Examen de physique générale Il — Section SV Prof. Furno

Semestre été 2024
Exercice 1 (25 points)

Tous les référentiels (réfs.) sont inertiels et tous les objets (planetes, fusées) sont assimilés a des
points matériels. A I'instant ¢, (mesuré dans le réf. de la Terre), une fusée F1 entre sur I'autoroute
galactique, sur ’axe Terre-Jupiter, a la position de la Terre. Jupiter est immobile dans le réf. de la
Terre. La vitesse de la fusée est vp; = 0.72 ¢ dans la direction de Jupiter, mesurée dans le réf. de la
Terre. La distance Terre-Jupiter dans le réf. de la Terre est Ly_; = 7 x 10°m. Une deuxiéme fusée
F2 voyage sur ’axe Terre-Jupiter en direction de la Terre, avec une vitesse vps = 0.7 c.

a) Quelle est la distance (mesurée dans le réf. de F'1) entre la Terre et Jupiter 7 Quelle est la
vitesse de F'1 mesurée par F'27

Dans le réf. de la Terre, a l'instant ¢4, un signal radio est envoyé depuis la Terre en direction de
Jupiter. A linstant ¢, la fusée F'2 se trouve a la méme position que le signal radio, entre la Terre
et Jupiter, et la fusée F'1 a parcouru une distance Dy_p; = 2 x 10 m.

b) Quel est I'intervalle de temps (mesuré dans le réf. de F2), entre I’événement ”envoi du signal
radio depuis la Terre” et ’événement ”signal radio et F'2 a la méme position” ?

Dans le 1éf. de la Terre, & l'instant t¢, le signal radio se trouve a une distance S,_; = 4 x 10® m
de Jupiter entre la Terre et Jupiter. Une fusée de la police galactique P, qui voyage en direction de
Jupiter sur l'axe Terre-Jupiter a une vitesse vp = vp1, regoit le signal a l'instant .

c¢) Quelle est la distance (Sp1_p) entre la fusée F'1 et la fusée de la police, mesurée dans le réf.
de P?

Des que le signal radio est recu par P, il est instantanément renvoyé vers F'1, qui le recoit a I'instant
tp (mesuré dans le réf. de la Terre).

d) Quel est I'intervalle spatial (mesuré dans le réf. de F'1) entre I’événement "réception du signal
radio par la police” et I’événement "réception du signal radio par F'17 7?7

La vitesse limite autorisée sur l'autoroute galactique est vy, = 0.7¢ (mesurée dans le réf. de la
Terre). Soit mp; la masse au repos de la fusée F'1. L’équipage de la fusée F'1, pour ne pas recevoir
d’amende, ralentit instantanément la fusée en langant un réservoir (masse au repos mgr = 0.2mpg;)
vers Jupiter avec une vitesse vg = 0.95¢, a un At.,, = 0.5s (mesuré dans le réf. de la Terre) apres
I'envoi du signal radio par la police. On définit ¢x U'instant (mesuré dans le réf. de la Terre) ou la
fusée recoit le signal radio de la police apres 'expulsion du réservoir.

e) Quelle est la vitesse de la fusée F'1 (mesurée dans le réf. de la Terre) apres l'expulsion du
réservoir 7

f) La fusée recevra-t-elle une amende si on considere que sa vitesse moyenne entre t4 et tg ne
doit pas dépasser la vitesse limite autorisée dans le réf. de la Terre ?



Indications : vitesse de la lumiere ¢ = 3 x 10*m/s.

Corrigé

a) (4 pt)
La longueur Lp_; est une longueur propre dans le référentiel de la Terre (distance entre
2 objets fixes dans un référentiel). Donc pour trouver la longueur vue par F'1, il suffit de
contracter cette longueur :

/ o LT—J
T-J —

-1
avec Yp1 = (\/ — %) = 1.44.

La vitesse de F'1 mesurée dans F'2 se calcule grace a la transformation de Lorentz pour les

=4.86-10"m (1)

TF1

vitesses. Attention a bien poser les référentiels : v, = vp; = 0.72 cet v = vpy = —0.7 ¢ :
Uy — U VFr1 — VUF2
vl = T = V= T vEE 0.94 ¢ (2)
C2 62
b) (4 pt)

En connaissant Dp_pq, nous pouvons trouver l'intervalle de temps entre I'émission et la
réception, mesuré dans le référentiel de la Terre :

Dy_
Atyp=—""L—-926s (3)
VF1
ainsi que : 1
TN\ —
v
Y2 = ( 1-— %) ; Dyp_py = Atapc (4)
REF Terre
Dr_p; )
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FIGURE 1 — Schéma pour la question b)

Nous pouvons ensuite appliquer les transformations de Lorentz (notez que vy < 0 au vu de
la géométrie du probleme) :

