
Examen de physique générale II – Section SV Prof. Furno

Semestre été 2024

Exercice 1 (25 points)

Tous les référentiels (réfs.) sont inertiels et tous les objets (planètes, fusées) sont assimilés à des
points matériels. À l’instant tA (mesuré dans le réf. de la Terre), une fusée F1 entre sur l’autoroute
galactique, sur l’axe Terre-Jupiter, à la position de la Terre. Jupiter est immobile dans le réf. de la
Terre. La vitesse de la fusée est vF1 = 0.72 c dans la direction de Jupiter, mesurée dans le réf. de la
Terre. La distance Terre-Jupiter dans le réf. de la Terre est LT−J = 7 × 109m. Une deuxième fusée
F2 voyage sur l’axe Terre-Jupiter en direction de la Terre, avec une vitesse vF2 = 0.7 c.

a) Quelle est la distance (mesurée dans le réf. de F1) entre la Terre et Jupiter ? Quelle est la
vitesse de F1 mesurée par F2 ?

Dans le réf. de la Terre, à l’instant tA, un signal radio est envoyé depuis la Terre en direction de
Jupiter. À l’instant tB, la fusée F2 se trouve à la même position que le signal radio, entre la Terre
et Jupiter, et la fusée F1 a parcouru une distance DT−F1 = 2× 109m.

b) Quel est l’intervalle de temps (mesuré dans le réf. de F2), entre l’événement ”envoi du signal
radio depuis la Terre” et l’événement ”signal radio et F2 à la même position” ?

Dans le réf. de la Terre, à l’instant tC , le signal radio se trouve à une distance Ss−J = 4 × 108 m
de Jupiter entre la Terre et Jupiter. Une fusée de la police galactique P , qui voyage en direction de
Jupiter sur l’axe Terre-Jupiter à une vitesse vP = vF1, reçoit le signal à l’instant tC .

c) Quelle est la distance (SF1−P ) entre la fusée F1 et la fusée de la police, mesurée dans le réf.
de P ?

Dès que le signal radio est reçu par P , il est instantanément renvoyé vers F1, qui le reçoit à l’instant
tD (mesuré dans le réf. de la Terre).

d) Quel est l’intervalle spatial (mesuré dans le réf. de F1) entre l’événement ”réception du signal
radio par la police” et l’événement ”réception du signal radio par F1” ?

La vitesse limite autorisée sur l’autoroute galactique est vlim = 0.7 c (mesurée dans le réf. de la
Terre). Soit mF1 la masse au repos de la fusée F1. L’équipage de la fusée F1, pour ne pas recevoir
d’amende, ralentit instantanément la fusée en lançant un réservoir (masse au repos mR = 0.2mF1)
vers Jupiter avec une vitesse vR = 0.95 c, à un ∆texp = 0.5 s (mesuré dans le réf. de la Terre) après
l’envoi du signal radio par la police. On définit tE l’instant (mesuré dans le réf. de la Terre) où la
fusée reçoit le signal radio de la police après l’expulsion du réservoir.

e) Quelle est la vitesse de la fusée F1 (mesurée dans le réf. de la Terre) après l’expulsion du
réservoir ?

f) La fusée recevra-t-elle une amende si on considère que sa vitesse moyenne entre tA et tE ne
doit pas dépasser la vitesse limite autorisée dans le réf. de la Terre ?
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Indications : vitesse de la lumière c = 3× 108m/s.

Corrigé

a) (4 pt)
La longueur LT−J est une longueur propre dans le référentiel de la Terre (distance entre
2 objets fixes dans un référentiel). Donc pour trouver la longueur vue par F1, il suffit de
contracter cette longueur :

L′
T−J =

LT−J

γF1

= 4.86 · 109m (1)

avec γF1 =

(√
1− v2F2

c2

)−1

= 1.44.

La vitesse de F1 mesurée dans F2 se calcule grâce à la transformation de Lorentz pour les
vitesses. Attention à bien poser les référentiels : vx = vF1 = 0.72 c et v = vF2 = −0.7 c :

v′′x =
vx − v

1− vxv
c2

=⇒ v′′F1 =
vF1 − vF2

1− vF1vF2

c2

= 0.94 c (2)

b) (4 pt)
En connaissant DT−F1, nous pouvons trouver l’intervalle de temps entre l’émission et la
réception, mesuré dans le référentiel de la Terre :

∆tAB =
DT−F1

vF1

= 9.26 s (3)

ainsi que :

γF2 =

(√
1− v2F2

c2

)−1

, DT−F2 = ∆tABc (4)

Figure 1 – Schéma pour la question b)

Nous pouvons ensuite appliquer les transformations de Lorentz (notez que vF2 < 0 au vu de
la géométrie du problème) :

∆t′′AB = γF2

(
∆tAB − vF2

DT−F2

c2

)
= 22 s (5)
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Une autre solution aurait été de considérer le réf. de la fusée F2 comme fixe. Les grandeurs
sont échangées, c’est-à-dire qu’on cherche ∆tAB et le temps calculé à l’équation (3) est en fait
∆t′′AB. De même, la distance calculée à l’équation (4) se nomme D′′

