Examen de physique générale II — Section SV Prof. Furno

07 aotit 2020 mis a jour le 9 septembre 2020 a 12:51

Cet examen comporte 5 exercices. Les exercices peuvent étre traités dans n’importe quel
ordre. Vous avez a disposition 5 feuillets, vous traiterez donc chaque exercice sur un feuillet
distinct. Inscrivez votre nom sur tous les feuillets que vous rendez.

Exercice 1 (20 points au total)

Sur une autoroute intergalactique rectiligne, deux voitures identiques circulent vers la Terre, a vitesse
constante et dans des sens opposés. Les deux voitures et la Terre sont donc alignées. Un policier, au repos
sur Terre, voit que la voiture A, venant depuis la gauche, roule a la vitesse maximale autorisée dans le
référentiel terrestre tandis que la voiture B, venant depuis la droite, roule a 0.6¢. Le policier mesure la
longueur des deux voitures : pour lui, A mesure 2.4 m et B mesure 3.2 m.

a) Quelle est la longueur propre des voitures ?

b) Quelle est la vitesse maximale autorisée dans le référentiel terrestre ?

c) Quelle est la vitesse et la longueur de chaque voiture mesurées par le pilote de I'autre voiture ?

Le pilote de la voiture B veut prévenir 'autre pilote qu’il roule a la vitesse maximale autorisée. Il lance un
message radio au moment ol les 2 voitures se trouvent & la méme distance de la Terre soit 2.7 x 10% km,
mesurée dans le référentiel de la Terre.

d) Combien de temps s’est-il écoulé entre 1’émission du message et sa réception par le pilote de la
voiture A, mesuré dans son référentiel ?

e) La voiture A n’arrive pas a freiner et s’écrase a pleine vitesse sur Terre. Son énergie cinétique est
totalement dissipée en chaleur dans la glace terrestre (mgace = 4 X 101 kg) dont la température
augmente de 10°C, cependant la glace ne fond pas. Quelle est la masse propre de la voiture ?

Indications : Chaleur spécifique de la glace : cglace = 2046 J/kg/K. Vitesse de la lumiere : ¢ = 3 x 108 m/s.

Corrigé

a) (3 points)
Puisque les voitures sont identiques, il suffit de calculer la longueur propre d’une seule. On peut le
faire a partir de la contraction des longueurs, mesurée par le policier sur Terre, pour la fusée venant

de droite B :
L’—@ = Loa=Log=1 —L—%—Zlm
- ,y O,A_ 0,B — BWB_W_ I
avec

1

e V1—0v%/c?

~ 1.25.

b) (3 points)
Maintenant que ’on connait la longueur propre de la voiture A, on peut calculer sa vitesse dans le



référentiel de la Terre :

L VA L \°
Loa=Log=1L =B o 2 1—( A) =0.8.
0,4 0,B ATA T2 e C Los

La vitesse maximale autorisée dans le référentiel de la Terre est 0.8c.

(5 points)

La vitesse relative de la voiture B vue par le pilote de la voiture A est donnée par :
VB — Va [06 — (—08)]0

VpjA = —— = 1506 %08 ~ 0.95¢ Attention au signe de vy !,

et la vitesse relative de la voiture A vue par le pilote de la voiture B est donnée par :

VA — URB
=——  — ~ _—0.95¢c.
va/B 1 —wvavg/c? ¢

Etant donné que les voitures sont identiques, la longueur d’une voiture vue par le pilote de 'autre

est la méme :
Lpja=Lap = = Logy/1 =} ,/c? = 1.29m,
YB/A

avec |
YBjA = ———= "~ 3.08.
Vi~ 01253/,4/02
(5 points)
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Appelons Dy la distance qui sépare les voitures de la Terre au moment de I'envoi du signal. Il s’agit
ici de trouver le temps écoulé At|z, entre deux événements : "emission du message” et "réception
du message” mesuré par le conducteur de la voiture A dans son référentiel R'.



Une maniere de procéder est de calculer cet intervalle de temps dans le référentiel de la Terre (At)
et ensuite utiliser les transformations de Lorentz pour le convertir dans le référentiel R’'.