Dr_
Aty = Yr2 (AtAB — VUp2 T62F2> =225 (5)
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Une autre solution aurait été de considérer le réf. de la fusée F'2 comme fixe. Les grandeurs
sont échangées, c’est-a-dire qu’on cherche At 4p et le temps calculé a 1’équation (3) est en fait
At 5. De méme, la distance calculée a 1'équation (4) se nomme D7._.,. La transformée de
Lorentz s’écrit alors :

D//
Atag = Vr2 (Ath + Vpg ng) =228 (6)

Dans ce cas, on a bien que vgs > 0 et donc les deux calculs donnent le méme résultat.

c) (5 pt)

Dans ce cas, la distance entre les deux fusées est une distance propre dans le référentiel des
fusées, vu qu’elles vont a la méme vitesse (donc c’est bien la distance entre deux objets fixes
dans un référentiel). Nous pouvons d’abord écrire la distance St_g entre la Terre et le signal :

Sr_s=1Lp_;— S, ;=6.60-10° m (7)
REF Terre
Sr1-p
Sr—r ))))‘ SS—J ‘
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FIGURE 2 — Schéma pour la question c) et d)
Pour trouver la distance Sp_p; entre la Terre et la fusée F'1 au moment to, il faut d’abord
calculer I'intervalle de temps At ¢ :

Ly_y— Se_y (8)

C

Atygc =

pour ainsi écrire la distance totale parcourue par la fusée depuis son départ :

Sr_r1 = vmAtac 9)



La distance entre F'1 et P au moment to dans le référentiel de la Terre est :
SFlfp = ST—s — ST—Fl =1.85- 109 m (10)

et celle dans le référentiel de P est :

v2. 0\ 7!
St p=Spi_pyp = 2.66-10° m avec VP =Yp = ( 1 — %) (11)

En effet, S}7,_p est une longueur propre comme spécifié précédemment.

N.B. : une autre méthode aurait pu étre utilisée pour calculer Sy_g;. On aurait pu calculer
I'intervalle de temps entre les événements B et (', puis effectuer :
Lr_j—Dr_p2—Ss g

Sr_p1 = Dr_p1 +vp Atge avec Atge = c (12)

les calculs sont équivalents et le reste de la résolution est la méme. Notez qu’on retrouve bien
At o = At yp + Atge ce qui montre la cohérence des calculs.

(4 pt)
On définit I’événement C comme la réception du signal radio par la police et I'événement D
comme la réception du signal par F'1. Dans le réf. de la Terre, on a :

(xe,te) = (Sr_s, Atac) (xp,tp) = (tpvrr, Atac + Atep) (13)
On doit donc trouver Atcp grace a une équation similaire a I'équation (8) :

Sri—p
V1 +¢C

Atep = = 3.585 (14)

Ce qui donne pour xp :
tp = Atapvp = 5.53-10°m  avec  Atyp = Atye + Atep = 25.585 (15)

Maintenant que tous les éléments ont été calculés (on effectue Axeop = xp — e = —1.07 X
10°m.), on transforme dans le réf. F'1 avec Lorentz :

Azp = yp1(Azcp — vpiAtep) = —2.66-10° m (16)

Cette distance est négative, ce qui signifie que I’événement D se passe plus proche de la Terre
que I'événement C dans le réf. de F'1.

Une autre méthode de résolution pour calculer Azcp serait de prendre le temps top et de dire
que le signal se propage a la vitesse de la lumiere pendant ce temps-la. Attention par contre,
comme le signal se propage vers la Terre, sa vitesse est de -c. On a donc :

Azep = —cAtgp = —1.07-10°m (17)
On voit que les résultats sont cohérents.
Enfin, une derniere possibilité aurait été de d’abord transformer le temps Atcp dans le réf.

de F1 (ce qui donne Aty ) puis de multiplier par —c (la vitesse du signal) pour trouver la
distance demandée. Attention néanmoins a bien prendre Axzcp < 0 dans la transformée.
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)

(4 pt)

Ce probleme doit étre résolu avec la conservation de la quantité de mouvement relativiste. On
ne peut pas utiliser la conservation de ’énergie cinétique, car c¢’est un choc inélastique et des
lors E.;, n’est pas conservée avant et apres la collision.

Nous pouvons donc écrire la conservation de la quantité de mouvement relativiste :

VYF1—avMF1VF1—av = 0-8mF17F1—apUF1—ap + O‘2mF1/7RUR (18)

-1
1)2 . .
On identifie v = 1— C—’;) = 3.20. Les masses mp se simplifient, et les autres grandeurs

sont connues du probléme. On cherche vgi_qp, qui se retrouve dans le membre de droite mais
aussi dans ypi_qp, quil faut expliciter.
Un peu d’algebre nous permet d’obtenir :

—av —0.2 0.8
UF1—ap = oot - 0.27m08)) — 047 ¢ (19)
V14 [(Vr1—avtr — 0.275vR) [0.8]2/2

(4 pt)
On veut comparer la vitesse moyenne totale avec vy,,. Par définition, la vitesse moyenne est
le rapport entre la distance totale parcourue et le temps total (= tg si on pose t4 = 0s).