T−F2. La transformée de
Lorentz s’écrit alors :

∆tAB = γF2

(
∆t′′AB + vF2

D′′
T−F2

c2

)
= 22 s (6)

Dans ce cas, on a bien que vF2 > 0 et donc les deux calculs donnent le même résultat.

c) (5 pt)
Dans ce cas, la distance entre les deux fusées est une distance propre dans le référentiel des
fusées, vu qu’elles vont à la même vitesse (donc c’est bien la distance entre deux objets fixes
dans un référentiel). Nous pouvons d’abord écrire la distance ST−s entre la Terre et le signal :

ST−s = LT−J − Ss−J = 6.60 · 109 m (7)

Figure 2 – Schéma pour la question c) et d)

Pour trouver la distance ST−F1 entre la Terre et la fusée F1 au moment tC , il faut d’abord
calculer l’intervalle de temps ∆tAC :

∆tAC =
LT−J − Ss−J

c
(8)

pour ainsi écrire la distance totale parcourue par la fusée depuis son départ :

ST−F1 = vF1∆tAC (9)
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La distance entre F1 et P au moment tC dans le référentiel de la Terre est :

SF1−P = ST−s − ST−F1 = 1.85 · 109 m (10)

et celle dans le référentiel de P est :

S ′′′
F1−P = SF1−PγP = 2.66 · 109 m avec γP = γF1 =

(√
1− v2F1

c2

)−1

(11)

En effet, S ′′′
F1−P est une longueur propre comme spécifié précédemment.

N.B. : une autre méthode aurait pu être utilisée pour calculer ST−F1. On aurait pu calculer
l’intervalle de temps entre les événements B et C, puis effectuer :

ST−F1 = DT−F1 + vF1∆tBC avec ∆tBC =
LT−J −DT−F2 − Ss−J

c
(12)

les calculs sont équivalents et le reste de la résolution est la même. Notez qu’on retrouve bien
∆tAC = ∆tAB +∆tBC ce qui montre la cohérence des calculs.

d) (4 pt)
On définit l’événement C comme la réception du signal radio par la police et l’événement D
comme la réception du signal par F1. Dans le réf. de la Terre, on a :

(xC , tC) = (ST−s,∆tAC) (xD, tD) = (tDvF1,∆tAC +∆tCD) (13)

On doit donc trouver ∆tCD grâce à une équation similaire à l’équation (8) :

∆tCD =
SF1−P

vF1 + c
= 3.58 s (14)

Ce qui donne pour xD :

xD = ∆tADvF1 = 5.53 · 109m avec ∆tAD = ∆tAC +∆tCD = 25.58 s (15)

Maintenant que tous les éléments ont été calculés (on effectue ∆xCD = xD − xC = −1.07 ×
109m.), on transforme dans le réf. F1 avec Lorentz :

∆x′
CD = γF1(∆xCD − vF1∆tCD) = −2.66 · 109 m (16)

Cette distance est négative, ce qui signifie que l’événement D se passe plus proche de la Terre
que l’événement C dans le réf. de F1.

Une autre méthode de résolution pour calculer ∆xCD serait de prendre le temps tCD et de dire
que le signal se propage à la vitesse de la lumière pendant ce temps-là. Attention par contre,
comme le signal se propage vers la Terre, sa vitesse est de -c. On a donc :

∆xCD = −c∆tCD = −1.07 · 109m (17)

On voit que les résultats sont cohérents.

Enfin, une dernière possibilité aurait été de d’abord transformer le temps ∆tCD dans le réf.
de F1 (ce qui donne ∆t′CD) puis de multiplier par −c (la vitesse du signal) pour trouver la
distance demandée. Attention néanmoins à bien prendre ∆xCD < 0 dans la transformée.

4



e) (4 pt)
Ce problème doit être résolu avec la conservation de la quantité de mouvement relativiste. On
ne peut pas utiliser la conservation de l’énergie cinétique, car c’est un choc inélastique et dès
lors Ecin n’est pas conservée avant et après la collision.

Nous pouvons donc écrire la conservation de la quantité de mouvement relativiste :

γF1−avmF1vF1−av = 0.8mF1γF1−apvF1−ap + 0.2mF1γRvR (18)

On identifie γR =

(√
1− v2R

c2

)−1

= 3.20. Les masses mF se simplifient, et les autres grandeurs

sont connues du problème. On cherche vF1−ap, qui se retrouve dans le membre de droite mais
aussi dans γF1−ap, qu’il faut expliciter.
Un peu d’algèbre nous permet d’obtenir :

vF1−ap =
(γF1−avvF1 − 0.2γRvR)/0.8√

1 + [(γF1−avvF1 − 0.2γRvR)/0.8]2/c2
= 0.47 c (19)

f) (4 pt)
On veut comparer la vitesse moyenne totale avec vlim. Par définition, la vitesse moyenne est
le rapport entre la distance totale parcourue et le temps total (= tE si on pose tA = 0 s).

