
Examen de physique générale II – Section SV Prof. Furno

07 août 2020 mis à jour le 9 septembre 2020 à 12:51

Cet examen comporte 5 exercices. Les exercices peuvent être traités dans n’importe quel
ordre. Vous avez à disposition 5 feuillets, vous traiterez donc chaque exercice sur un feuillet
distinct. Inscrivez votre nom sur tous les feuillets que vous rendez.

Exercice 1 (20 points au total)

Sur une autoroute intergalactique rectiligne, deux voitures identiques circulent vers la Terre, à vitesse
constante et dans des sens opposés. Les deux voitures et la Terre sont donc alignées. Un policier, au repos
sur Terre, voit que la voiture A, venant depuis la gauche, roule à la vitesse maximale autorisée dans le
référentiel terrestre tandis que la voiture B, venant depuis la droite, roule à 0.6c. Le policier mesure la
longueur des deux voitures : pour lui, A mesure 2.4 m et B mesure 3.2 m.

a) Quelle est la longueur propre des voitures ?
b) Quelle est la vitesse maximale autorisée dans le référentiel terrestre ?
c) Quelle est la vitesse et la longueur de chaque voiture mesurées par le pilote de l’autre voiture ?

Le pilote de la voiture B veut prévenir l’autre pilote qu’il roule à la vitesse maximale autorisée. Il lance un
message radio au moment où les 2 voitures se trouvent à la même distance de la Terre soit 2.7× 105 km,
mesurée dans le référentiel de la Terre.

d) Combien de temps s’est-il écoulé entre l’émission du message et sa réception par le pilote de la
voiture A, mesuré dans son référentiel ?

e) La voiture A n’arrive pas à freiner et s’écrase à pleine vitesse sur Terre. Son énergie cinétique est
totalement dissipée en chaleur dans la glace terrestre (mglace = 4 × 1015 kg) dont la température
augmente de 10◦C, cependant la glace ne fond pas. Quelle est la masse propre de la voiture ?

Indications : Chaleur spécifique de la glace : cglace = 2046 J/kg/K. Vitesse de la lumière : c = 3× 108 m/s.

Corrigé

BA

0 R

a) (3 points)
Puisque les voitures sont identiques, il suffit de calculer la longueur propre d’une seule. On peut le
faire à partir de la contraction des longueurs, mesurée par le policier sur Terre, pour la fusée venant
de droite B :

L′ =
L0

γ
⇒ L0,A = L0,B = L′BγB =

L′B√
1− v2

B/c
2

= 4 m,

avec

γB =
1√

1− v2
B/c

2
' 1.25.

b) (3 points)
Maintenant que l’on connait la longueur propre de la voiture A, on peut calculer sa vitesse dans le
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référentiel de la Terre :

L0,A = L0,B = L′AγA =
L′B√

1− v2
B/c

2
⇒ vA

c
=

√
1−

(
L′A
L0,B

)2

= 0.8.

La vitesse maximale autorisée dans le référentiel de la Terre est 0.8c.
c) (5 points)

La vitesse relative de la voiture B vue par le pilote de la voiture A est donnée par :

vB/A =
vB − vA

1− vBvA/c2
=

[0.6− (−0.8)]c

1 + 0.6× 0.8
' 0.95c Attention au signe de vA !,

et la vitesse relative de la voiture A vue par le pilote de la voiture B est donnée par :

vA/B =
vA − vB

1− vAvB/c2
' −0.95c.

Etant donné que les voitures sont identiques, la longueur d’une voiture vue par le pilote de l’autre
est la même :

LB/A = LA/B =
L0,B

γB/A
= L0,B

√
1− v2

B/A/c
2 ' 1.29 m,

avec

γB/A =
1√

1− v2
B/A/c

2
' 3.08.

d) (5 points)