On sait que pendant un temps Atcag + Atcsp, la fusée voyage a une vitesse vpp = 0.72¢. 1l
reste a trouver le temps restant, c’est a dire Aty = tg — (Atca + Ateyp). Pour trouver ce
temps, on revient a la définition de Sp1_p :

Atezp(vr +¢) + Atyq(Vpi—gp + ) = Spi—p (20)
_p— At
Aty = e = Blelvri 0 g (21)
VFl—ap +c

On peut par ailleurs trouver la distance totale parcourue :
Dtot = Vr1 (tC + Atexp) + UFlfapAtral == 537 . 109 m (22)

Et en connaissant le temps total (tg = Atca + Ateyp + Atrgr), on trouve donc la vitesse
moyenne :

Umoy = —— =0.69¢ < Uy, (23)

La fusée F'1 ne recevra pas d’amende.



Exercice 2 (25 points)

Une startup de 'EPFL développe une nouvelle boisson, qui est obtenue a partir de jus a 1’état solide
contenu dans un gobelet. La chaleur () nécessaire pour fondre le jus solide est fournie par un gaz
a la température T, qui est comprimé de maniere isotherme. Le gaz (n moles) est contenu dans un
cylindre, fermé par un piston (surface A) qui peut coulisser sans frottement a l'intérieur du cylindre.
Les parois du cylindre et le piston sont rigides et ne permettent pas d’échange de matiere avec
I'extérieur, qui est a la pression pus,. Le gaz est comprimé a partir d'un état initial de volume V;
jusqu’a un état final de volume Vy, ou Vy < V;. Dans I'état initial et final, le piston est a I’équilibre
mécanique. L’équipe de R&D de la startup, dont vous faites partie, étudie différents gaz et différentes
transformations isothermes.

Considérez un gaz parfait qui subit une compression isotherme réversible entre 1’état initial et final.

a) Exprimez la chaleur échangée Q4 e, lors d'une transformation isotherme réversible en fonc-
tion de Ty, V;, Vi et n.

Considérez ensuite un gaz parfait qui subit une compression isotherme irréversible entre I’état initial
et final. La transformation isotherme irréversible est obtenue a partir de ’état initial en appliquant
sur le piston une force F' qui reste constante jusqu’a I'obtention de ’état final.

b) Déterminez la pression du gaz a ’état initial et final en fonction de F, pu, et A. Exprimez
la chaleur échangée Q;g irrev lors de la transformation isotherme irréversible en fonction de 7,

Vi, Vi et n.
Considérez les deux transformations des points a) et b).

C) Montrez que |Qid,ir7"ev| > |Qid,rev|-

Considérez ensuite un gaz réel qui subit une compression isotherme réversible entre 1’état initial et
final. Faites I’hypothese que le gaz réel soit décrit par I’équation de Van der Waals, ou on néglige les
interactions a longue distance entre les molécules du gaz.

d) Exprimez la chaleur échangée Qe rer €n fonction de Ty, V;, Vi et n, dans le cas ou T, > T,
avec T, la température critique du gaz.
e) Montrez que |Qyeerren]| < |Qidres| €t donnez une explication physique qualitative.

Considérez enfin le méme gaz réel qui subit une compression isotherme réversible entre ’état initial
et final dans le cas ou T, < T, avec T, la température critique du gaz.

f) Représentez qualitativement la compression isotherme dans un diagramme p — V' dans le cas

ou la pression a I’état final est plus petite que la pression de vapeur saturante a la température
T,

Y-
g) Représentez qualitativement la compression isotherme dans un diagramme p—V dans le cas ou
la pression a I’état final est plus grande que la pression de vapeur saturante a la température

T,.



Indications : Solution générale de I'intégrale [

1
ax+ﬁdx:aln(ax+ﬁ)

a)

Corrigé

(4 pt)
Le premier principe de la thermodynamique énonce :

AU =Q —W.