On sait que pendant un temps ∆tCA + ∆texp, la fusée voyage à une vitesse vF1 = 0.72 c. Il
reste à trouver le temps restant, c’est à dire ∆tral = tE − (∆tCA + ∆texp). Pour trouver ce
temps, on revient à la définition de SF1−P :

∆texp(vF1 + c) + ∆tral(vF1−ap + c) = SF1−P (20)

=⇒∆tral =
SF1−P −∆texp(vF1 + c)

vF1−ap + c
= 3.60 s (21)

On peut par ailleurs trouver la distance totale parcourue :

Dtot = vF1(tC +∆texp) + vF1−ap∆tral = 5.37 · 109 m (22)

Et en connaissant le temps total (tE = ∆tCA + ∆texp + ∆tral), on trouve donc la vitesse
moyenne :

vmoy =
Dtot

tE
= 0.69 c < vlim (23)

La fusée F1 ne recevra pas d’amende.
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Exercice 2 (25 points)

Une startup de l’EPFL développe une nouvelle boisson, qui est obtenue à partir de jus à l’état solide
contenu dans un gobelet. La chaleur Q nécessaire pour fondre le jus solide est fournie par un gaz
à la température Tg qui est comprimé de manière isotherme. Le gaz (n moles) est contenu dans un
cylindre, fermé par un piston (surface A) qui peut coulisser sans frottement à l’intérieur du cylindre.
Les parois du cylindre et le piston sont rigides et ne permettent pas d’échange de matière avec
l’extérieur, qui est à la pression patm. Le gaz est comprimé à partir d’un état initial de volume Vi

jusqu’à un état final de volume Vf , où Vf < Vi. Dans l’état initial et final, le piston est à l’équilibre
mécanique. L’équipe de R&D de la startup, dont vous faites partie, étudie différents gaz et différentes
transformations isothermes.

Considérez un gaz parfait qui subit une compression isotherme réversible entre l’état initial et final.

a) Exprimez la chaleur échangée Qid,rev lors d’une transformation isotherme réversible en fonc-
tion de Tg, Vi, Vf et n.

Considérez ensuite un gaz parfait qui subit une compression isotherme irréversible entre l’état initial
et final. La transformation isotherme irréversible est obtenue à partir de l’état initial en appliquant
sur le piston une force F qui reste constante jusqu’à l’obtention de l’état final.

b) Déterminez la pression du gaz à l’état initial et final en fonction de F , patm et A. Exprimez
la chaleur échangée Qid,irrev lors de la transformation isotherme irréversible en fonction de Tg,
Vi, Vf et n.

Considérez les deux transformations des points a) et b).

c) Montrez que |Qid,irrev| > |Qid,rev|.

Considérez ensuite un gaz réel qui subit une compression isotherme réversible entre l’état initial et
final. Faites l’hypothèse que le gaz réel soit décrit par l’équation de Van der Waals, où on néglige les
interactions à longue distance entre les molécules du gaz.

d) Exprimez la chaleur échangée Qreel,rev en fonction de Tg, Vi, Vf et n, dans le cas ou Tg > Tc,
avec Tc la température critique du gaz.

e) Montrez que |Qreel,rev| < |Qid,rev| et donnez une explication physique qualitative.

Considérez enfin le même gaz réel qui subit une compression isotherme réversible entre l’état initial
et final dans le cas ou Tg < Tc, avec Tc la température critique du gaz.

f) Représentez qualitativement la compression isotherme dans un diagramme p− V dans le cas
où la pression à l’état final est plus petite que la pression de vapeur saturante à la température
Tg.

g) Représentez qualitativement la compression isotherme dans un diagramme p−V dans le cas où
la pression à l’état final est plus grande que la pression de vapeur saturante à la température
Tg.
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Indications : Solution générale de l’intégrale
∫ 1

αx+ β
dx =

1

α
ln (αx+ β)

Corrigé

a) (4 pt)
Le premier principe de la thermodynamique énonce :

∆U = Q−W.

Le travail fait par le système (le gaz), dans le cas d’une transformation réversible, s’exprime
comme :

δW = +pdV. (24)

Puisque la température reste constante, nous avons ∆U = 0 et donc Q = W , ce qui nous
permet de calculer la chaleur en utilisant l’équation précédente, comme :

Qid,rev = W =

∫
pdV = nRTg ln

(
Vf

Vi

)
(25)

b) (5 pt)
Encore une fois, puisque les températures initiale et finale sont les mêmes, ∆U = 0 et Q =
W . Donc, pour calculer la chaleur on peut calculer le travail W . Différemment qu’au point
précèdent, il faut noter que, comme la transformation n’est pas réversible, on ne peut pas
utiliser l’Eq. 24. Tout d’abord, on peut remarquer que à l’état initial, la force externe due a
la pression atmosphérique est équilibrée par la force due à la pression du gaz, donc :

pi = pext.

