Physique Générale II SV
I [Suisspisms Phsiue Genea

ECOLE POLYTECHNIQUE
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EXAMEN (24 JUIN 2016)

Exercice 1 (20 points)

Une fusée s’approche de la Terre avec une vitesse inconnue. Le capitaine de la fusée communique
a la base terrestre le temps qui lui reste pour arriver sur terre, a partir du moment ou le message
méme est envoyé. Dans un premier message il dit que le temps qui reste est de 2h, dans le
deuxieme de 1h45’. Le premier message est recu sur terre a 15h00, et le deuxieme a 15h02.
a) Quelle est la vitesse de la fusée ?
b) A quelle heure exacte la fusée arrivera sur Terre ?
¢) Pendant son trajet vers la Terre, la fusée regoit 1'ordre de lancer un missile pour détruire
un vaisseau extraterrestre qui s’approche de la Terre. Dans le référentiel de la Terre, le
missile doit étre lancé perpendiculairement par rapport a la trajectoire de la fusée, avec
un vitesse de 0.6 c. Avec quel angle par rapport a la trajectoire de la fusée le missile est
lancé dans le référentiel de la fusée?
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Nous commengons avec la définition du référentiel par rapport a la Terre S, et le référentiel par
rapport a la fusée 5.
a) 6 points Les équations qui lient le temps d’envoi des signales par le capitaine de la fusée,
dans le référentiel de la Terre (¢, ¢L), sont :
t =t + 2
(1)
{ i =t +=

c

Avec la différence des deux équations, nous obtenons :

AtT:AtF—&:AtF—ﬁ:AtFQ—%):AtF'7(1—9> (2)

C C C

avec AtT =T — T = 2min, AtF =5 — ¥ Ax/c= (z, — x3)/c et At = 15min.
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Une autre fagon de réfléchir est la suivant. Les premieres deux messages nous indiquent
que aprés un intervalle de temps At = 15min dans le référentiel de la fusée, qui
correspond & Atf = At~ dans le référentiel de la Terre, la fusée a cumule un retard
spatial AX par rapport a la lumiere, qui est parcouru dans 2 minutes par la lumiere
mémé (AX = c éf/ ). Ce retard spatial peut étre exprimé comme AX = Ax¢ — Azl =

=2min
cAtF — vAtF. On trouve donc :
cAtT = eAtF —oAtF = (¢ — ) At = (c — v) Aty (3)

qui correspond a 1’équation

== ~0.965.
+

Application numérique :

120\ 2 v 1-—0.0178
A= (=22) Z 00178 v _ 2000 965 — 0.965c.
(900) = e T 1100178 - v ¢

b) 6 points Nous pouvons réfléchir de fagon itérative. Si la fusée se déplace avec une vitesse

constante, la base terrestre doit recevoir un message a 15h14, ou le capitaine de la fusée
dit que le temps qui reste est de 15 minutes. Donc a 15h16 le message recu dit que le
temps qui reste est de 0 minutes, qui signifie que la fusée est juste arrivée sur la Terre.
Dans ce dernier cas, le message est envoyé et recu au méme temps.

Une autre fagons d’analyser le probleme est la suivante. Quand la fusée envoie le deuxieme
message, elle est temporellement plus proche a la Terre de 15 minutes dans son référentiel.
Au méme temps, le premiere message qui se propage avec une vitesse c, il s’est éloigne
de 2 minutes par rapport a la fusée. Quand la fusée aura complété la distance temporelle
de 2h jusq’a la Terre, elle aura cumule une distance temporelle de ATi,; = 2min X
(2h/15min) = 960s derriere le premiere message. Donc il arrive a tapivee = 150+ 960s =
15h16.