Le travail fait par le systeme (le gaz), dans le cas d’une transformation réversible, s’exprime
comme :

OW = +pdV. (24)

Puisque la température reste constante, nous avons AU = 0 et donc ) = W, ce qui nous
permet de calculer la chaleur en utilisant 1’équation précédente, comme :

Qidrev =W = /pdV =nRT,In (%) (25)

(5 pt)

Encore une fois, puisque les températures initiale et finale sont les mémes, AU = 0 et Q =
W. Donc, pour calculer la chaleur on peut calculer le travail W. Différemment qu’au point
précedent, il faut noter que, comme la transformation n’est pas réversible, on ne peut pas
utiliser 'Eq. 24l Tout d’abord, on peut remarquer que a I’état initial, la force externe due a
la pression atmosphérique est équilibrée par la force due a la pression du gaz, donc :

Pi = Peat-

Instantanément, une force F' est appliquée sur le piston en perturbant 1’équilibre initial. Cette
force est constante jusqu’a 'obtention de 1’état finale d’équilibre. Le travail total fait par la
force I et la pression atmosphérique sur le piston est :

Wi = (F + patm - A)Az.

En suivant la direction de z indiquée sur la figure on obtient I’expression suivante du travail :
Wi =—(F + patm - A)Az.

Le travail fait par le systéme est donc de signe opposé Wy = —W; :

Wy = (F + Datm - A) Az
A la fin de la compression, ’équilibre des forces suivant doit s’appliquer sur le piston :

F A4 pum-A=ps-A

en utilisant la loi des gaz parfaits

_ nRT,
=

Dy



en substituant dans 1’équation du travail ci-dessus, on obtient

nRT,
f

Qid,irr‘ev =Py A-Az = : (Vf - ‘/z)

Apext Apext F

2 SR
d

Vi P Vioop,

FIGURE 3 — (a) Etat d’équilibre initial avec uniquement la force due a la pression atmosphérique.
(b) L’équilibre est perturbé en rajoutant un force F. (c) Etat d’équilibre final.

c) (3 pt)
Les deux équations finales trouvées dans les points précédents sont :

v
Qid,rev = nRTg In (Vf)

Qid,irrev = nRTg : (1 - V;/Vf)

On définit le le ratio « = V;/Vy > 1. Si nous tragons les deux équations en fonction de ce ratio
on obtient le graphique montré en Fig. 4. Puisque V; <V}, le ratio x = V;/V} entre les deux
volumes est supérieur a 1, on considere le graphique dans la région x > 1. On voit clairement

que |Qid,irrev| est SUpérieur a |Qid,rev|-

/.

Qid/‘ev =74 IH(X)

— 2t OQypire T all=x) \

FIGURE 4 — Comparaison de deux chaleurs Qg ey €t Qid,irres €11 fonction du parametre z = V;/Vy > 1.




)

(5 pt)
L’équation générale des gaz réels de Van der Waals est donnée par :

B RT B a
Vin—b (V/n)?

p

ou n est le nombre de moles et b est le volume occupé par une mole, a est une constante qui
dépend du gaz, et qui rajoute dans I’équation l'effet des interactions a longue distance entre
les molécules de gaz. Comme spécifié dans énoncé, on ignore les interactions a longue distance
en imposant a = 0 dans I'’Eq. de gaz réels de Van der Waals.

De la méme maniére que pour la partie a), comme la transformation est réversible, et en
résolvant l'intégrale, le travail peut étre réécrit comme :

RT, Vi/n—b
reclges =W = [ pdV = | 22— qV = nRT,In [ LL=—). 26
Crec, /p /V/n—b " gn(wn—b> (26)
(4 pt)
Encore une fois, les deux équations doivent étre comparées directement
Vf/n —b Vf —nb
reelrev = NRT,In | =———— | =nRT,In [ — 27
Qe =BTy (=) =nityn (/=7 o
et v
Qid,rev = nRTg In (Vf)
Nous pouvons réécrire I’équation suivante et la démontrer :
Vi Vy—mnb
Vi~ Vi—nb

Puisque V; — nb et V; sont positifs, on peut réécrire
Vi-(V;=nb) > (V; —nb)- Vi V;V; —nbV; > ViV, — nbV,

Sachant que b est positif, on obtient
Vf < V;,

qui est consistant avec les données du probleme. Une explication physique qualitative est la
suivante et qui donc prouve l'inégalité. La correction de volume (—nb) dans le cas de Van
der Waals signifie que les molécules de gaz occupent déja une partie du volume, ce qui rend
I’espace restant inférieur a ce qu’il serait dans '’hypothese d'un gaz idéal. Cela réduit effecti-
vement le volume < compressible ». Par conséquent, le travail nécessaire pour comprimer le
gaz dans le cas de Van der Waals est moindre car nous comprimons un volume effectif plus
petit.

(2 pt) Pour un gaz réel, le diagramme p-V général est montré en Fig. [5, ou pg est la pression
de vapeur saturante. La saturation se produit uniquement si le gaz est a une température T’
inférieure a la température critique 7.



Pe

FIGURE 5 - Diagramme p-V pour une transformation isotherme dun gaz réel. T, indique la
température critique.

