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Exercice 1

a) Le schéma est montré dans figure 1.

FIGURE 1 — Schéma du systeme

b) Dans I’équilibre la poulie ne tourne pas et il n’y a pas d’accélération. Il suffit donc de
regarder I’équilibre des forces, qui se compose de la force du ressort et la force de gravité
sur my (en négligeant tous les forces de contrainte qui s’anullent mutuellement). On
prend z comme variable, qui est le déplacement de l'extrémité du ressort de la position
d’équilibre (sans rien attaché). On obtient donc pour la nouvelle position d’équilibre :

ZF = mg—kz = 0

= 7 = %:4.90771. (1)



¢) On peut traiter les deux cotés du cable séparément avec des équations du mouvement
de translation (2eme loi de Newton pour la translation) et ensuite combiner les deux
cotés par I’équation du mouvement de la poulie (2¢me loi de Newton pour la rotation).
Avec cet approche, les forces de contrainte tirant le cable d’en haut doivent étre traitées
comme des inconnues sur les deux cotés de la poulie (7} et T, dans fig. 1). Les équations,
respectivement, de gauche, de droite et de la poulie sont les suivants :

—-mzZ = myg+T1
0 = TQ —kz
19 = X (fl + fg),

ou on a utilisé que la force de gravité et du ressort sont F, = —mg et F,.., = —kz, avec
z la distance entre 'extremité du ressort et la position d’équilibre du ressort (sans rien
attaché). En plus, la partie gauche de la deuxieme équation est zéro, car il n’y a pas de
masse d’inertie. L’accélération de la masse m, est également traitée avec la variable z,
parce que le déplacement de m; est équivalent au négative du déplacement de 'extrémité
du ressort (z,1 = —Zres €6 Zm1 = —Zres). Les deux premiéres équations nous donnent les
forces dans le cable de gauche et droite :

T1 = mlg—mlé
et T, = kz,

ce qui peut étre utilisé dans 1’équation de la rotation. Cela nous amene a 1’équation
suivante : )
10 = R(myg — myZ — kz), (2)

MR?
2

Maintenant on peut utiliser I’expression pour le moment d’inertie de la poulie I =
et la relation entre I'angle et le déplacement du cable :

z R=const ~ z
R R
Par conséquent, on obtient I’équation suivante :
MR? 2
— = R(mig—mizZ—kz
2 R ( 19 1 )
% + my P mig
k k

Maintenant on peut faire un changement de variable, parce que le mouvement n’est plus
autour de z = 0, mais autour du nouveau point d’équilibre z = z; :

/ mig

2 :z+21:z—|—T et alors =3
En utilisant ces expressions dans 1’équation de la rotation modifiée on obtient :
M
my+ 5 ., ,
—=Z = —Z.
k
k
— 7= - 4 (3)
my + 5



Cette derniere version de I’équation du mouvement corresponde a une équation du mou-
. . 2 . . .
vement d'un oscillateur harmonique (43 = —const-z), donc aussi objet (my), qui

suit cet mouvement, est sujet a un mouvement harmonique.
Remarque :

On peut aussi utiliser un autre approche avec une seule équation de mouvement (rotation
de la poulie) en traitant 'inertie de la masse m; comme moment d’inertie supplementaire
du systeme. Car le mouvement ne depend pas de la position initiale de m; par rapport
a la poulie, le mouvement est le méme que si la masse m; est placée sur la surface de la
poulie. Le moment d’inertie est donc celui d’une masse ponctuelle a une distance R de
I’axe de la rotation plus le moment d’inertie de la poulie :

M R?

I:m1R2+ 9

La 2eme loi de Newton pour la rotation devient alors :

0 = 7#xF
MR?\ -
= (m1R2 + 5 ) 0 = R(mig—kz).

M\ .
— (m1—|—7> RO = mig—kz.

Si maintenant 1’angle 6 est de nouveau remplacé par un déplacement vertical :

z R=const N z
0=— — 0=—
R R
on retrouve la méme équation que avec I'autre approche (eq. 3) :
my + % P mig .
k k '

La suite se fait comme avec 'autre approche (changement de variables).