Dans le référentiel de la Terre R, la condition a satisfaire est que la distance parcourue par le signal
ajoutée a la distance parcourue par A pendant At soit égale a deux fois la distance Dg (voir figure) :

2D,
~1s
VA + C

VANt +cAt =2Dy = At=

Entre I’émission du signal et sa réception, la voiture A dans le référentiel R, a parcouru la distance
Az = v At ~ 2.4 x 108 m. Ainsi, vu que le référentiel de A, R’, se déplace avec une vitesse +v,4 par
rapport au référentiel R, il est possible de transformer At dans R’ en appliquant la transformation :

VAAL 1 0.8Ax
At r = At — = 1 — ~ 06
= 7( % ) m-w( c ) ’

(4 points)
L’énergie cinétique de la voiture A est donc donnée par

K = (74 — 1)mac?,

-1 ~
avec yq = Jiaa 1.66.

Cette énergie cinétique est entierement gagnée par la glace donc

MglaceCglace AT

Qrecue =K=m laceC 1aceAT = may =
s (7a — 1)c?

Application numérique :

4 x 10" x 2046 x 10
(1.66 — 1) x (3 x 108)2

myqg = mpg = ~ 1360 kg.



Exercice 2 (20 points au total)

On étudie le dispositif expérimental représenté sur la figure ci-contre. Une
éprouvette indéformable, cylindrique (longueur [ = 10 cm, rayon r = 1 --7--- -
cm) contenant de 'air humide est immergée dans un récipient contenant g
de I'eau. Le fond de I’éprouvette se trouve au niveau de la surface de 'eau =
du récipient. Le récipient est ouvert vers le haut et se trouve dans un |
labo a la pression atmosphérique paim = 1bar. Le dispositif expérimental ~
est a ’équilibre et sa température est T = 25°C. Dans cette situation, | Y R __
I’air humide occupe un volume correspondant a une hauteur h =95 cm  --------§ -1
dans I’éprouvette. De plus, dans les conditions de ’expérience, la pression
de vapeur d’eau est donnée par l'expression : py, = a X T + 3 avec
a=1.88 x 107? bar/K et 8 = —0.53 bar.

a) Enumérez les pressions qui déterminent 1’équilibre mécanique entre 'air humide et 1’eau dans

I’éprouvette.

b) Calculez le nombre de moles d’air et et le nombre de moles de vapeur d’eau dans 1'éprouvette.
On augmente la température du dispositif expérimental et, une fois le nouvel équilibre atteint, on mesure
la hauteur de ’air humide dans I’éprouvette pour en déduire la température.

c¢) Calculez la température maximale que I'on peut mesurer avec cette méthode.

d) Combien de moles d’eau sont évaporées a la température maximale ? Quelle quantité de chaleur est

nécessaire pour les évaporer ?

Indications : Considérez l'air et la vapeur d’eau comme des gaz parfaits et négligez l'effet de la gravité sur
lair humide. Constante des gaz parfaits : R = 8.314 J/K/mol. Chaleur latente d’évaporation de l'eau :
Leaw = 2256.4kJ/kg. Densité de l'eau : peay = 103kg/m3. 1 bar = 10° Pa. Masse molaire de 'eau :
M0 = 18 g/mol.

air humide
9130An01d9

quagdg?)gal

Corrigé

Soit [ la hauteur de I’éprouvette et h la hauteur dans I’éprouvette qu’occupe 'air humide.
a) (8 points)

Les pressions qui déterminent 1’équilibre mécanique a l'interface entre I’air humide (air + vapeur

d’eau) et I'eau dans 1’éprouvette sont :

— La pression de 'air p,;, contenu dans 1’éprouvette donnée par la loi des gaz parfaits.

— La pression hydrostatique de 'eau Ap = peau X g X h.

— La pression de vapeur d’eau py,p dans I'éprouvette qui dépend de la température de la vapeur
selon I'équation de I'énoncé. Attention d’exprimer les coefficients en Pa! o = 1.88 x 10* Pa/K
et B = —0.53 x 10° Pa.

— La pression atmosphérique P, qui regne dans le labo.

b) (6 points)

On nous dit qu'un équilibre thermodynamique entre 'air, la vapeur d’eau et 'eau est atteint :

Tor = Tvap. =Tean =T = 25°C.

L’équilibre mécanique s’écrit :

Patm. + peaugh = DPair + pvap. (Tvap)'

nairRTair

Patm. + peaugh = V— + aTvap. + 5
nairRT

Patm. T peaugh = +aoT + 67

air
ol la seule inconnue est le nombre de moles d’air que 'on peut isoler :

Nair = Rif; (patm. + peaugh — ol — ﬁ) .