Pour cette question, il est indiqué que la température du gaz T}, est inférieure a T; et que la
pression finale est inférieure a pg. Par conséquent, le graphique est simplement :

T<Tec

g) (2 pt)
Dans ce cas, la pression finale est plus élevée que celle de saturation, donc le point E a été
atteint et le gaz se liquéfie completement. Le graphique inclut la phase de liquéfaction.

P/\

Pe E

/\
T<Te

N
T

\Y
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Exercice 3 (25 points)

Un cycle moteur, composé des trois transformations suivantes considérées comme réversibles, est
effectué par 100 moles d’'un gaz parfait monoatomique :

1) A = B : transformation isobare depuis [Ty = 600 K, V4 = 1 m?] jusqu'a Vg = 2 m?.
2) B = C : transformation isochore.

3) C = A : transformation isotherme.

Les états A, B et C sont des états d’équilibre.

a) Calculez les valeurs (T,p,V) du gaz aux états A, B, C. Ensuite, tracez le cycle dans un
diagramme p — V' en indiquant le sens dans lequel chaque transformation est parcourue.

b) Calculez le travail et la chaleur échangée lors de chaque transformation 1), 2), 3), ainsi que
pour le cycle complet. Evaluez ensuite le rendement du cycle moteur.

Un inventeur développe un cycle moteur entre les mémes états d’équilibre A, B, C. Les transforma-
tion 1) et 2) restent les mémes, mais la transformation 3) est modifiée pour obtenir un rendement,
prétendu par 'inventeur, de 60%.

c) Démontrez que l'inventeur se trompe, en sachant que la température 7" du gaz lors de la
transformation 3) modifiée par l'inventeur est telle que Ty < T < Tg.

Lors de la transformation 2), la chaleur est échangée entiérement et uniquement avec un métal 1, qui
contient n,,; = 360/17 moles du métal, et qui se trouve a la température initiale de 173 K quand le
gaz se trouve a I'état B. Le métal 1 a les propriétés suivantes : température de fusion Ty = 273 K,
chaleur spécifique molaire a ’état solide c;; = 3R, chaleur spécifique molaire a I’état liquide ¢;; = 5R,
chaleur latente molaire de fusion L = 8300 J/mol.

d) A la fin de la transformation 2), le métal 1 s’est-il chauffé ou refroidi? Y-a-t il eu une trans-
formation de phase? Calculez la température du métal 1 a la fin de la transformation 2).

Considérez dans la suite un métal 2 qui a les propriétés suivantes : température de fusion Ty = 273
K, chaleur spécifique molaire a ’état solide qui dépend de la température cs(7T) = (R/50) x (T —123)
avec T en Kelvin et cgo en J/mol/K, chaleur spécifique molaire a 1’état liquide ¢;; = 5R, chaleur
latente molaire de fusion Ly = 8300 J/mol. Lors de la transformation 2), la chaleur est échangée
entierement et uniquement avec n,,» = 100 moles de ce métal, qui se trouve a la température initiale
de 173 K quand le gaz se trouve dans ’état B au premier cycle.

e) Lors du premier cycle, a la fin de la transformation 2), le métal s’est-il chauffé ou refroidi?
Y-a-t il eu une transformation de phase? Calculez la température du métal 2 a la fin de la
transformation 2) ainsi que son changement d’entropie.

f) Calculez le nombre maximal de cycles complets ABCA que 'on peut effectuer.

Indications : Constante universelle des gaz parfaits R = 8.3 J/mol/K.

Corrigé
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2)

(4 pt)

Nous pouvons calculer toutes les valeurs de p, V, T aux points A, B, C comme ceci :

1) Expansion isobare A = B :
Si la pression est constante :

Vi Vg Vi
— =—=>Tg=—T4 =1200 K. 28
T, Ts ~ 7 vt (28)
Et nous pouvons trouver la pression en utilisant la loi des gaz parfaits :
RT
pA:pB:n A ~5.10° Pa. (29)
Va

2) Transformation isochore B = C :
Le processus 3) étant isotherme, nous pouvons affirmer que T = T4 = 600 K.
Si le volume est constant :

P PC Tc 5
25 _ 2 s e = Sps =25-10° Pa. 30
Ty To pc Ty PB a (30)
Et, donné dans la question :
Vo =Vg =2m? (31)
Ainsi, nous avons les valeurs suivantes :

| LA [ B ¢ |

p[Pa] || 5-10° | 5-10° | 2.5-10°

V [m? 1 2 2

T[K] | 600 | 1200 | 600

En utilisant ces valeurs, nous pouvons tracer le diagramme P-V, donné sur la figure [6]

Indication : Dans cette partie, ainsi que dans toutes les parties futures de ’exercice, toutes
les réponses calculées soit avec R = 8.3 J/mol/K, soit R = 8.31J/mol/K, soit avec la valeur
arrondie de la pression de la partie a) (ps = pp = 4.98-10° ~ 5-10°) sont acceptées comme
réponses correctes.