Nous pouvons résoudre ce probleme de fagon rigoureuse a partir du résultat de la question
a). Par rapport au premier message, le temps qui reste avant 1'arrivée de la fusée (AT*)
dans le référentiel de la Terre peut étre écrit comme AT = AT v, avec ATF = 2h.
L’horaire de 'arrivée su la Terre est donnée par :

AT v

/ v ,
tamivee = 1) +AT" = 1] — +ATF = (T4 AT 7(1—E> =T+ AT

ou nous avons utilisée le fait que :

tT_tF_ﬂ_ATFU
1 1= o=

c

En utilisant 1'eq , nous trouvons :

(AT
_ 4T F
tarrivée - tl + AT <AtF/)

Application numérique :

o
foise = 168 + 20 x —" _ 15k + 960s = 15h16
15man




c) 8 points En sachant que la vitesse du missile doit étre u, = 0.6¢ dans le référentiel de
la Terre, les composantes de la vitesse du missile dans le référentiel de la fusée peuvent
étre calculées avec les transformations inverse de Lorentz :
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L’angle avec lequel le missile doit étre lance dans le référentiel de la fusée est :

Y

Ufy Uy
o = arctan — | = arctan | —
ul, YU

0.6¢
3.81 x 0.965¢

Application numérique :

o ~ arctan < ) ~(0.16rad ~ 9°




Exercice 2 (20 points)

Un cylindre avec piston contient 3 moles de gaz idéal diatomique. Le cylindre est a 1’équilibre
thermique avec 100 litres d’eau a T4y = 100°C. Le gaz est comprimé de fagon réversible a
température constante, en restant en contact avec l'eau, jusqu’a un volume de Vp = V,/3.
Ensuite, une transformation adiabatique réversible ramene le gaz au volume initial V. Enfin,
la température du gaz est ramenée a Ty en remettant le cylindre en contact avec I'eau, et en
maintenant le volume constant.

a) Dessiner le cycle sur un diagramme p — V.

b) Calculer le travail nécessaire pour effectuer un cycle complet.

c) Combien de cycles sont-ils nécessaires pour faire évaporer 1 litre d’eau du réservoir ?

d) Quelle est la variation d’entropie du gaz et de 'eau dans la transformation isochore ?

e) Quelle est I’énergie inutilisable sur un cycle pour fournir du travail ?
Indications : Constante des gaz parfaits R = 8.314 Jmol~! K~!. Chaleur latente de vaporisation
L, =2250kJ kg™

Corrigé

a) 4 points Diagramme p — V'

PAL

isotherme

A

. Q.‘Fn

\

isentrope isochore

C

>
ViV, v, V

Notez que la transformation C' — A est irréversible, donc on ne peut pas l'indiquer
directement dans un diagramme p-V, comme on est pas continuellement dans un état
de quasi-équilibre définé par les deux variables d’état. L’indication des chaleurs et types
de transformations n’est pas obligatoire, mais tres utile pour le reste.
Le sens du parcours du cycle nous indique qu’il s’agit d’un réfrégirateur.
Le gaz est diatomique donc v = 5 et donc v = ”7“ = g
b) 5 points Le travail effectué par ou sur le gaz au cours du cylcle s’écrit :
final
W = Wup+Wpe +Wea avec Winitiai—s final = / pdV
initial
A — B : Pour l'isotherme de ce gaz idéal, on trouve, en utilisant pV' = nRT et Vg =
Va .
o

Vs Ve qv %
Wag = / pdV = nRT, / + = nRTiln (73) = —nRT,In(3).

Va Va A



B — C': Sur l'isentrope on a PV7 = cst., on trouve (avec T = Ty et Vo =V, = 3Vp

)
e av Va)' 1 Va1
B vy V7 3 1—~y\ U4 3
1 3t —1
— PaVy(377 —1) = =———nRTy.
1—~ A A( ) 1—~ nivi A
ol on a encore utilisé le loi des gaz parfaits et le fait que pV' = cst. sur l'isotherme
pour trouver Pg.
C — A : Meéeme si cette transformation est irréversible, on a Wg4 = 0 comme dV = 0
sur une isochore.

Finalement, :

3t —1 -5, -2
chcle = WAB+WBC+WCA = —HRTA ln(3) + ﬁnRTA = TLRTA (7(35 — 1) — 1n(3))

Application numérique :

Weyere = 3 X 8.314 x 373.15 x (—0.21) = —1951J.

Comme Weyee < 0, le travail est fait sur le gaz.

