface, traversant une couche est donnée par :

J = −k dT

dr
,

où k est la conductivité thermique. Le flux thermique total δQ/dt à travers la surface S
est

δQ

dt
= JS = −k 2πr2 dT

dr
= cte,

avec S = 2πr2 puisque le four est une demi-sphère. On remarque que S dépend de la
position r à travers la couche.
Ici, le point important est que le flux thermique total δQ/dt traversant les couches ne
change pas (au contraire de la densité de flux J qui, elle, change).

δQ

dt

1

2πr2
dr = −kdT ⇒ δQ

dt

1

2π

∫ re

ri

1

r2
dr = −k

∫ re

ri

dT
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Appliquons cette formule à notre problème. On définit Rb,i = Rfour le rayon à l’entrée
de la couche de brique, Rb−f = Rfour + ∆b le rayon à l’interface brique-fer et Rf,f =
Rfour + ∆b + ∆f le rayon à la sortie de la couche de fer. On note Tb−f la température à
l’interface brique-fer.

1

2π

δQ

dt

∫ Rb−f

Rb,i

r−2dr = −kb
∫ Rb−f

Rb,i

dT︸ ︷︷ ︸
à travers la couche de brique

et
1

2π

δQ

dt

∫ Rf,f

Rb−f

r−2dr = −kf
∫ Rf,f

Rb−f

dT︸ ︷︷ ︸
à travers la couche de fer

donc

1

2π

δQ

dt

(
R−1
b−f −R

−1
b,i

)
= −kb (Tb−f − Tfour) et

1

2π

δQ

dt

(
R−1
f,f −R

−1
b−f
)

= −kf (Text − Tb−f ) .

Or 1
a
− 1

b
= b−a

ab
, donc :

− 1

2π

δQ

dt

1

kb

Rb,i −Rb−f

Rb,iRb−f
= Tb−f − Tfour et − 1

2π

δQ

dt

1

kf

Rb−f −Rf,f

Rf,fRb−f
= Text − Tb−f .

On additionne ces deux équations membre à membre :

Text − Tfour = ∆T = − 1

2π

δQ

dt

(
1

kb

Rb,i −Rb−f

Rb,iRb−f
+

1

kf

Rb−f −Rf,f

Rf,fRb−f

)
.

Finalement,

δQ

dt
= −2π∆T

kfkbRb,iR
2
b−fRf,f

kfRb−fRf,f (Rb,i −Rb,f ) + kbRb,iRb−f (Rb−f −Rf,f )
.

L’application numérique donne :
δQ

dt
' −83.845 kW.

Ceci est la puissance perdue par le four par conduction.

On peut obtenir un résultat plus simple en faisant une bonne approximation : la différence
de température entre l’entrée et la sortie d’une couche est proportionnelle au rapport
entre l’épaisseur de la couche et la conductivité thermique : ∆Tcouche ∝ ∆couche

kcouche
. Si on

calcule ce rapport pour la couche de brique et la couche de fer, on trouve que ∆b

kb
� ∆f

kf

donc la température à l’interface brique-fer est très proche de la température extérieure.
On peut donc négliger la contribution de la couche de fer. Ce qui donne :

δQ

dt

∣∣∣∣
Approx. 1

' −2πkb
(Tf,f − Tb,i)(
R−1
b−f −R

−1
b,i

) .
On pourrait faire une deuxième approximation : le rayon du four étant grand devant
l’épaisseur des couches, on pourrait considérer des surfaces planes :

δQ

dt

∣∣∣∣
Approx. 2

= JS = −2πR2
four

kb
∆b

∆T.

On peut utiliser ces approximations à condition de bien les justifier.
Le temps total pour chauffer les 120 pizzas est ttotal = 4× 60× 120 = 28800 s.
Donc à la fin de la soirée, l’énergie perdue par le four est égale à

Qpertes =
δQ

dt
× ttotal = −83.845× 28800 ' 2.41× 109 J = −2.41 GJ.

Cette chaleur perdue doit être égale à la chaleur fournie par le bois, donc la masse de
bois brûlé est égale à
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mbois =
Qpertes

Ebois

=
2.41× 103

14
' 173 kg.

b) 4 points Nous considérons le four comme un corps noir. Dès lors, la puissance effective
absorbée par une pizza avec une émissivité e et une surface Spizza vaut :

P = Pentrant − Pémise = σB e Spizza
(
T 4
four − T 4

pizza

)
Application numérique : Attention : les températures doivent être exprimées en Kelvin.
Pour une pizza Margherita :

PM = 5.670× 10−8 × 0.8× π × 0.252
(
653.154 − 293.154

)
= 1555 W

Pour une pizza Quatre-fromages :

PQF = 5.670× 10−8 × 0.6× π × 0.252
(
653.154 − 293.154

)
= 1166 W

La différence de puissance est donc :

∆P = PM − PQF = 389 W.

c) 3 points La pizza Margherita absorbe plus de puissance que la pizza Quatre-fromages.
Elle chauffera donc plus rapidement.
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