La fréquence angulaire est directement identifié par la constante devant le déplacement
dans I’équation finale (No. 3) de la partie ¢) :

k
w = —_—.
m1+%

La période est trouvée facilement grace a cette fréquence angulaire :

27'(' m1+M
T=—=2 ——2 =063 4
=2 k s (4)



e) La vitesse de l'objet peut étre trouvée avec la dérivée de la solution de 1'équation du

mouvement :
Z(t) = A-cos(wt) (élongation maximale pour t=0)
— Z(t) = Aw-cos(wt)
k
= Umaz = Aw=A|— =0.5m/s 5
g =05 5)

f) La force maximale que le cable peut subir est :

d 2
Frupt = Orupt * S = Orupt * T (5) =141 N (6)

Il faut comparer cette limite avec la force maximale que subit le cable, qui est la force
du ressort au moment de I’'élongation maximale plus la force de gravité de la masse m; :

Foae = mg + kA =59 N

Cette force peut aussi étre calculée par la force du ressort par rapport au point d’équilibre
initial :

Frar = k(A+ 2z1) = kA+mg=59N
Donc, comme la force maximale est inférieure a la force de rupture, le cable ne cassera
pas.

Exercice 2

Soit S le référentiel lié a la Terre, et S’ le référentiel 1ié au train, ce dernier se déplacant a
la vitesse v = 0.8-c selon l'axe x par rapport a S. Cette vitesse donne un facteur relativiste
v = 1+0.s2 ~ 1.667.

La longueur au repos du train est mesurée dans le référentiel du train (référentiel propre) et vaut
L/, = 1000 m. La longueur propre du tunnel (dans le référentiel de la Terre) vaut L, = 1000
m. On peut donc calculer la longueur du train dans le référentiel de la Terre et la longueur du
tunnel dans le référentiel du train, au moyen des transformations de Lorentz :

At = y(At — ZAx)

Az = ~(Az —vAt) (7)
Ay = Ay

AZ = Az

et les transformations de Lorentz inverses :

At = (Al + ZAx)

Ar = ~(Ax +vAt) (8)
Ay = Ay
Az = AZ



En choisisant ’axe x dans le sens du déplacement du train.
La longueur du train dans le référentiel S est donnée par Az’ = y(Ax — xt), avec At = 0, car
on fait la mesure dans le référentiel S, Ax = Ly, et Az’ = L7,.. On a donc :

o LTT’
fy

On retrouve la formule de contraction des longueurs.

De méme, la longueur du tunnel dans le référentiel S’ est donnée par Ax = y(Ax’ + vAt'), car
cette fois At" = 0 (on fait la mesure dans le référentiel S’) et avec Ax = Ly, et Az’ = L7,,. On
retrouve la formule de contraction des longeurs :

Lz,
Ly, == =600m (10)
g

Ly, = 600m 9)

a) On définit I’événement A : avant du train pénetre dans le tunnel; et I’événement B :
I’avant du train sort du tunnel. On peut donc écrire :

(45t4) = (0;0) (11)

Lry
(zpitp) = (Lmi) = (1000;4.167-107° s) (12)
v

En utilisant les transformations de Lorentz, on obtient pour 'intervalle de temps entre
les événements A et B, dans le référentiel du train :

v
At = (At - C—2Aq;) (13)
Ly, vLp,
—o (B - 22) (14
’yLTu U2
= 1—— 1
v < 02> (15)
LTu
— 16
o (16)
=25-10"%s (17)

La montre du conducteur indiquera donc 15h00 passées de 2.5 us.

b) Soit I’évenement C, I'arriere du train entre dans le tunnel. En restant dans le référentiel
de la Terre, le train mesure : Ly, = 600 m, et entre dans le tunnel a la vitesse v = 0.8 - c.
Le temps qui s’est écoulé pour effectuer cette distance est donc :

LT’!‘
(%

At =to —ty = =25-107% s (18)

On trouve le méme résultat qu’au point précédent car, dans notre cas, Ly, = Ly, /7.

c) L’avant du train sort a tp = L% = 4.167-107%s. L’arriere du train pénetre a l'intérieur
du tunnel a to = Lgr =25-10"5s.
L’arriere du train avance donc de Az = vAt = v(tp—tc) =v (% — %) = Lpy,—Lp, =
400 m.




d)

Pour que le train soit contenu entiérement dans le tunnel il faut que I'avant du train
sorte du tunnel apres que I'arriere soit entré. Dans le référentiel S, cela se traduit par
tg —tc > 0, ce qui est vérifié. Dans le référentiel du train, il faut que ty —t; > 0.
On sait que 5 = L;;“ et on peut calcuer t;, avec la transformation de Lorentz : t, =

3t #z.) =72 puisque o = 0. Done t —t = 1 (4% L) = LIy, ~ L) <0

v
Donc le train n’est pas complétement contenu dans le tunnel dans le référentiel du train.

Exercice 3

a)

Les trois étapes sont :

1. compression adiabatique (processus rapide on 7', P et V' varient)

2. processus isobare (P constant tandis que 7" et V' varient)

3. détente isotherme (processus lent, 7' constant, tandis que V' et P varient)

Pour calculer le travail total, il faut calculer le travail de chaque processus indépendam-
ment et en faire la somme.