Le nombre de moles de vapeur d’eau est donnée par la loi des gaz parfaits :

o pvap.v;/ap. o (C(T + 6) ‘/vap.

Ten = TR T T RT
Application numérique :
0.01% x 0.095
Mo = — X8_314 ;298 (1x10°+1 % 10% x 9.81 x 0.095 — 1.88 x 10% x 298 + 0.53 x 10°)
~ 1.2 x 10~* mol.
(1.88 x 10% x 298 — 0.53 x 10°) x 7 x 0.01% x 0.095 5
vap. = ~ 3.83 x 10 L.
hvap. 8.314 x 208 * Ao

(4 points)

Que se passe-t-il quand on augmente la température de ’eau ? La pression de I'air humide augmente
dans I'éprouvette, le niveau de 1'eau dans 1'éprouvette diminue et lorsque h = [ = % =1 (juste
avant que I'air humide ne s’échappe), on a atteint la température maximale que ’on peut mesurer.
En partant de nouveau de ’équation de I’équilibre mécanique ou la seule inconnue est maintenant
la température (puisque le nombre de mole d’air ne varie pas), on obtient :

o Patm + peaugl - ﬁ

Tmax - Nair R

+ «

air

Application numérique :

1x10°4+1x10% x 9.81 x 0.1 +0.53 x 10°

1.2x10—3x8.314
Coorke1 T 1.88x 107

Tmax - ~ 308 K.

Attention! L’application numérique est tres sensible a la valeur retenue pour ng; : avec ng, =
1. x 1073 mol, on trouve Tax ~ 340 K.

(2 points)

Pour déterminer le nombre de moles d’eau qui ont été évaporées, il nous faut connaitre la pression
de vapeur d’eau dans l'éprouvette a la température T' = T, que 'on calcule en utilisant la loi
donnée. Le nombre de moles de vapeur d’eau, nyap., contenues dans le volume V. dans I'éprouvette,
est donné par la loi des gaz parfaits :

- pvap. (Tmax>‘/epr.
e T R e

La masse d’eau évaporée totale est donnée par myap. = Nap. X Mu2o. On peut donc déduire la
quantitié d’énergie nécessaire pour évaporer ny,, moles d’eau est

pvap. (Tmax) Vvepr.
RTmax '

Qevap. = LemHQO = Le X MHQO X

Application numérique :

9.98 x 10% x m x 0.012 x 0.1

I ~ 5.99 x 10~° mol.
Mhvap 8.314 x 335 X mo

Qovap = 2256.4 x 10° x 18 x 107 x 1.12 x 107* ~ 2.43 ],
Ol Pyap. (Tmax) = 0.0488 bar.



Exercice 3 (20 points au total)

Un cylindre horizontal isolé thermiquement et fermé, est séparé en 2 chambres A et B par un piston qui isole
thermiquement les deux chambres entre elles. Le piston peut bouger sans frottement et son épaisseur et sa
masse sont négligeables. Dans la configuration initiale, les deux chambres contiennent le méme gaz idéal
(caractérisé par C), Cy et y=1.5) aux mémes pression, volume et température (po, Vo, Tp). Une résistance
électrique, a la température constante 197y, est placée dans la chambre A et fournit une quantité de chaleur
au gaz qui s’y trouve. La pression a l'intérieur de la chambre A augmente lentement jusqu’a pa final = %po.
En fonction des parametres connus, calculez :

a) le volume final et la température finale du gaz dans chacune des chambres,

b) le travail effectué sur le gaz de la chambre B,
¢) la quantité de chaleur fournie par la résistance électrique,
d) la variation d’entropie du gaz dans chaque chambre ainsi que la variation d’entropie de 1'univers.

Corrigé
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résistance électrique

cylindre adiabatique et rigide
a) (9 points)
Tout d’abord, il est dit dans 1’énoncé que la pression augmente lentement dans la chambre A
(et donc dans la chambre B), ce qui veut dire que les processus sont réversibles. Puisque une
quantité de chaleur () est apportée au gaz dans la chambre A, le processus n’est pas
adiabatique. Par contre, le gaz dans la chambre B subit une compression adiabatique puisque il
n’y a pas d’échanges de chaleur avec I’environnement ni avec la chambre A. Comme le processus
dans la chambre B est une adiabatique réversible, on peut donc utiliser