0
R B

A
0

R

D0 D0

B

émission

réception

A

vA∆t c∆t

Appelons D0 la distance qui sépare les voitures de la Terre au moment de l’envoi du signal. Il s’agit
ici de trouver le temps écoulé ∆t|R′ entre deux événements : ”emission du message” et ”réception
du message” mesuré par le conducteur de la voiture A dans son référentiel R′.
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Une manière de procéder est de calculer cet intervalle de temps dans le référentiel de la Terre (∆t)
et ensuite utiliser les transformations de Lorentz pour le convertir dans le référentiel R′.
Dans le référentiel de la Terre R, la condition à satisfaire est que la distance parcourue par le signal
ajoutée à la distance parcourue par A pendant ∆t soit égale à deux fois la distance D0 (voir figure) :

vA∆t+ c∆t = 2D0 ⇒ ∆t =
2D0

vA + c
' 1 s

Entre l’émission du signal et sa réception, la voiture A dans le référentiel R, a parcouru la distance
∆x = vA∆t ' 2.4×108 m. Ainsi, vu que le référentiel de A, R′, se déplace avec une vitesse +vA par
rapport au référentiel R, il est possible de transformer ∆t dans R′ en appliquant la transformation :

∆t|R′ = γ

(
∆t− vA∆x

c2

)
=

1√
1− 0.82

(
1− 0.8∆x

c

)
' 0.6 s

e) (4 points)
L’énergie cinétique de la voiture A est donc donnée par

K = (γA − 1)mAc
2,

avec γA = 1√
1−v2A/c2

' 1.66.

Cette énergie cinétique est entièrement gagnée par la glace donc

Qrecue = K = mglacecglace∆T ⇒ mA =
mglacecglace∆T

(γA − 1)c2
.

Application numérique :

mA = mB =
4× 1015 × 2046× 10

(1.66− 1)× (3× 108)2
' 1360 kg.
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Exercice 2 (20 points au total)

On étudie le dispositif expérimental représenté sur la figure ci-contre. Une
éprouvette indéformable, cylindrique (longueur l = 10 cm, rayon r = 1
cm) contenant de l’air humide est immergée dans un récipient contenant
de l’eau. Le fond de l’éprouvette se trouve au niveau de la surface de l’eau
du récipient. Le récipient est ouvert vers le haut et se trouve dans un
labo à la pression atmosphérique patm. = 1 bar. Le dispositif expérimental
est à l’équilibre et sa température est T = 25◦C. Dans cette situation,
l’air humide occupe un volume correspondant à une hauteur h = 9.5 cm
dans l’éprouvette. De plus, dans les conditions de l’expérience, la pression
de vapeur d’eau est donnée par l’expression : pvap. = α × T + β avec
α = 1.88× 10−3 bar/K et β = −0.53 bar.

récip
ien

t
ép

rou
vettel

=
10

cm

h
=

9.
5

cm

eau

ai
r

h
u
m

id
e

a) Enumérez les pressions qui déterminent l’équilibre mécanique entre l’air humide et l’eau dans
l’éprouvette.

b) Calculez le nombre de moles d’air et et le nombre de moles de vapeur d’eau dans l’éprouvette.
On augmente la température du dispositif expérimental et, une fois le nouvel équilibre atteint, on mesure
la hauteur de l’air humide dans l’éprouvette pour en déduire la température.

c) Calculez la température maximale que l’on peut mesurer avec cette méthode.
d) Combien de moles d’eau sont évaporées à la température maximale ? Quelle quantité de chaleur est

nécessaire pour les évaporer ?
Indications : Considérez l’air et la vapeur d’eau comme des gaz parfaits et négligez l’effet de la gravité sur
l’air humide. Constante des gaz parfaits : R = 8.314 J/K/mol. Chaleur latente d’évaporation de l’eau :
Leau = 2256.4 kJ/kg. Densité de l’eau : ρeau = 103 kg/m3. 1 bar = 105 Pa. Masse molaire de l’eau :
MH20 = 18 g/mol.