(7 pt)
Calculons le travail effectué et la chaleur de chaque processus :

1) Expansion isobare A = B :
Le travail est donné par :

B
Wag = / pdV = pa(Vg —Vy) =5-10°], (32)
A

L’énergie interne est donnée par :

AUpp = gnR(TB —Ty) =175-10°J, (33)
Alinsi, en utilisant le premier principe de la thermodynamique :

Qap = Wap + AUap = 12.5-10°]. (34)

Notez que la chaleur échangée aurait pu étre calculer en utilisant directement 6Q) = nC,dT,
ou C, est calculé pour un gaz idéal mono-atomique.
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FIGURE 6 — Schéma pour la question a)
Transformation isochore B = C :
Le travail est nul par la définition :
Wpge =0, (35)
L’énergie interne est :
3
AUpc = 5nR(TC —Tg) = —7.5-10°], (36)
La chaleur vaut donc :
Qpc = Wpe + AUpe = —7.5-10°J. (37)

Notez que, comme au point précedent, la chaleur échangée aurait pu étre calculer en
utilisant directement 0Q) = nCydT, ou Cy est calculé pour un gaz idéal mono-atomique.

Transformation isotherme C = A :
Dans la transformation isotherme, le travail peut étre calculé comme suit :

A A A
nRT POVC VA
WC’A = / pdV = / —dV = / dV = Pchln (—) (38)
c c V c V Ve
= —3.5-10°J, (39)
L’énergie interne est nulle par la définition :
AUcs =0, (40)
qui nous permet de calculer la chaleur :
Qca=Wea+ AUca = —3.5-10°1]. (41)
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Le travail total est donné par :
Wiot = Wag + Wpe + Wea = 1.5-10°], (42)

et la chaleur totale :
Qiot = Qap + Qpc + Qca = 1.5-10°]. (43)

Nous pouvons finalement calculer le rendement en divisant le travail total par la chaleur
donnée au systeme :

n= Wtot
Qap

=0.12 = 12%. (44)

(1.5 pt)
Le rendement maximale dans tout cycle thermodynamique est donnée par le rendement de
Carnot : T
Nearnot = 1-— ek = 0.5 = 50%. (45)
T

Ainsi, le scientifique n’a pas pu obtenir une valeur de 60%.
(4 pt)
La chaleur dégagée par le processus BC est la chaleur recue par le métal, donc : Qe < 0 =>

Q1 = —Qpc > 0, ainsi, le métal va se réchauffer.
Chaleur nécessaire pour élever la T a 0C° :

Q,100,>0 = nmlcslATl =5.27. 1O4J (46)

Parce que la chaleur nécessaire pour atteindre zéro degré Celsius est inférieure a celle donnée
au métal : QQ_190_>0 < Qm1, il doit y avoir une transition de phase.
La chaleur nécessaire pour une transformation est :

Qs_>1=nm Ly =1.76-10°]. (47)

Parce que la chaleur nécessaire pour monter la température a zéro et faire fondre le bloc
entier est inférieure a la chaleur donnée au métal :Qs_~; + Q_100->0 < @Qm1, la température
continuera a augmenter dans la phase liquide.

La chaleur transférée au bloc en phase liquide est :

Q07>T = le - C257>l - Q71007>0 =5.21-10°J. (48)
Ainsi, on peut trouver une différence de température :

Qo—s1 = Ncn ATy => AT, = Qo1 =593°C. (49)

Nm1Cn
Et donc la température finale est : ATy, =T — 0°C' => Ty = 593°C = 866K.
On voit que la température T est supérieure a T¢, ce qui n’est pas possible, puisque ceci viole
le deuxieme principe. Pour tenir compte de cela et trouver la bonne température 7%, nous
devons prendre en compte la chaleur du gaz dans le processus BC.
Nous pouvons assimiler toute la chaleur du systeme :

Q—100—>0 + Qs—>l + Q07>T’ + anz = 07 (50)
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ol Qo_op = nmcn(T } — 273K) est la chaleur nécessaire pour que le métal atteigne une

température d’équilibre T}. Et ot Qgos = 3/ 2nR(T} —Tp) est la chaleur du gaz pour atteindre
une température d’équilibre.
Ainsi, on peut trouver le T’ ]Ic :

%nRTB + e X 273K — Q_100->0 — Qs—>1

Nm1Cl1 + gnR

T, = ~ T09K. (51)

e) (5.5 pt)
Pour la méme raison qu’a la partie d) : Qpc < 0 => Q2 = —1 X Qpc > 0 => le métal va
se réchauffer.
Parce que la chaleur spécifique molaire dépend de la température, pour calculer correctement la
chaleur il faut trouver toutes les contributions de tous les petits changements de température :
dQ —100->0 = MmaCs2dT.
Et nous devons donc faire I'intégration :