Y _ v
PoVy' = DB final VB final-

6



L’état final est atteint lorsqu’un nouvel équilibre mécanique est atteint

DB final = PA final-

Cependant la donnée ne dit pas explicitement si, a I’état final, un équilibre thermique est également
atteint entre le gaz et la résistance thermique dans la chambre A. Si on fait cette hypothése, on a

T'a final = Tres. = 1970,

ce qui donne,
Po T final

VA,ﬁnal = ‘/07

DA final 10

puisque, selon la loi des gaz parfaits,

PA final VA,ﬁnal o Po ‘/0
TA,ﬁnal TO

On obtient donc ;V
8pg 19%% 152
VA final = —=—— Vo = —V, ~ 5.6V}.
A final 2Tpe % 0 57 V0 0

Mais ceci n’est pas possible puisque le volume du cyclindre est 2V5! Donc I'équilibre thermique
entre la résistance électrique et le gaz dans la chambre A n’est pas atteint et donc T final 7 1970.
Remarque : Notons également que cette hypothese : T sina = 197 n’est pas consistente avec une
transformation adiabatique et réversible pour la chambre B.

Maintenant que les hypotheses sont établies, calculons les températures et volumes finaux dans
chaque chambre. Commencons par la chambre B :

Wi

1
o\ 7 8 4
ny: nav’y = V nal = - V: — V:—V
PoVo = PB,final VB final B final <pB> 0 <27) 79"

De plus le volume total étant égal a 214, le volume final de la chambre A est :

4 14
Vasina =2V —Ve=|2— - | Vo = —W.
9 9
Pour trouver la température finale dans chaque chambre, on peut utiliser la loi des gaz parfaits et
comme |’état initial dans les 2 chambres était le méme, on obtient :

PoVo DA finalVA final DB final VB final

Ty Tafia  TBfna
ce qui donne : v
DB final VB final = PosVo 3
T8 final = ooV Ty = 8p0‘30 Ty = §T07
et 27, 14
Thp = DA final VA final T, = gpogvoTO _ ETO.

’ poVo poVo 4
Remarque : Pour la chambre B, on aurait également pu utiliser TOVE)V*1 = TB’ﬁnaIVgEilllal.
(3 points)

Comme déja dit, la compression du gaz dans la chambre B est adiabatique (pas d’échange de
chaleur). Donc selon le premier principe de la thermodynamique, on a :

AUp =0 — W,



or
T W C

AUB - nOCVATB = nUCV (TB,ﬁnal - TO) = nOCVEO - Z%%’

donc - Vo

o 1o _ __PoVo“v

Wg = —noCy 9 5 R

Remarque : On peut également écrire Wg = [ pdV et retrouver le méme résultat.
Comme attendu (compression < diminution du volume), ce travail est négatif.

c) (3 points)
Appliquons maintenant le premier principe au gaz dans la chambre A :

AUL = Q — Wa.

Le travail fait par le gaz de la chambre A (positif car expansion) est exactement égal et opposé au
travail fait sur le gaz de la chambre B : W4 = —Wpg. On obtient donc :

T
Q = AUA - WB = nOCVATA + TLQCV70

17 T, 19 19C
= noCy (—To + —0> = ZHOCVTO = V.

4 2 4 R
d) (5 points)
Puisque le processus sur le gaz de la chambre B est adiabatique et réversible, le changement d’en-
tropie est nul : ASp = 0J/K.
Pour la chambre A, le gaz subit aussi une transformation réversible, on calcule donc la variation
d’entropie d'un gaz parfait entre 2 états :

final %1 1
T T
ASy = / dS = Stpal — Simi. = nR1n <M> —nRIn (—)
ini. Pfinal Pini.
I
= nRln (_le. ﬁmﬂ)
pﬁnalﬂgil
8 [21\° poVo, (7
= nRln|—=|(— =3—1In(=) .
" n<27(4)> T, \2
Pour calculer la variation d’entropie de I’Univers, il faut considérer la résistance électrique comme

un réservoir de chaleur, dont la variation d’entropie est donnée par :

Q _14—9710ch0 _ noCv — poVoCv

ASres - - = - - )
' Thes. 197 4 ARTy

ol Tres. = 197} est la température du réservoir et ng = ’;g—;%).

ASunivers = ASres. + ASA + ASB = pOT‘/O (3 In (g) _ C_V)
0

) ) RO

puisque R = ¢, —cy et v = CC—"; De plus, comme attendu, ASypivers > 0 puisque In(7/2) > 1.