¢) 6 points L’eau va s’évaporer si elle regoit plus de chaleur du gaz qu’elle n’en donne a
celui-ci. Les échanges de chaleur se font sur les transformations A — B et C — A car
B — (' est adiabatique. Calculons les échanges de chaleur sur ces 2 transformations :
A — B : Le premier principe de la thermodynamique s’écrit : AU = @ — W. Or pour
une isotherme, AU = 0, donc

QAB == WAB == —nRTA ln(3)

Cette quantité est négative : il s’agit donc de chaleur perdue par le gaz (donc regue
par l'eau).

C — A : En utilisant le premier principe, on trouve AUcy = QQca puisque Wey = 0.
Donc :

Ta R R Te
— dT = Ty —Tr) = Ty [1-22).
Qoa /T nCy n 1 Ta—To) " A( TA)

ou on vient d'utiliser R = C), — Cy et 7 = g—";
Que vaut T ?
Pour une transformation adiabatique, on a TV7~! = cst., donc TCVCV*1 = TBVj;*l. Or,
Tp = Ty (isotherme), Vo = V4 (isochore) et Vg = V4 /3. Donc :
Vi vt Te

y—1
-1 -1 -1 - _ ql—
TCVg = TBV; = TCVX =Ty (?) =T}y Y= = T_A = 3=,

Finalement,

d T (1-3'7).

Qca=n

Cette quantité est positive c’est donc une quantité de chaleur regue par le gaz (donc
perdue par eau).
Le bilan de chaleur échangée au cours du cycle s’écrit donc :

1 — 317

Qeyete = N RTy (( — —ln(S)) = 3 x8.314x 373 x (—0.21) = —1951, J.
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A chaque cycle, le gaz perd cette quantité de chaleur qui va servir a évaporer I’eau.
On aurait pu arriver directement au résultat en appliquant le premier principe de la
thermodynamique au cycle complet :

Achycle = Qcycle - chcle = Qcycle = chcle;

car I’énergie interne est une variable d’état et donc AU, . = 0. Ce raisonnement est
également une solution parfaitement valable.
Finalement, le nombre de cycles N, se calcule comme suit :

Ncyc _ Qévap. _ Mequ Lv
Qcycle Qcycle
Application numérique :
1 x 2250 o
Neye = o5 = 1153.8 ot on a supposé pl2%°¢ = 103 kgm .
Il faut donc 1154 cycles pour faire évaporer 1 litre d’eau completement.

d) 3 points La transformation isochore est irréversible, mais comme l’entropie est une va-
riable d’état, on peut toujours choisir une transformation réversible pour aller de C a A.
La variation d’entropie pour le gaz s’écrit :

A T
0Q 4 dr R Ty R _
Séa /c - /TC nC’VT n7_1 n( ) n n (3771

Application numérique :

8.314
ASZY = 3x —— x 0439 = 274JK .
2/5
Pour I'eau, que I'on peut bien traiter comme un réservoir parfait a température constante,

on trouve

A A
0Q 1/ —Qca
A — = = | 50 =
caA /C T Ta Jo @ Ty

ou le signe ”-” indique que cette chaleur est perdue par ’eau.
Application numérique :

0

8274

= —222JK!
373

Asg =

e) 2 points De d), il est clair que ASEY s = ASZ'Y + ASEY > 0 en accord avec la trans-
formation irréversible : pendant cette transformation, de I’énergie est fournie au gaz et
dissipée. Elle devient donc inutilisable pour une conversion en travail. Comme les deux
autres transformations sont réversibles, c¢’est la seule perte. Comme vu au cours en dé-

tail (série 09, exercice 1), on trouve en toute généralité (pour un cycle a 1 réservoir avec
Ty =T, ="Ty)

Qindgisp = 11, ASHmLERs = Ty SEHvers,

Application numérique :

Qindisp = 373 x 5.23 = 1951 J.

Ceci ne veut PAS indiquer que dans chaque cycle moteur ou réfrigerateur Qingisp =
Win = Qour — Qin. Généralement, on trouve des résultats, qui dependent de toutes les
transformations.