T2 R Mo R 123K X n,oR
000 = o (T —123K) dT = —222 (T2 — 2y - 2222 2 7m27 0 T)) ~
Q 100—>0 /T1 n 250( ) 100 ( 2 1) 50 (2 1)
~ 1.66-10°J. (52)

Comme on peut le voir, la chaleur nécessaire pour atteindre zéro degré est inférieure a la
chaleur donnée au métal : Q0 > () _100_>0 => il y a une transformation de phase. La chaleur
nécessaire pour faire fondre le bloc est :

Q5_>l = anLfQ =8.3- 1O5J

Vu que Qs_v; = 8.3-105J > Q2 — Q_100->0 = 5.84-10°J, il y aura une fusion partielle et
Ty = 0°.

Partie a I’état liquide apres fusion :

~ Qma2 — Q_100->0

= 70 moles. 53
I (53)

nf

La variation d’entropie en augmentant la température jusqu’a zéro est :

T
AS._100-o0 — / dQ_100—>0 :/ (anR _ 123nm2R> IT —
Ty

T 50 50T

N R 123n,0R . (T
Ty—T) — =20 (22) = K 4
= (=) = n(Tl) 730 J/ (54)

Et la variation d’entropie lors de la fusion est donnée par :

Qm2 — Q-100->0

ASs—>l = T

2140 J/K, (55)

Donc l'entropie totale :
AS;r = 2870 J/K. (56)
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f) (3 pt)
T = 600K = 327°C parce que apres avoir atteint cette T,,.., le métal commencerait a
donner de la chaleur au processus 2) et donc le cycle va s’arreter. La chaleur échangée pour
atteindre cette température :

Qrot = Q10050 + Qs—>1 + Qo_327 =~ 2.36 - 10°], (57)

Ot on a utilisé : Qo_307 = NumacipAT = 1.36-10°J.
Ainsi, un nombre maximum de cycles :

imaz = Quot _ 315 (58)

)%

Ainsi, puisque le nombre de cycles doit étre un nombre entier (comme demande aa dans cette
question), le nombre maximum et 3.

16



Exercice 4 (25 points)

Rentré a la maison apres le cours, Ivo veut cuisiner un steak de tofu. Le steak est un parallélépipede
a base carrée (superficie de la base A = 40 cm? et hauteur L = 2 cm). Ivo dépose le steak sur une
plaque chauffante horizontale a la température 7}, = 80 °C. La surface inférieure du steak en contact
avec la plaque chauffante atteint instantanément 1’équilibre thermique avec celle-ci. L’air ambiant
autour du steak est a la température T,,; = 20°C.

a) Calculez la température de la surface supérieure du steak, T, dans le cas ou celle-ci échange de
la chaleur par convection avec I'air ambiant (négligez 1’échange de chaleur par rayonnement).

b) Calculez le flux de chaleur et la puissance thermique fournis par la plaque chauffante dans les
conditions de la question a).

c) Calculez la température de la surface supérieure du steak, T}, dans le cas ou celle-ci échange
de la chaleur par convection avec I’air ambiant ainsi que par rayonnement, en sachant qu’'une
puissance nette (somme de puissance émise et absorbée) de P, = 0.3W est perdue par
rayonnement par le steak.

N’étant pas satisfait de la cuisson obtenue avec la plaque chauffante, Ivo utilise un four a micro-
ondes d'une puissance thermique P, qui est completement et uniformément absorbée dans le tofu.
L’air ambiant autour du steak est a la température T,,; = 20°C et le steak est tenu a ’horizontale
a ’aide de deux broches fixées dans ses surfaces verticales.

d) Calculez la puissance P nécessaire pour que les deux surfaces horizontales du steak soient
a 80°C dans le cas ou ces deux surfaces échangent de la chaleur par convection avec l'air
ambiant (négligez I’échange de chaleur par rayonnement).

Définissez = la coordonnée selon 'axe perpendiculaire a la base du steak, telle que z = L/2 au niveau
de la surface supérieure et x = —L /2 au niveau de la surface inférieure.

e) Montrez que dans les conditions de la question d), la température du tofu est décrite par
I’équation :
T(x) = Tow +0L/(2R) + @/ (2k,) x [(L/2)* — 27,

onw=P/(AXxL).

f) En utilisant I’équation T'(z) ci-dessus, représentez la distribution de la température du tofu
en fonction de la coordonnée x en identifiant les températures aux deux surfaces et au centre
du steak.