Instantanément, une force F est appliquée sur le piston en perturbant l’équilibre initial. Cette
force est constante jusqu’à l’obtention de l’état finale d’équilibre. Le travail total fait par la
force F et la pression atmosphérique sur le piston est :

Wf = (F+ patm ·A)∆z.

En suivant la direction de z indiquée sur la figure on obtient l’expression suivante du travail :

Wf = −(F + patm ·A)∆z.

Le travail fait par le système est donc de signe opposé Ws = −Wf :

Ws = (F + patm ·A)∆z

À la fin de la compression, l’équilibre des forces suivant doit s’appliquer sur le piston :

F + patm ·A = pf ·A

en utilisant la loi des gaz parfaits

pf =
nRTg

Vf

,
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en substituant dans l’équation du travail ci-dessus, on obtient

Qid,irrev = pf ·A ·∆z =
nRTg

Vf

· (Vf − Vi).

Figure 3 – (a) État d’équilibre initial avec uniquement la force due à la pression atmosphérique.
(b) L’équilibre est perturbé en rajoutant un force F . (c) État d’équilibre final.

c) (3 pt)
Les deux équations finales trouvées dans les points précédents sont :

Qid,rev = nRTg ln

(
Vf

Vi

)

Qid,irrev = nRTg · (1− Vi/Vf )

On définit le le ratio x = Vi/Vf > 1. Si nous traçons les deux équations en fonction de ce ratio
on obtient le graphique montré en Fig. 4. Puisque Vf < Vi, le ratio x = Vi/Vf entre les deux
volumes est supérieur à 1, on considère le graphique dans la région x > 1. On voit clairement
que |Qid,irrev| est supérieur à |Qid,rev|.

Figure 4 – Comparaison de deux chaleursQid,rev etQid,irrev en fonction du paramètre x = Vi/Vf > 1.
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d) (5 pt)
L’équation générale des gaz réels de Van der Waals est donnée par :

p =
RT

V/n− b
− a

(V/n)2

où n est le nombre de moles et b est le volume occupé par une mole, a est une constante qui
dépend du gaz, et qui rajoute dans l’équation l’effet des interactions à longue distance entre
les molécules de gaz. Comme spécifié dans énoncé, on ignore les interactions à longue distance
en imposant a = 0 dans l’Eq. de gaz réels de Van der Waals.
De la même manière que pour la partie a), comme la transformation est réversible, et en
résolvant l’intégrale, le travail peut être réécrit comme :

Qreel,rev = W =

∫
pdV =

∫
RTg

V/n− b
dV = nRTg ln

(
Vf/n− b

Vi/n− b

)
. (26)

e) (4 pt)
Encore une fois, les deux équations doivent être comparées directement

Qreel,rev = nRTg ln

(
Vf/n− b

Vi/n− b

)
= nRTg ln

(
Vf − nb

Vi − nb

)
(27)

et

Qid,rev = nRTg ln

(
Vf

Vi

)
Nous pouvons réécrire l’équation suivante et la démontrer :

Vf

Vi

>
Vf − nb

Vi − nb
.

Puisque Vi − nb et Vi sont positifs, on peut réécrire

Vf · (Vi − nb) > (Vf − nb) ·Vi VfVi − nbVf > VfVi − nbVi

Sachant que b est positif, on obtient
Vf < Vi,

qui est consistant avec les données du problème. Une explication physique qualitative est la
suivante et qui donc prouve l’inégalité. La correction de volume (−nb) dans le cas de Van
der Waals signifie que les molécules de gaz occupent déjà une partie du volume, ce qui rend
l’espace restant inférieur à ce qu’il serait dans l’hypothèse d’un gaz idéal. Cela réduit effecti-
vement le volume ≪ compressible ≫. Par conséquent, le travail nécessaire pour comprimer le
gaz dans le cas de Van der Waals est moindre car nous comprimons un volume effectif plus
petit.

f) (2 pt) Pour un gaz réel, le diagramme p-V général est montré en Fig. 5, où pE est la pression
de vapeur saturante. La saturation se produit uniquement si le gaz est à une température T
inférieure à la température critique Tc.
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Figure 5 – Diagramme p-V pour une transformation isotherme d’un gaz réel. Tc indique la
température critique.

Pour cette question, il est indiqué que la température du gaz Tg est inférieure à Tc et que la
pression finale est inférieure à pE. Par conséquent, le graphique est simplement :

g) (2 pt)
Dans ce cas, la pression finale est plus élevée que celle de saturation, donc le point E a été
atteint et le gaz se liquéfie complètement. Le graphique inclut la phase de liquéfaction.
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Exercice 3 (25 points)

Un cycle moteur, composé des trois transformations suivantes considérées comme réversibles, est
effectué par 100 moles d’un gaz parfait monoatomique :

1) A ⇒ B : transformation isobare depuis [TA = 600 K, VA = 1 m3] jusqu’à VB = 2 m3.