Compression adiabatique

5 )

Wadia =-AU = —57’LRAT = —§nR(T2 — Tl) (19)
De plus, comme T} = 300K
n=2V ) 19mol (20)
- RT,
ot Vi = mr?H = 0.0048m* (le volume du verre vide) et P, = Py, = latm =
1,013.10°Pa
De plus
PV
T, = 21
2=~ (21)

ou V5 est le volume apres compression et P, = pgAh + Patm = 1000%9.81%10m +
Patm = 199400Pa (la pression a -10m)
On sait également que :

Pl‘/lﬂy — P2‘/2’Y (22)
ou v = 1.4. Et donc
PV
Vo = {[—1 =0.003m* (23)
Py
“ P,V
Ty =22 = 318K 24
2= (24)
ou autre possibilitA@ de calcul
j
Ty=T\=  =364K (25)
Py



Ce qui permet d’écrire en remplacant :

Wadia = —0U = —gnR(Tg —Ty) = -308J
(ou Weagia = —252.7J en utilisant Ty = 364K)
Processus isobare

Wisobare:/PdV:P/dV:P(%_‘/Q)

ou V3 est le volume apres le processus isobare. De plus

T, Ty
Vo Wy
et donc VT
Va = —3 = (.0024m>
2
Et donc

Wisobare:/PdV:P/dV:P2(‘/3_‘/2) = —119.6J

Détente isotherme

Wisotherme = /PdV = nRTgln% =192.1J
3

car V; = mr?h = 0.0036m?> avec h = 18cm. Donc le travail total est :
Wtotal - Wadia + sz'sobare + V[/isotherme = —235.5J

(ou Wity = —180.2J en utilisant W4, = —252.7.J)

Pour calculer la chaleur échangée, il faut sommer les chaleurs respectives

Compression adiabatique

Q=0

Processus isobare

Q=AU—-W = gnRAT —W = gnR(Tg —Ty) +119.6 = —188.4]

(ou @ = —133.1J en utilisant T, = —364K)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)



Détente isotherme
Q=W=192.1J (35)

et donc la chaleur échangée avec I’environnement est :

Qtotal - Qadia + Qisobare + Qz‘sotherme =3.6J (36)

(ou Qiotar = 59J en utilisant Quqia = —133.1)
d) La température maximale de Iair est celle juste apres la compression adiabatique, T, =

Ty, = 378K (ou 364 K). En effet 'environnement fournit du travail au systeme faisant
augmenter ’énergie thermique.

Exercice 4

a) Le cycle décrit dans le texte est montré dans la figure 2.

Y

F1GURE 2 — Cycle Ex.4.

b) Le sens de rotation il nous indique qu’il s’agit d’un réfrigérateur.
¢) Nous pouvons distinguer trois étapes :
— détente adiabatique (Vi, p1, Ty — Va, po, 1o )
— détente isobare (Va, pa, Ty — V3, p3, T3 ) avec ps = py
— compression isotherme (V3, p3, T3 — Vi, p1, T1 ) avec T3 = Ty
Par rapport a la compression isotherme nous connaissons la relation :

Va=3-Vi =9L



En exploitant la propriété des gas parfaits pour le premier état :

N5 20atm - 3L

= =182.7K
nR  4mol-0.0821 4% L

T

Pour la transformation isotherme on applique la relation pV = const :

piVi = p3Vs

Vi piVi g

= = = — =6.Tatm
b3 Vs 3 3

Sachant p, nous pouvons utiliser p;V}" = po V) pour la transformation adiabatique, donc :

Vo =[2V)]5 = 6.6L
P2
La temperature 75 est simplement :
Vz 6.7atm - 6.6L
T, = P22 _ e — 13465 K
nk dmol - 0.0821 40—
Vu qu'il s’agit d’un réfrigérateur on parle de coefficient de performance (CP) :
|Qc]
cCP=—"=
W

ol ()1, est la chaleur enlevée a la température Tp, et W est le travail effectué, donné par
la somme des travaux dans chaque transformation. C’est pas nécessaire de calculer les
travaux si on utilise :

Qc

p—_ =t
CF = 1Gnl- 1]

ou :
Vi
QH - Qisoth = Wisoth = nRTllnv = —6675.J

3
et

)
Qr = Qisop = AU;sob + Wisoh = n§RAT + pa(Vs — Vo) = 3994.9J + 1770.9J = 5765.8 J