Indications : On suppose que le transfert de chaleur se fait en régime stationnaire. Le steak est
traité en géométrie plane infinie et sa base est a ’horizontale. Tout transport de chaleur a travers
les surfaces verticales du steak est négligé. Conductivité thermique du tofu x; = 0.38 W/m/K.
Coefficient de transfert de la chaleur par convection tofu-air h = 65 W/ (m? K).
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Corrigé

a)

(5 pt)
Dans le cas stationnaire, la puissance absorbée par conduction depuis la plaque est la méme
que la puissance perdue par convection avec l'air ambiant. Donc, nous pouvons écrire

A
ST, — ) = hA(T, = Toae), (59)

ou le terme a gauche est la puissance absorbée par conduction et le terme a droite est la
puissance perdue par convection. En isolant T}, on obtient :

Lh‘Text + /‘itTp

T, = ~ 306.7 K 60
K¢ + Lh ( )
ou en degrés Celisus Ty = 33.6°C.
(3 pt)
La puissance thermique fournie par la plaque est donnée par :
A
p= %(Tp —T,) ~35W, (61)

ou nous avons utilisé le résultat de I'exercice précédent. Le flux de chaleur (®) est la puissance
par unité de surface. Donc on écrit :
P &
d=— =T, —T,) ~ 882 W/m?. (62)
A L
(5 pt)
La résolution du probleme est g méme que l’exercice précédent, mais maintenant nous devons
considérer la puissance émise par rayonnement F,,,. Donc, on peut écrire I'équation ([59) en
ajoutant le terme de rayonnement a droite
KJtA

T(Tp - Ts) == hA(TS - Tezt) + Pray' (63)

Dongc, la température finale de la surface supérieure est

LTy + kT, — Troxk
= ~ 305.8 K 64
K¢ + Lh ( )

S

ou en degrés Celisus T, = 32.7°C.

Notez que la température est plus basse que dans 'exercice précédent. En effet, le steak de
tofu perd également de la chaleur par rayonnement, et non plus seulement par convection.
Cependant, cette puissance est faible et la température finale n’est inférieure que d’un degré
par rapport a celle de I'exercice 4a.

(3 pt)

Dans ce cas, la puissance émise par le micro-ondes est completement absorbée par les deux
surfaces du steak, qui échange ensuite de la chaleur avec 1’air par convection. On peut donc
a nouveau utiliser la formule de la puissance échangée par convection et trouver la puissance
nécessaire pour chauffer les deux surfaces a une température 75 = 80°C'

P = h(2A)(T, — Tow) = 31.2W. (65)

Le facteur 2 dans la formule vient du fait que nous avons deux surfaces a chauffer.
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e) (6 pt)

Nous commencons par écrire I’équation unidimensionnelle de la tempéraure dans le cas sta-
tionnaire (07'/0t = 0)

0*T
—+5=0 66
5 =0, (66)
ou S est le terme de source, donné par S = P/(AkL) = @/ k.
Nous pouvons alors procéder a l'intégration de I’équation :
or w
de— = — [ de— 67
v ox / xlit (67)
oT w
- C
ox (z+C1)

- (68)

ou (' est une constante d’intégration. Nous pouvons intégrer une autre fois pour obtenir la
température :

- 2
T() :t (% +Cix + Cz)

(69)

ou (U5 est une autre constante d’intégration. Maintenant, nous pouvons déterminer C; et Cy
en utilisant les conditions aux bords

T(x=—L/2) =T,
{T(x L/2) =T, (70)

T est donnée par l'exercice précédent par I’équation (65))

P @
Ty =T.. + YT Towi + ﬁL' (71)

Ainsi, en insérant I’équation ([71)) dans I’équation ([70]), nous obtenons :

w L 2 L w [
Kt ; (2) Cl 2 02 ext 2h (72)
w L 2 L w

rn %<§> +01§+CQ = Zezt‘|’2_;lf

Ainsi, si nous résolvons le systeme pour C; et Cy, nous pouvons obtenir :

Ci=0
_ 73
T —— "

Donc, en insérant les C et Cy trouvés dans , nous obtenons :

(g) (1 %L)] | (1)

et done
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f) (3 pt)
On observe que I’équation est une parabole orientée vers le bas. Nous pouvons identifier les

températures aux deux surfaces et au centre du steak par substitution. Donc, la température
au centre du steak sera donnée par

@ w ((L\?
Tx=0)=T, — L+ — — ~ 405 K ~132°
(¢=0)=Teu + 57 o <(2)> 05 32°C, (76)
et la température aux deux surfaces sera
T(zx=+L/2) = Top + ;—hL ~ 353 K ~ 80°C. (77)

Notez que la température sur les cotés du steak est précisément celle indiquée par ’énoncé du
probleme.

Enfin, nous pouvons dessiner la température T en fonction de x (figures [7] et

410

4

50
-0.01  -0.005 0 0.005  0.01
x [m]

FIGURE 7 — Température (en Kelvin) en fonction de I'épaisseur du steak.
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FIGURE 8 — Température (en Celsius) en fonction de I’épaisseur du steak.
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