2) B ⇒ C : transformation isochore.

3) C ⇒ A : transformation isotherme.

Les états A, B et C sont des états d’équilibre.

a) Calculez les valeurs (T, p, V ) du gaz aux états A, B, C. Ensuite, tracez le cycle dans un
diagramme p− V en indiquant le sens dans lequel chaque transformation est parcourue.

b) Calculez le travail et la chaleur échangée lors de chaque transformation 1), 2), 3), ainsi que
pour le cycle complet. Évaluez ensuite le rendement du cycle moteur.

Un inventeur développe un cycle moteur entre les mêmes états d’équilibre A, B, C. Les transforma-
tion 1) et 2) restent les mêmes, mais la transformation 3) est modifiée pour obtenir un rendement,
prétendu par l’inventeur, de 60%.

c) Démontrez que l’inventeur se trompe, en sachant que la température T du gaz lors de la
transformation 3) modifiée par l’inventeur est telle que TA ≤ T ≤ TB.

Lors de la transformation 2), la chaleur est échangée entièrement et uniquement avec un métal 1, qui
contient nm1 = 360/17 moles du métal, et qui se trouve à la température initiale de 173 K quand le
gaz se trouve à l’état B. Le métal 1 a les propriétés suivantes : température de fusion Tf1 = 273 K,
chaleur spécifique molaire à l’état solide cs1 = 3R, chaleur spécifique molaire à l’état liquide cl1 = 5R,
chaleur latente molaire de fusion Lf1 = 8300 J/mol.

d) À la fin de la transformation 2), le métal 1 s’est-il chauffé ou refroidi ? Y-a-t il eu une trans-
formation de phase ? Calculez la température du métal 1 à la fin de la transformation 2).

Considérez dans la suite un métal 2 qui a les propriétés suivantes : température de fusion Tf2 = 273
K, chaleur spécifique molaire à l’état solide qui dépend de la température cs2(T ) = (R/50)×(T−123)
avec T en Kelvin et cS2 en J/mol/K, chaleur spécifique molaire à l’état liquide cl2 = 5R, chaleur
latente molaire de fusion Lf2 = 8300 J/mol. Lors de la transformation 2), la chaleur est échangée
entièrement et uniquement avec nm2 = 100 moles de ce métal, qui se trouve à la température initiale
de 173 K quand le gaz se trouve dans l’état B au premier cycle.

e) Lors du premier cycle, à la fin de la transformation 2), le métal s’est-il chauffé ou refroidi ?
Y-a-t il eu une transformation de phase ? Calculez la température du métal 2 à la fin de la
transformation 2) ainsi que son changement d’entropie.

f) Calculez le nombre maximal de cycles complets ABCA que l’on peut effectuer.

Indications : Constante universelle des gaz parfaits R = 8.3 J/mol/K.

Corrigé
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a) (4 pt)

Nous pouvons calculer toutes les valeurs de p, V, T aux points A, B, C comme ceci :

1) Expansion isobare A ⇒ B :
Si la pression est constante :

VA

TA

=
VB

TB

=> TB =
VB

VA

TA = 1200 K. (28)

Et nous pouvons trouver la pression en utilisant la loi des gaz parfaits :

pA = pB =
nRTA

VA

≃ 5 · 105 Pa. (29)

2) Transformation isochore B ⇒ C :
Le processus 3) étant isotherme, nous pouvons affirmer que TC = TA = 600 K.
Si le volume est constant :

pB
TB

=
pC
TC

=> pC =
TC

TB

pB = 2.5 · 105 Pa. (30)

Et, donné dans la question :
VC = VB = 2 m3, (31)

Ainsi, nous avons les valeurs suivantes :

A B C

p [Pa] 5 · 105 5 · 105 2.5 · 105
V [m3] 1 2 2
T [K] 600 1200 600

En utilisant ces valeurs, nous pouvons tracer le diagramme P -V , donné sur la figure 6.

Indication : Dans cette partie, ainsi que dans toutes les parties futures de l’exercice, toutes
les réponses calculées soit avec R = 8.3 J/mol/K, soit R = 8.31 J/mol/K, soit avec la valeur
arrondie de la pression de la partie a) (pA = pB = 4.98 · 105 ≃ 5 · 105) sont acceptées comme
réponses correctes.

b) (7 pt)

Calculons le travail effectué et la chaleur de chaque processus :

1) Expansion isobare A ⇒ B :
Le travail est donné par :

WAB =

∫ B

A

p dV = pA(VB − VA) = 5 · 105J, (32)

L’énergie interne est donnée par :

∆UAB =
3

2
nR(TB − TA) = 7.5 · 105J, (33)

Ainsi, en utilisant le premier principe de la thermodynamique :

QAB = WAB +∆UAB = 12.5 · 105J. (34)

Notez que la chaleur échangée aurait pu être calculer en utilisant directement δQ = nCpdT ,
ou Cp est calculé pour un gaz idéal mono-atomique.