En utilisant ces valeurs on obtient CP = 6.3.
Si on utilise la définition de la variation d’entropie :

as— [

on déduit que la variation d’entropie pour ’adiabatique est zéro parce que il s’agit d’une
transformation sans échange de chaleur. Dans la transformation isobare :

AdQ;sop = AU + dW = neydT + pdV

9



et :

dT dV 5 T Vs
ASieop = /nch + pT =n-— Rln(Tz) + ann(Vz)

avec cy = gR. Pour un isobare :
I t
— = cons
V
donc :
7., Vs V3

AS;op = N= Rlnv2 = ncPlnv2 =36.1J

Dans une transformation isotherme dU = 0 donc dQ) = pdV avec p = # dont :

nRT dV nRdV Vi
A isot — = = l _— = — .
Sisot / VT / v =nR n‘/:r3 36.5.J/ K

i

f) Un bon gas (ou liquide) réfrigérant doit avoir une capacité thermique élevée conséquence
d'une quantité élevée de chaleur échangée pour un certain changement de température.
Donc le processus est plus efficace si on utilise des gas diatomique. Dans la définition
de CP on constate en effet qu’en augmentant cp CP, augmente aussi. Autrement dit, le
coefficient v est plus petit pour un gas diatomique, ce qui fait que ’adiabate soit plus
raide : donc Qy reste le méme et @ augmente (75 est plus basse et V5 plus petit).

En effet sur un cycle réversible :

Exercice 5

a) Pour calculer la température que la Terre aurait eu sans atmospheére Treqre—s.q., On doit
faire le balance entre la puissance rayonnée F,,, et la puissance absorbée P, par la
surface de la Terre. Considérant I’ albedo A = 0.3, seulement une fraction (1 — A) de la
puissance incident p;,. = 1300WW/m? peux étre absorbée, sur une surface effective donnée
pas un cercle de rayon égal au rayon de la Terre Ry (on peut assumer la radiation solaire
perpendiculaire a la surface terrestre), comme montre dans la Figure (3).

La puissance émise peut étre calculée avec la loi de Stefan - Boltzmann en prenant toute
la surface de la Terre. On trouve :

Pray = Paps = Psq = 0pATRIT} e o0 = DineTRn(1 — A) (37)

ou Ps, est la puissance venant du Soleil et Tre,re—s.q. €St la température de la Terre sans
atmosphere. Cela donne :

~ 252K = —21° (38)

Pine(1— AT [ 1300W/m? x (1 - 0.3)
40’3 -

T erre—s.a. —
g { 4% 5.7-10-8W/(m2K*)

Cette valeur correspond pas a la réalité, clairement. On doit donc prendre en compte
I’atmosphere et son effet de serre.

10



b)

FIGURE 3 — Rayonnement du soleil sur la Terre.

On commence écrivent le balance thermique entre puissance absorbée P, et la puissance
rayonnée P, pour une couche ¢ :

Proy=Pups =Pi1+ P = 20551} = opSi(Tiy + Tﬁi—l) (39)

oll P! est la puissance absorbée venant de la couche 4, S; est la surface de la couche i et
on a prix en compte que une couche rayonne sur ses deux cotes. Pour la surface de la
Terre, on aura :

Pray = Pus = Psag + P, =  opdnR3T}, .. = pinen Ro(1 — A) + opdn RAT  (40)

Pour le cas avec 3 couches on arrive donc au systeme suivant de trois équations et trois
inconnues et sa solution general :

T;“erre = inzgle_A) + T14
27-'14 = T24 + T’.;l’erre (41)
2Ty =T + T
o1 — Tt

On peut donc résoudre le systeme calculer la température pour chaque couche :

Trepre = L20=A) ~ 356K = 82°
Ty = 3l ~ 331 K = 59°
Ty = {2l ~ 999K = 26°
Ty = 12l ~ 959K = —21°
On peut noter comme T3 est égale & la température de la Terre sans atmosphere .
Une fagon pour estimer 'importance de la puissance transmise par conduction dans notre
cas est de calculer le rapport entre la puissance par rayonnement F,,, et la puissance
par conduction P,,, :
Pray - o BST%

Eerre

Pcon k(TTerre - Tcou)S/d -

11



_5.7-1078W/(mPK*) x (290K)* x 1.5-10°m
B 0.03W/(mK) x 38K

ol on a néglige la température de 'atmosphere pour le calcul de la puissance rayon-
née (voir comment le résultat change en considérant la température de 'atmosphere
pour le rayonnement). C’est claire comme la conduction c’est pas importante pour la
température d’équilibre de la Terre.

d) Le mécanisme qui joue un réle importante est la convection des courants d’air dans
I’atmosphere qui contribue a la dissipation de la chaleur.

~5.3-10° (43)
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