Exercice 3 (20 points)

Un glagon a température —15°C est plongé dans un récipient de forme cylindrique, dont on
néglige les pertes thermiques, contenant 1 kg d’eau a 30 °C. Uniquement les parois verticales du
récipient sont sujettes aux déformations thermiques et sont a la méme température que 1’eau.
A 30°C, le récipient a une capacité de 1.35 litres.

a) Quelle est la masse maximale de glace qui peut fondre dans ’eau ? Justifiez votre réponse.
Dans la suite, on supposera que la masse initiale du glacon est égale a la masse maximale
trouvée au a).

b) Quelle est la variation d’entropie du systeme dans ce cas?

c) A l'aide de la courbe ci-dessous, déterminer si I’eau déborde du récipient une fois I’équi-

libre thermique atteint.
Indication : chaleur spécifique de I'eaut cpqy = 4186 Jkg 1°C™!; chaleur spécifique de la glace
Colace = 2050 Jkg™1°C™"; chaleur latente de fusion de la glace L; = 333.5kJkg™!; coefficient
de dilatation linéaire du matériau du récipient o = 80 x 1076 K1,

1.00431

1.00370
1.00315

1.00263

1.00214

1.00171

1.00132

1.00097

1.00067
1.00042

1.00018

1.00000 : ‘ ‘

0 5 10 15 20 25 30
Temperature (°C)

Volume massique de I'eau liquide (I/kg)

Corrigé

a) 6 points Les valeurs possibles pour la température d’équilibre (finale) sont 7y > 0°C. En
effet, Ty < 0°C n’est pas possible car la glace doit fondre.
SiTy>0°C:

Cglacemglace<0 - Tglace) + mglaceLf + CeauMglace (Tf - O) = CeauMeau (Teau - Tf)

CeauMeau Teau =T
Cglace(o - Tglace) + Lf + Ceau(Tf - 0)
La quantité maximale de glace qui peut fondre est trouvée lorsque le numérateur est

maximum (et le numérateur minimum), c’est a dire a Ty = 0.
Par conséquent,

= Mglace =

CeaumeauTeau
Cglace|Tglace’ + Lf

Myglace =

Application numérique :

4186 x 1 x 30

ace — = 0.345k
Mgl 2050 x 15 + 333.5 x 10° &

(11)




Une autre fagon de justifier 7y = °C est de dire que toute la chaleur perdue par I'eau
sert a fondre de la glace, mais que 1’eau ne doit pas se transformer en glace.
b) 8 points La variation d’entropie du systeme doit étre calculée en 3 étapes :
1.- Réchauffement de la glace de —15°C a 0 °C
La quantité infinitésimale de chaleur pour chauffer la glace de dT" est :

dC) = MoCglace AT (12)
Donc, la variation d’entropie de la glace s’écrit :
) Trdr T
ASI = /l ?Q = MoCglace /TZ ? = MoCglace In (T]:) . (13)

2.- Fusion de la glace a 0 °C en eau a 0 °C
La chaleur transférée a la glace pour la fondre est :

Ainsi, la variation d’entropie de la glace lors de sa fonte (c.-a.-d. a température

constante) est :
f
AS, = / Q_ / Q=% = mOLf (15)

3.- Refroidissement de I'eau de 30 °C a 0°C
On obtient pour la variation d’entropie de ’eau refroidie :

Troar T
ASS - meauceau/ 7 = MeauCeau In < ! ) . (16)

Ti,eau 1,eau

Application numérique :

273
AS; = mg x 2050 x In <ﬁ) = 115.85mo JK 1.

5
AS, = 10X 3'237?;)5 A0 991my TR

2
AS; =1 x 4186 x In (%) = —436.43 J K~ L.

On a donc pour la variation totale d’entropie du systeme :

T L T

ASsyst. = M0 Cglace I ( ! )+m° L MeauCenn 1N ( f ) Sy = 1337mo—436.43J K. (17)
7ﬂi,glace Tf 7—1i,v3au

Avec my = 0.345kg, ASgye. = 24.84 JK™1.