Corrigé

Soit l la hauteur de l’éprouvette et h la hauteur dans l’éprouvette qu’occupe l’air humide.
a) (8 points)

Les pressions qui déterminent l’équilibre mécanique à l’interface entre l’air humide (air + vapeur
d’eau) et l’eau dans l’éprouvette sont :
— La pression de l’air pair contenu dans l’éprouvette donnée par la loi des gaz parfaits.
— La pression hydrostatique de l’eau ∆p = ρeau × g × h.
— La pression de vapeur d’eau pvap dans l’éprouvette qui dépend de la température de la vapeur

selon l’équation de l’énoncé. Attention d’exprimer les coefficients en Pa ! α = 1.88 × 102 Pa/K
et β = −0.53× 105 Pa.

— La pression atmosphérique Patm qui règne dans le labo.
b) (6 points)

On nous dit qu’un équilibre thermodynamique entre l’air, la vapeur d’eau et l’eau est atteint :
Tair = Tvap. = Teau = T = 25◦C.
L’équilibre mécanique s’écrit :

patm. + ρeaugh = pair + pvap.(Tvap).

patm. + ρeaugh =
nairRTair

Vair

+ αTvap. + β

patm. + ρeaugh =
nairRT

Vair

+ αT + β,

où la seule inconnue est le nombre de moles d’air que l’on peut isoler :

nair =
Vair

RT
(patm. + ρeaugh− αT − β) .
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Le nombre de moles de vapeur d’eau est donnée par la loi des gaz parfaits :

nvap. =
pvap.Vvap.

RT
=

(αT + β)Vvap.

RT
.

Application numérique :

nair =
π × 0.012 × 0.095

8.314× 298

(
1× 105 + 1× 103 × 9.81× 0.095− 1.88× 102 × 298 + 0.53× 105

)
' 1.2× 10−3 mol.

nvap. =
(1.88× 102 × 298− 0.53× 105)× π × 0.012 × 0.095

8.314× 298
' 3.83× 10−5 mol.

c) (4 points)
Que se passe-t-il quand on augmente la température de l’eau ? La pression de l’air humide augmente
dans l’éprouvette, le niveau de l’eau dans l’éprouvette diminue et lorsque h = l ⇒ l

h
= 1 (juste

avant que l’air humide ne s’échappe), on a atteint la température maximale que l’on peut mesurer.
En partant de nouveau de l’équation de l’équilibre mécanique où la seule inconnue est maintenant
la température (puisque le nombre de mole d’air ne varie pas), on obtient :

Tmax =
patm + ρeaugl − β

nairR
Vair

+ α
.

Application numérique :

Tmax =
1× 105 + 1× 103 × 9.81× 0.1 + 0.53× 105

1.2×10−3×8.314
π×0.012×0.1

+ 1.88× 102
' 308 K.

Attention ! L’application numérique est très sensible à la valeur retenue pour nair : avec nair =
1.× 10−3 mol, on trouve Tmax ' 340 K.

d) (2 points)
Pour déterminer le nombre de moles d’eau qui ont été évaporées, il nous faut connâıtre la pression
de vapeur d’eau dans l’éprouvette à la température T = Tmax que l’on calcule en utilisant la loi
donnée. Le nombre de moles de vapeur d’eau, nvap., contenues dans le volume Vepr. dans l’éprouvette,
est donné par la loi des gaz parfaits :

nvap. =
pvap.(Tmax)Vepr.

RTmax

.

La masse d’eau évaporée totale est donnée par mvap. = nvap. × MH2O. On peut donc déduire la
quantitié d’énergie nécessaire pour évaporer nvap. moles d’eau est

Qevap. = LemH2O = Le ×MH2O ×
pvap.(Tmax)Vepr.

RTmax

.

Application numérique :

nvap =
9.98× 103 × π × 0.012 × 0.1

8.314× 335
' 5.99× 10−5 mol.

Qevap = 2256.4× 103 × 18× 10−3 × 1.12× 10−4 ' 2.43 J,

où pvap.(Tmax) = 0.0488 bar.
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Exercice 3 (20 points au total)

Un cylindre horizontal isolé thermiquement et fermé, est séparé en 2 chambres A et B par un piston qui isole
thermiquement les deux chambres entre elles. Le piston peut bouger sans frottement et son épaisseur et sa
masse sont négligeables. Dans la configuration initiale, les deux chambres contiennent le même gaz idéal
(caractérisé par Cp, CV et γ=1.5) aux mêmes pression, volume et température (p0, V0, T0). Une résistance
électrique, à la température constante 19T0, est placée dans la chambre A et fournit une quantité de chaleur
au gaz qui s’y trouve. La pression à l’intérieur de la chambre A augmente lentement jusqu’à pA,final = 27

8
p0.