Exercice 4 (20 points au total)

Dans une foire d’exposition, un inventeur présente deux moteurs. Son premier moteur travaille entre un
réservoir a haute température Ty = 100°C et un réservoir a basse température. Ce réservoir est initialement
formé d’un bassin de 100 kg de glace & -100°C. Selon son inventeur, le rendement du moteur est de n = 50%.
Apres 3275 s d’utilisation, on retrouve dans le bassin 50 kg d’eau a 0°C et 50 kg de glace a 0°C.

a) Calculez la puissance mécanique de ce moteur selon les affirmations de 'inventeur.

b) Montrez que le rendement prétendu n’est pas possible pendant toute la période considérée.
Le deuxieme moteur est basé sur un cycle réversible pour un gaz parfait. Le cycle est constitué d’une
détente isobare, d’'une transformation adiabatique et d’une transformation isotherme.

c) Dessinez ce cycle dans un diagramme p — V.

d) Démontrez que le rendement de ce cycle peut s’écrire comme n =1 — 7‘%

entre le volume minimum et le volume maximum lors de la détente isobare.

Indications : Chaleur latente de fusion de la glace : Ly = 333kJ/kg. Chaleur spécifique de la glace :

Colnce = 2046 J /kg /K.

ou r < 1 est le rapport

Corrigé

a) (5 points)
La chaleur échangée avec le bassin pendant 3725 s est ), :

QL = Mglace fondueLf + mglacecpglace AT.

A partir de la formule du rendement, n = 1 — 8—;, la chaleur échangée a haute température Qg
peut s’écrire comme :
QL
Qu = :
L—=n
Une autre expression pour le rendement est 1 = Vgr;t, ce qui donne
Qr
Wnet:nXQH:nX .
L=

La puissance mécanique du moteur est donnée par le travail net divisé par le temps d’utilisation

Whet
P, moteur — An: .

Application numériques :

Qr = 50 x 333 x 10° + 100 x 2046 x (0 — (—100)) = 3.710 x 107 J,

3.710 x 107
= —7420%x107)
@n="T"03 S
Waet = 0.5 x 7.420 x 10" = 3.710 x 107 J,
« 3.710 x 107
. X
P == T ~11.32x 10°W.
moteur 39275 32 x 10°W

b) (3 points)
Le rendement maximum possible pour un moteur qui travaille entre deux réservoirs de chaleur a
températures constantes T, et Ty est donné par le rendement de Carnot :

arnot = 1 — ——.
TICarnot T



Au début du fonctionement du moteur, le rendement de Carnot vaut 1 — % = 0.53 ce qui est

compatible avec I'affirmation de I'inventeur. Cependant au fur et a mesure que le moteur fonctionne
la température du réservoir froid varie et donc lorsque on a de I'eau et de la glace a 0°C, le rendement
de Carnot vaut 1— % ~ (.27. Donc il est impossible que le rendement du moteur reste a 0.5 comme
le prétend l'inventeur.

¢) (4 points)
Il n’y a pas d’ambiguité pour tracer ce cycle : le sens de parcours est connu car cycle moteur et on
sait qu'une adiabatique est "plus raide” qu'une isotherme. Le deuxieme cycle moteur se représente

comme ci-dessous dans le diagramme p — V' :
A

b Qu

d) (8 points)

L’expression que I'on demande de démontrer suggere qu’il est plus judicieux de partir du rendement
donné par :

_q_ Qul _ 1 |Qc 4l
|QH’ ‘QA—>B|
avec
QA—>B = ncpAT = TLCp<TB — TA)
et
Va
Qcsa=AUca+Weosa =nRTyIn | — | .
0 Ve
Remarque 1 On peut également écrire Qap = AU g+ Wa,g =ncy(Tp — Ta) + pa(Vp — Va).
Remarque 2 On aurait pu démarrer l’exercice avec n = % mais les calculs sont plus longs et

compliqués (voir annexe).

On essaie maintenant de faire apparaitre le rapport r = V,/Vp sachant que pour isobare A — B,
1 1

on a % = “j—;‘ et pour I'adiabatique, on a TV?~! = const. donc Vo = Vp (%) =g (;—ﬁ) o

puisque T = Ty.