La variation d’entropie du systeme "glace+eau” est positive car c¢’est un processus irréversible.
On peut aussi dire que le désordre a augmenté.

¢) 6 points D’apres la courbe donnée, le volume massique de 'eau & 0°C est égal 4 1.00018 1kg™*
donc la masse volumique de I'eau a 0°C vaut peay = m =0.998kg1™! =999.8 kgm 3
A T}, toute la glace a fondu donc la masse totale d’eau liquide est : Mg, = 1 +0.345 =
1.345 kg donc le volume total d’eau est :

‘/eau(T — 000) — meau
peau
Application numérique :
1.345
Veau(T = 0°C) = —— =1.3452 x 103 m > = 1.34521.
( )= 9998 om




Seules les parois du récipient se sont raccourcies sous l'effet du refroidissement (pas sa
section) :

Vir=oec = Sphrr=occ = Srhrr=s0ec X (1 + @AT) =V, r=300c X (1 + aAT).

Application numérique :

Vir—oec = 1.35 x (1480 x 107% x (—=30)) = 1.34671.

Remarque : le récipient est un cylindre (section circulaire). Donc, on ne peut pas cal-
culer une expansion/contraction volumique en utilisant comme coefficient d’expansion
volumique 5 = 3« (ceci n’est valable que pour les parallélépipedes).

A T=0°C, le volume d’eau liquide est légerement plus petit que le volume du récipient donc
I’eau ne déborde pas.




Exercice 4 (20 points)

Trois moles d’un gaz parfait monoatomique suivent le cycle ABCA représenté par un triangle
rectangle dans le diagramme T' — V' (voir figure ci-dessous).
a) S’agit-il d'un moteur ou d’un réfrigérateur ?
b) En sachant que Tp = 374, calculer le coefficient de performance ou le rendement du
cycle.
c¢) Calculer la variation d’énergie libre de Gibbs AG sur la transformation C' — A et sur
tout le cycle pour Ty = 80°C.
Indications : Constante des gaz parfaits R = 8.314 Jmol * K.

T
B

Corrigé

a) 6 points Pour savoir s'il s’agit d’'un moteur ou d’un réfrigérateur, on peut examiner le

sens dans lequel tourne le cycle dans un diagramme p — V. Redessinons ce cycle dans un
diagramme p — V. Pour cela nous devons trouver les allures des courbes représentant les
transformations AB, BC' et C'A dans ce diagramme.
Transformation A — B : D’apres le cycle donné dans I’énoncé, la courbe de la transfor-
mation AB est une droite passant 'origine. L’équation de cette droite dans le diagramme
T —V est de la forme : T" = oV, ou « est une constante. En utilisant la loi des gaz
parfaits on trouve :

P p

pV =nRT = T_E{V = a—ﬁ%.
On en déduit que la transformation A — B est une isobare et peut donc étre représentée
par un segment de droite horizontale dans le diagramme p — V.
Transformation B — C : 1l s’agit d'une transformation isochore dont 'allure dans un
diagramme p — V' ne changera pas.
Transformation C — A : C’est une transformation isotherme dont on connait l'allure
dans un diagramme p — V.

Le cycle dans le diagramme p — V| représenté ci-apres, est parcouru dans le sens horaire : il
s’agit donc d’un moteur.

b) 8 points Comme il s’agit d’un moteur, on va calculer le rendement du cycle. Il est donné
par le rapport entre le travail du gaz sur le cycle W,yqe et la chaleur échangée avec la
source chaude Qp :

n= chcle.
Qe
Calculons le travail effectué par ou sur le gaz et la chaleur échangée lors de chaque

transformation :
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C

Y

v

Transformation A — B :

B nRTs nRT 3nRTsy nRT
WAB:/ pdV:PA(VB—VA):pA< B A)ZPA( 4 A)
A PB PA ba PA

= Wap = 2nRTy = 2pAVA
3
QAB = AUy + Wyp = nCy (TB — TA) +2nRTy = §HR<3TA — TA) + 2nRT4.
Qap = 5nRT4 > 0 = échange avec la source chaude

Transformation B — C' :