12



Figure 6 – Schéma pour la question a)

2) Transformation isochore B ⇒ C :
Le travail est nul par la définition :

WBC = 0, (35)

L’énergie interne est :

∆UBC =
3

2
nR(TC − TB) = −7.5 · 105J, (36)

La chaleur vaut donc :

QBC = WBC +∆UBC = −7.5 · 105J. (37)

Notez que, comme au point précèdent, la chaleur échangée aurait pu être calculer en
utilisant directement δQ = nCV dT , ou CV est calculé pour un gaz idéal mono-atomique.

3) Transformation isotherme C ⇒ A :
Dans la transformation isotherme, le travail peut être calculé comme suit :

WCA =

∫ A

C

p dV =

∫ A

C

nRT

V
dV =

∫ A

C

PCVC

V
dV = PCVC ln

(
VA

VC

)
(38)

= −3.5 · 105J, (39)

L’énergie interne est nulle par la définition :

∆UCA = 0, (40)

qui nous permet de calculer la chaleur :

QCA = WCA +∆UCA = −3.5 · 105J. (41)
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Le travail total est donné par :

Wtot = WAB +WBC +WCA = 1.5 · 105J, (42)

et la chaleur totale :
Qtot = QAB +QBC +QCA = 1.5 · 105J. (43)

Nous pouvons finalement calculer le rendement en divisant le travail total par la chaleur
donnée au système :

η =
Wtot

QAB

= 0.12 = 12%. (44)

c) (1.5 pt)

Le rendement maximale dans tout cycle thermodynamique est donnée par le rendement de
Carnot :

ηcarnot = 1− TC

TH

= 0.5 = 50%. (45)

Ainsi, le scientifique n’a pas pu obtenir une valeur de 60%.

d) (4 pt)

La chaleur dégagée par le processus BC est la chaleur reçue par le métal, donc : QBC < 0 =>
Qm1 = −QBC > 0, ainsi, le métal va se réchauffer.
Chaleur nécessaire pour élever la T à 0C◦ :

Q−100−>0 = nm1cs1∆T1 = 5.27 · 104J. (46)

Parce que la chaleur nécessaire pour atteindre zéro degré Celsius est inférieure à celle donnée
au métal : Q−100−>0 < Qm1, il doit y avoir une transition de phase.
La chaleur nécessaire pour une transformation est :

Qs−>l = nm1Lf1 = 1.76 · 105J. (47)

Parce que la chaleur nécessaire pour monter la température à zéro et faire fondre le bloc
entier est inférieure à la chaleur donnée au métal :Qs−>l + Q−100−>0 < Qm1, la température
continuera à augmenter dans la phase liquide.
La chaleur transférée au bloc en phase liquide est :

Q0−>T = Qm1 −Qs−>l −Q−100−>0 = 5.21 · 105J. (48)

Ainsi, on peut trouver une différence de température :

Q0−>T = nm1cl1∆T2 => ∆T2 =
Q0−>T

nm1cl1
= 593 ◦C. (49)

Et donc la température finale est : ∆T2 = Tf − 0◦C => Tf = 593 ◦C = 866K.
On voit que la température Tf est supérieure à TC , ce qui n’est pas possible, puisque ceci viole
le deuxième principe. Pour tenir compte de cela et trouver la bonne température T ′

f , nous
devons prendre en compte la chaleur du gaz dans le processus BC.
Nous pouvons assimiler toute la chaleur du système :

Q−100−>0 +Qs−>l +Q0−>T ′ +Qgaz = 0, (50)
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où Q0−>T ′ = nm1cl1(T
′

f − 273K) est la chaleur nécessaire pour que le métal atteigne une

température d’équilibre T
′

f . Et où Qgas = 3/2nR(T
′

f −TB) est la chaleur du gaz pour atteindre
une température d’équilibre.
Ainsi, on peut trouver le T

′

f :

T
′

f =
3
2
nRTB + nm1cl1 × 273K−Q−100−>0 −Qs−>l

nm1cl1 +
3
2
nR

≃ 709K. (51)

e) (5.5 pt)

Pour la même raison qu’à la partie d) : QBC < 0 => Qm2 = −1 × QBC > 0 => le métal va
se réchauffer.
Parce que la chaleur spécifique molaire dépend de la température, pour calculer correctement la
chaleur il faut trouver toutes les contributions de tous les petits changements de température :
dQ−100−>0 = nm2cs2dT .
Et nous devons donc faire l’intégration :

Q−100−>0 =

∫ T2

T1

nm2
R

50
(T − 123K) dT =

nm2R

100
(T 2

2 − T 2
1 )−

123K× nm2R

50
(T2 − T1) ≃

≃ 1.66 · 105J. (52)