T Vv
Qasp =ncy(Tp —Ta) =nc,Tp (1 — —A) =nc, T <1 — V_;l) =nc,Tp(1 — 1)

10



et

1

Tg\ 1
Qcsa = nRT4In <E> =nRT4In Ll =nRT,4In (—B)
Ve 75\ 71 Ty

Ta
= nRTsln (r (r‘l)‘ﬁ) =nRT4ln (7“ X r*) — RTyIn (rf>

== nRTA

> f_Y . In (r) = ne,Ta In(r).

Puisque, pour la derniere étape, on a utilisé :

‘p Sp

,y — cy — cy — C_p
¢ cp—cC )
y—-1 -1 =% R
donc on obtient finalement :
1 |Qc— 4l i |nc,Taln(r)| L |rIn(r)] L rn(r)
|QA—>B| |nCpTB(1 —7“)| |r— 1| r—1 )

puisque T4 /Tp = r < 1. Il est important de vérifier que la fraction TinT(lr) est bien de signe positif,

puisque le rendement doit étre inférieur a 1. C’est bien le cas puisque r —1 < 0 mais In(r) < 0 aussi.

11



Exercice 5 (20 points au total)

En hiver, Ivo veut prendre sa voiture pour aller a 'EPFL. La température de I'air externe est de 0°C et
sur le pare-brise (surface : 1 m?, épaisseur : 5 mm) une couche de glace d’épaisseur 1 mm s’est formée. La
glace est en équilibre thermique avec 'air externe et la surface externe du pare-brise. Avant de démarrer,
Ivo doit dégeler la glace et essaie différentes méthodes.

a) Il met en fonctionnement le chauffage dans I’habitacle et augmente ainsi instantanément la tem-
pérature de la surface interne du pare-brise a 20°C, qui reste constante par la suite. Combien de
temps faut-il attendre pour dégeler toute la glace et la transformer en eau a 0°C?

b) Il impose instantanément un flux d’air a température constante 30°C, parallele a la surface interne
du pare-brise. Quelle est la température de la surface interne du pare-brise 7 Combien de temps
faut-il attendre pour dégeler toute la glace et la transformer en eau a 0°C?

c¢) Il augmente instantanément la vitesse du flux d’air sans en changer la température. Justifiez de
maniere qualitative, si le temps est plus court ou plus long qu’a la question b).

Indications : Vous ferez les hypotheses suivantes : géométrie plane, effets de bord négligés, régime sta-
tionnaire : %—:f = 0. Conductivité thermique du verre kK = 0.73W/m/K. Coefficient de transfert ther-
mique air-verre h = 65 W/m?/K (pour les conditions de la question b)). Masse volumique de la glace :
Pglace = 910kg m~3. Chaleur latente de fusion de la glace : L = 333kJ /kg.

Corrigé
couche de glace a) b)
~ N~ A NN N~ ~
NN N N
NN\ w7y, = 20°C N\ 7, =7
N\ NN\ AR
NNNN\Y ORI O NN\
NN\ AR NN\
NN\ S [ NN\ S| NN\
NN ~ NN [RENNNN
NNNN pare-brise of N NN SN 7= 3000
NN SRR TRy T
AR NN\ AR
NNNN\Y NNNNYN AR
o NN\ o o AR < o NN\ ©
= NN\ 3 = NN\ Q = AR 3
15 NNNN\Y & Q NNNNYN < 5 AR &
= NN\ et o NN\ =t = NN\ et
) NN\ i) N NN\ Q 5 AR 2
] NANNY < ¥ NNNN\NYN < = AR <
3 NN\ < 3 NN\ = 3} NN\ <=
AR NN\ AR
NNNN\Y NNNNYN AR
NN\ AR NN\
NN\ NN\ AR
NNNN\Y NNNNYN AR
NN\ AR NN\
NN\ NN\ AR
NNNN\Y NNNNYN AR
NN NN NN
, | \
/ | \
— S| \
| \
\
Az, \\
|
———
|
Az,

Soit S, = 1 m? la surface du pare-brise et Az, =5 mm son épaisseur. On note Az, = 1 mm 'épaisseur de
la couche de glace, T, = 20°C la température sur la surface interne du pare-brise, T, = 0°C la température
de la couche de glace, et T, = 30°C la température du flux d’air.
a) (6 points)
Le flux de chaleur total diffusé a travers le pare-brise peut étre exprimé avec la loi de Fourrier :

oQ
dt

T, —T,

= kvi reS'u
¢ Az,

vitre

La chaleur nécessaire pour dégeler toute la glace et la transformer en eau a 0°C est donnée par
Q = Limglace = LipglaceSvAzy. On peut donc dériver le temps Aty qu’il faut attendre pour que
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toute la glace soit transformée en eau,

A v L aceA A v
Aty = QA2 — MPelace 2T 2Ty 0y,
kvitreSv (Tv - Tg) kvitre(Tv - Tg)

Il faut donc attendre environ 1 minute et 40 secondes.