C
Wge = / pdV = 0 car transformation isochore.
B

3
QBC = AUBC’ + WBC = TLOV (TC — TB) = §’TLR (TA - STA) = _SpAvA
Qpc = —3nRT4 < 0 = échange avec la source froide

Transformation C' — A :

A
RT Va Vs
Wey = / pdV = "—dv — nRTyIn -2 = p,Valn -2
Ve Ve
Or d’apres la loi des gaz parfaits :
V
paVa _ psVs N paVa _ paVe Y, = Ve
Ty Ts Ty 3T'4 3
Donc :
WCA = —pAVA lH(B) = —TLRTA 111(3)
Qoa = AUca +Weoa =nC, (To — Ta) — paValn3
Qca = —nRTIn(3) < 0= échange avec la source froide
Finalement :

Weyete = 2nRT4 + 0 — nRT4 In(3) = nRT4(2 — In(3)).

Qu = Qap = 5nRTy.
~ Weyee  nRTA(2—1In(3)) 2 —1In(3)

= = = ~ (.18.
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¢) 6 points La variation d’énergie libre de Gibbs lors de la transformation C'A s’écrit :
A A
AGCA:/ dG:/ dH — SdT —TdS
c c

A
:/ 5Q — W + pdV + Vdp — SdT — TdS
C

Comme 0W = pdV et que la transformation isotherme C'A peut étre considérée quasi-
. A
statique ([ TdS = Qca) alors :

A A1 RT
AGCA = / Vdp = nRTA/ —dp = pAVA In (&) = pAVA In (n B) = pAVA 111(3)
c c P Pc nRTy

= AGca = nRTy ln(3)

Application numérique : AGeyg = 3 X 8.314 x 353 x In(3) ~ 9.67kJ.
L’énergie libre de Gibbs est une fonction d’état, donc AGeyqe = 0J.
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Exercice 5 (20 points)

Un four a pizza de forme semi-sphérique (diametre : 5m) est maintenu a une température de
380 °C par un feu de bois. La température extérieure est de 20 °C. Les parois du four sont faites
d’une couche interne en briques thermo-réfractaires, d’épaisseur 15 cm, et d'une couche externe
en fer de 1 cm. La densité d’énergie du bois qui briile est de 14 MJ kg!.

a)

c)

En supposant qu’'une pizza ait besoin de 4 minutes pour cuire, qu'une seule pizza rentre
dans le four a la fois, quelle masse de bois sera briulée pendant une soirée ou l'on doit
servir 120 pizzas ? Faites I'hypothese que la seule perte de chaleur se fait par conduction
a travers les parois du four, sans aucune perte sur la base du four et que la masse de la
pizza est négligeable.

En supposant que les pizzas, de forme circulaire (rayon : 25 cm), sont des corps gris,
quelle est la différence de puissance due au rayonnement des parois du four absorbée par
une pizza Margherita (e = 0.8) et absorbée par une pizza Quatre-fromages (e = 0.6). On
fera le calcul lorsque les pizzas sont encore a température ambiante sitot placées dans le
four. On fera 'approximation que les parois du four rayonnent comme un corps noir.
Laquelle des deux pizzas sera cuite plus rapidement ? Justifier votre réponse

Indications : Constante de Stefan-Boltzmann o = 5.670x 1078 W m~2 K~*; Conductivité ther-
mique des briques kpyigue = 0.84 W m ™K™' ; Conductivité thermique du fer kg, = 60.2 Wm K™

Corrigé

a) 12 points L’apport de bois sert uniquement a compenser les pertes par conduction afin

de maintenir la température a 380°C.
Selon la loi de Fourier, la densité de flux thermique, c’est-a-dire le flux par unité de
surface, traversant une couche est donnée par :

dr
J=—-k —
dr’
ou k est la conductivité thermique. Le flux thermique total 60Q)/dt a travers la surface S
est
T
0Q =JS = —k2mr? a = cte,
dt dr

avec S = 2mr? puisque le four est une demi-sphére. On remarque que S dépend de la
position r a travers la couche.