Comme on peut le voir, la chaleur nécessaire pour atteindre zéro degré est inférieure à la
chaleur donnée au métal : Qm2 > Q−100−>0 => il y a une transformation de phase. La chaleur
nécessaire pour faire fondre le bloc est :
Qs−>l = nm2Lf2 = 8.3 · 105J.
Vu que Qs−>l = 8.3 · 105J > Qm2 − Q−100−>0 = 5.84 · 105J, il y aura une fusion partielle et
Tf = 0◦.
Partie à l’état liquide après fusion :

nf =
Qm2 −Q−100−>0

Lf2

= 70 moles. (53)

La variation d’entropie en augmentant la température jusqu’à zéro est :

∆S−100−>0 =

∫
dQ−100−>0

T
=

∫ T2

T1

(
nm2R

50
− 123nm2R

50T

)
dT =

nm2R

50
(T2 − T1)−

123nm2R

50
ln

(
T2

T1

)
= 730 J/K (54)

Et la variation d’entropie lors de la fusion est donnée par :

∆Ss−>l =
Qm2 −Q−100−>0

T
= 2140 J/K, (55)

Donc l’entropie totale :
∆Stot = 2870 J/K. (56)
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f) (3 pt)

Tmax = 600K = 327 ◦C parce que après avoir atteint cette Tmax, le métal commencerait à
donner de la chaleur au processus 2) et donc le cycle va s’arreter. La chaleur échangée pour
atteindre cette température :

Qtot = Q−100−>0 +Qs−>l +Q0−>327 ≃ 2.36 · 106J, (57)

Où on a utilisé : Q0−>327 = nm2cl2∆T = 1.36 · 106J.
Ainsi, un nombre maximum de cycles :

imax =
Qtot

QBC

= 3.15. (58)

Ainsi, puisque le nombre de cycles doit être un nombre entier (comme demande aa dans cette
question), le nombre maximum et 3.
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Exercice 4 (25 points)

Rentré à la maison après le cours, Ivo veut cuisiner un steak de tofu. Le steak est un parallélépipède
à base carrée (superficie de la base A = 40 cm2 et hauteur L = 2 cm). Ivo dépose le steak sur une
plaque chauffante horizontale à la température Tp = 80 ◦C. La surface inférieure du steak en contact
avec la plaque chauffante atteint instantanément l’équilibre thermique avec celle-ci. L’air ambiant
autour du steak est à la température Text = 20 ◦C.

a) Calculez la température de la surface supérieure du steak, Ts, dans le cas où celle-ci échange de
la chaleur par convection avec l’air ambiant (négligez l’échange de chaleur par rayonnement).

b) Calculez le flux de chaleur et la puissance thermique fournis par la plaque chauffante dans les
conditions de la question a).

c) Calculez la température de la surface supérieure du steak, Ts, dans le cas où celle-ci échange
de la chaleur par convection avec l’air ambiant ainsi que par rayonnement, en sachant qu’une
puissance nette (somme de puissance émise et absorbée) de Pray = 0.3W est perdue par
rayonnement par le steak.

N’étant pas satisfait de la cuisson obtenue avec la plaque chauffante, Ivo utilise un four à micro-
ondes d’une puissance thermique P , qui est complètement et uniformément absorbée dans le tofu.
L’air ambiant autour du steak est à la température Text = 20 ◦C et le steak est tenu à l’horizontale
à l’aide de deux broches fixées dans ses surfaces verticales.

d) Calculez la puissance P nécessaire pour que les deux surfaces horizontales du steak soient
à 80 ◦C dans le cas où ces deux surfaces échangent de la chaleur par convection avec l’air
ambiant (négligez l’échange de chaleur par rayonnement).

Définissez x la coordonnée selon l’axe perpendiculaire à la base du steak, telle que x = L/2 au niveau
de la surface supérieure et x = −L/2 au niveau de la surface inférieure.

e) Montrez que dans les conditions de la question d), la température du tofu est décrite par
l’équation :

T (x) = Text + ω̄L/(2h) + ω̄/(2κt)× [(L/2)2 − x2],

où ω̄ = P/(A× L).
f) En utilisant l’équation T (x) ci-dessus, représentez la distribution de la température du tofu

en fonction de la coordonnée x en identifiant les températures aux deux surfaces et au centre
du steak.

Indications : On suppose que le transfert de chaleur se fait en régime stationnaire. Le steak est
traité en géométrie plane infinie et sa base est à l’horizontale. Tout transport de chaleur à travers
les surfaces verticales du steak est négligé. Conductivité thermique du tofu κt = 0.38 W/m/K.
Coefficient de transfert de la chaleur par convection tofu-air h = 65 W/ (m2 K).
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Corrigé

a) (5 pt)
Dans le cas stationnaire, la puissance absorbée par conduction depuis la plaque est la même
que la puissance perdue par convection avec l’air ambiant. Donc, nous pouvons écrire

κtA

L
(Tp − Ts) = hA(Ts − Text), (59)

où le terme à gauche est la puissance absorbée par conduction et le terme à droite est la
puissance perdue par convection. En isolant Ts, on obtient :