(8 points)

On considere maintenant le cas ot on a un flux d’air chaud a 30°C. Le transfert de chaleur se fait
par convection puisque le fluide (air) est en mouvement. De plus, on est dans un régime stationnaire,
le flux de chaleur total dQ)/dt qui passe par la couche d’air en contact avec la surface interne du
pare-brise est le méme que celui qui passe par le pare-brise, c¢’est-a-dire

QL _Q
dt | dt

air vitre

Le flux de chaleur total par convection s’écrit :

0Q
, - hair—vi reSv Ta - Tv
dt air ' ( )
et donc "
hair-vi reSU Ta - Tv = kvi resvg )
ore S ( ) 6 Az,
d’ol on peut dériver la température interne du pare-brise,
hair—vi 1reA ’UTCL kvi reT
T, = MairvieS ol T Rvively _ g 9oy

kvitre + hair-vitre Axv

On observe que la température interne du pare-brise dans ce cas-ci est plus basse que celle trouvée
en a). Le temps qu’il faut attendre pour dégeler la couche de glace est donc plus élevé,

_ Lepglace Ay A, _ Lipgiace A 1 + AT, = 225s.
kVitre (Tv - Tg) Ta - Tg

hair—vitre kvitre

Aty

(6 points)

L’augmentation de la vitesse du flux d’air va diminuer I’épaisseur de la couche limite . En consé-
quence, le coefficient de transfert de chaleur va augmenter (haipyitre X %) et le transfert de chaleur
entre 'air et le pare-brise est amélioré puisque le flux de chaleur par convection augmente. Finale-
ment, le temps de fonte trouvé au b) va étre réduit.

Dans la limite Aairvitre => Kvitre/ AT, On a

Atg ~ prglaceAngxv
kvitre(Ta - Tg)

=69s, (1)

qui est le temps correspondant a la température interne du pare-brise égale a la température de
Iair, T,, =T, = 30°C.
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Annexe - Alternative a Exercice 4-d)

chcle

T "Qu
Vg )

B

(v

A

Isobare

)

1 1=
Wgaeo = VA Vo -1 Adiabatique TBVEZ_1 = TCVC_1
1 Y VB
Wea =nRIT4In (&) =paVyln (E) Isotherme
Ve Ve
W, = 1 V; E - — 1] +paV, E — 1] +paVyln &
cycle = 1 _VPB B Vs pavVa Vi pavVa Ve
1 TC VB VA
= Vel =-1 Vil — -1 Viln | —
1_ PB B(TB )-I—pA A(VA )+pAAD(VC)
1 To(=T Vi [V V. V.
= pBVB (C( A)—1)+MA<—B—1)+%AIH<—A
1= Tp p5Ve \\Va pEVEB Ve
[ 1 Ts Va Va Vi
= Vg|l— [ = -1 1-——= —In| =
be B_l—’Y(TB >+< VB)+VB H(VO>_
[ 1 Va Va Va Vil
Weyele = Vg |l— [ — -1 1—- = —In| =
ve pBB_l—V(VB >+( VB)+VBD<VC)_
[ 1 Ta Va Va Vil
= Vg|l— [ = -1 11— = —In| =
pBB_l—V(TB >+< VB)+VBH(VC>_
- v,
chcle — vaB _1_7(7‘—1)_”(1—7’)"‘7“111 V—C

Considérons le dernier terme : sur I’adiabatique on a :

TV =

donc
rln & =7rln E
Ve ) Vi

et finalement,

chcle

Tp
Tc

TV,

= ppVaB

pBVB

pBVEB

pBVE

=

Tc

1—
Vet T,

V' = Vo=Vg (

o (0)]
)]

_1i7(r—1)+(1—r)+rlnr+1i7
:1i7(7n—1)—<r—1)+<1_1i7
-0 (557)+ (55 ]
:137@_1)_137@].
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De plus,
QH - QAB - nCpTB(]- - T),

Wi _@Lg{%j)(rq—mm)

donc enfin (!)

! Qu neFa(l—1)
B rinr
N -1
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