Ici, le point important est que le flux thermique total §Q/dt traversant les couches ne
change pas (au contraire de la densité de flux J qui, elle, change).

WL ki = 5Qi/eidr: —k/edT

dt 2mr? dt 27 72
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Appliquons cette formule a notre probleme. On définit Ry; = Ry le rayon a l'entrée
de la couche de brique, Ry_y = Rjfour + Ay le rayon a l'interface brique-fer et Ry =
Ryour + Ay + Ay le rayon a la sortie de la couche de fer. On note Tj_; la température a
I'interface brique-fer.

14 Ry Ry 194 Ryf Ry.f
__Q r2dr = —kb/ dT et ——Q r2dr = —kf/ dr
2w dt Jg,, Ro.; 2m dt Jg,

J/ Rb_f
a travers la c;:che de brique a travers laz:)uche de fer
donc
10Q 1,y . 10Q 1
orar ey~ i) = ko (Toy = Tpour) et 5on (Rpp = Bimy) = —hy (Teaw = Tiy)
Or%—%:l’;—b“,doncz

16Q 1 Ry; — Ry 16Q 1 Ry s — Ry
ot 0 =T ot ——— 2t T T
21 dt k)b Rb’in_f b=f f ¢ 21 dt k)f Rf’be_f ! b=t

On additionne ces deux équations membre a membre :

Text - Tfour = AT = _i@ l—Rbﬂ. — Rbif + i—Rbif —_ Rf’f .
21 dt kb Rb’in,f kf Rf’be,f
Finalement,
keky Ry R:_ R
0@ _ _orar FROTh Ao _
dt kR Ry (Roi — Rog) + kpRoiBo—y(Ro—y — Ryy)
L’application numérique donne :
)
—Q ~ —83.845 kW.
dt
Ceci est la puissance perdue par le four par conduction.

On peut obtenir un résultat plus simple en faisant une bonne approximation : la différence
de température entre ’entrée et la sortie d’une couche est proportionnelle au rapport
entre I’épaisseur de la couche et la conductivité thermique : AT uche X %. Si on

couche

calcule ce rapport pour la couche de brique et la couche de fer, on trouve que %: > %;

donc la température a l'interface brique-fer est tres proche de la température extérieure.
On peut donc négliger la contribution de la couche de fer. Ce qui donne :

5 Trr—Ths
d—Q ~ —27Tk:b—< flf b;z .
t Approx. 1 (Rb—f - Rb,i )

On pourrait faire une deuxieéme approximation : le rayon du four étant grand devant
I’épaisseur des couches, on pourrait considérer des surfaces planes :

0Q B B ok
E = JS = 27TRfo,m.A—b

AT.

Approx. 2

On peut utiliser ces approximations a condition de bien les justifier.
Le temps total pour chauffer les 120 pizzas est tioa = 4 X 60 x 120 = 28800 s.
Donc a la fin de la soirée, I’énergie perdue par le four est égale a

oQ

Qpertes = ' X tiotal = —83.845 x 28800 ~ 2.41 x 10°J = —2.41 GJ.

Cette chaleur perdue doit étre égale a la chaleur fournie par le bois, donc la masse de
bois briilé est égale a

14



Qpertes 241 x 103
gbois B 14

Myois =

~ 173 kg.

b) 4 points Nous considérons le four comme un corps noir. Des lors, la puissance effective
absorbée par une pizza avec une émissivité e et une surface Sy;.., vaut :

P = Peptrant — Pémise = 0B € Spizza (T}Lour - T4 )

pizza

Application numérique : Attention : les températures doivent étre exprimées en Kelvin.
Pour une pizza Margherita :

Py =5.670 x 107° x 0.8 x 7 x 0.25* (653.15* — 293.15*) = 1555 W
Pour une pizza Quatre-fromages :

Por =5.670 x 107° x 0.6 x 7 x 0.25% (653.15* — 293.15%) = 1166 W

La différence de puissance est donc :

AP = Py — Pop = 330 W.

¢) 3 points La pizza Margherita absorbe plus de puissance que la pizza Quatre-fromages.
Elle chauffera donc plus rapidement.
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