Ts =
LhText + κtTp

κt + Lh
≃ 306.7K (60)

ou en degrés Celisus Ts = 33.6 ◦C.
b) (3 pt)

La puissance thermique fournie par la plaque est donnée par :

P =
κtA

L
(Tp − Ts) ≃ 3.5W, (61)

où nous avons utilisé le résultat de l’exercice précédent. Le flux de chaleur (Φ) est la puissance
par unité de surface. Donc on écrit :

Φ =
P

A
=

κt

L
(Tp − Ts) ≃ 882W/m2. (62)

c) (5 pt)
La résolution du problème est lq même que l’exercice précédent, mais maintenant nous devons
considérer la puissance émise par rayonnement Pray. Donc, on peut écrire l’équation (59) en
ajoutant le terme de rayonnement à droite

κtA

L
(Tp − Ts) = hA(Ts − Text) + Pray. (63)

Donc, la température finale de la surface supérieure est

Ts =
LhText + κtTp − PrayL

A

κt + Lh
≃ 305.8K (64)

ou en degrés Celisus Ts = 32.7 ◦C.
Notez que la température est plus basse que dans l’exercice précédent. En effet, le steak de
tofu perd également de la chaleur par rayonnement, et non plus seulement par convection.
Cependant, cette puissance est faible et la température finale n’est inférieure que d’un degré
par rapport à celle de l’exercice 4a.

d) (3 pt)
Dans ce cas, la puissance émise par le micro-ondes est complètement absorbée par les deux
surfaces du steak, qui échange ensuite de la chaleur avec l’air par convection. On peut donc
à nouveau utiliser la formule de la puissance échangée par convection et trouver la puissance
nécessaire pour chauffer les deux surfaces à une température Ts = 80oC

P = h(2A)(Ts − Text) = 31.2W. (65)

Le facteur 2 dans la formule vient du fait que nous avons deux surfaces à chauffer.
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e) (6 pt)
Nous commençons par écrire l’équation unidimensionnelle de la tempéraure dans le cas sta-
tionnaire (∂T/∂t = 0)

∂2T

∂x2
+ S = 0, (66)

où S est le terme de source, donné par S = P/(AκtL) ≡ ω̄/κt.
Nous pouvons alors procéder à l’intégration de l’équation (66) :∫

dx
∂T

∂x
= −

∫
dx

ω̄

κt

(67)

∂T

∂x
= − ω̄

κt

(x+ C1) (68)

où C1 est une constante d’intégration. Nous pouvons intégrer une autre fois pour obtenir la
température :

T (x) = − ω̄

κt

(
x2

2
+ C1x+ C2

)
(69)

où C2 est une autre constante d’intégration. Maintenant, nous pouvons déterminer C1 et C2

en utilisant les conditions aux bords{
T (x = −L/2) = Ts

T (x = L/2) = Ts

(70)

Ts est donnée par l’exercice précédent par l’équation (65) :

Ts = Text +
P

2Ah
= Text +

ω̄

2h
L. (71)

Ainsi, en insérant l’équation (71) dans l’équation (70), nous obtenons :− ω̄
κt

[
1
2

(
L
2

)2 − C1
L
2
+ C2

]
= Text +

ω̄
2h
L

− ω̄
κt

[
1
2

(
L
2

)2
+ C1

L
2
+ C2

]
= Text +

ω̄
2h
L

(72)

Ainsi, si nous résolvons le système pour C1 et C2, nous pouvons obtenir :{
C1 = 0

C2 = −1
2

(
L
2

)2 − κt

ω̄

(
Text +

ω̄
2h
L
)
.

(73)

Donc, en insérant les C1 et C2 trouvés dans (69), nous obtenons :

T (x) = − ω̄

κt

[
x2

2
− 1

2

(
L

2

)2

− κt

ω̄

(
Text +

ω̄

2h
L
)]

, (74)

et donc

T (x) = Text +
ω̄

2h
L+

ω̄

2κt

[(
L

2

)2

− x2

]
. (75)
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f) (3 pt)
On observe que l’équation (75) est une parabole orientée vers le bas. Nous pouvons identifier les
températures aux deux surfaces et au centre du steak par substitution. Donc, la température
au centre du steak sera donnée par

T (x = 0) = Text +
ω̄

2h
L+

ω̄

2κt

((
L

2

)2
)

≃ 405K ≃ 132 ◦C, (76)

et la température aux deux surfaces sera

T (x = ±L/2) = Text +
ω̄

2h
L ≃ 353K ≃ 80 ◦C. (77)

Notez que la température sur les cotés du steak est précisément celle indiquée par l’énoncé du
problème.
Enfin, nous pouvons dessiner la température T en fonction de x (figures 7 et 8)

Figure 7 – Température (en Kelvin) en fonction de l’épaisseur du steak.
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Figure 8 – Température (en Celsius) en fonction de l’épaisseur du steak.
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