En fonction des paramètres connus, calculez :
a) le volume final et la température finale du gaz dans chacune des chambres,
b) le travail effectué sur le gaz de la chambre B,
c) la quantité de chaleur fournie par la résistance électrique,
d) la variation d’entropie du gaz dans chaque chambre ainsi que la variation d’entropie de l’univers.

Corrigé
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a) (9 points)
Tout d’abord, il est dit dans l’énoncé que la pression augmente lentement dans la chambre A
(et donc dans la chambre B), ce qui veut dire que les processus sont réversibles. Puisque une
quantité de chaleur Q est apportée au gaz dans la chambre A, le processus n’est pas
adiabatique. Par contre, le gaz dans la chambre B subit une compression adiabatique puisque il
n’y a pas d’échanges de chaleur avec l’environnement ni avec la chambre A. Comme le processus
dans la chambre B est une adiabatique réversible, on peut donc utiliser

p0V
γ

0 = pB,finalV
γ

B,final.
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L’état final est atteint lorsqu’un nouvel équilibre mécanique est atteint

pB,final = pA,final.

Cependant la donnée ne dit pas explicitement si, à l’état final, un équilibre thermique est également
atteint entre le gaz et la résistance thermique dans la chambre A. Si on fait cette hypothèse, on a

TA,final = Tres. = 19T0,

ce qui donne,

VA,final =
p0

pA,final

TA,final

T0

V0,

puisque, selon la loi des gaz parfaits,

pA,finalVA,final

TA,final

=
p0V0

T0

.

On obtient donc

VA,final =
8��p0

27��p0

19��T0

��T0

V0 =
152

27
V0 ' 5.6V0.

Mais ceci n’est pas possible puisque le volume du cyclindre est 2V0 ! Donc l’équilibre thermique
entre la résistance électrique et le gaz dans la chambre A n’est pas atteint et donc TA,final 6= 19T0.
Remarque : Notons également que cette hypothèse : TA,final = 19T0 n’est pas consistente avec une
transformation adiabatique et réversible pour la chambre B.
Maintenant que les hypothèses sont établies, calculons les températures et volumes finaux dans
chaque chambre. Commençons par la chambre B :

p0V
γ

0 = pB,finalV
γ

B,final ⇒ VB,final =

(
p0

pB

) 1
γ

V0 =

(
8

27

) 2
3

V0 =
4

9
V0.

De plus le volume total étant égal à 2V0, le volume final de la chambre A est :

VA,final = 2V0 − VB =

(
2− 4

9

)
V0 =

14

9
V0.

Pour trouver la température finale dans chaque chambre, on peut utiliser la loi des gaz parfaits et
comme l’état initial dans les 2 chambres était le même, on obtient :

p0V0

T0

=
pA,finalVA,final

TA,final

=
pB,finalVB,final

TB,final

,

ce qui donne :

TB,final =
pB,finalVB,final

p0V0

T0 =
27
8
p0

4
9
V0

p0V0

T0 =
3

2
T0,

et

TA,final =
pA,finalVA,final

p0V0

T0 =
27
8
p0

14
9
V0

p0V0

T0 =
21

4
T0.

Remarque : Pour la chambre B, on aurait également pu utiliser T0V
γ−1

0 = TB,finalV
γ−1
B,final.

b) (3 points)
Comme déjà dit, la compression du gaz dans la chambre B est adiabatique (pas d’échange de
chaleur). Donc selon le premier principe de la thermodynamique, on a :

∆UB = 0 − WB,
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or

∆UB = n0CV ∆TB = n0CV (TB,final − T0) = n0CV
T0

2
=
p0V0

2

CV
R
,

donc

WB = −n0CV
T0

2
= −p0V0

2

CV
R
.

Remarque : On peut également écrire WB =
∫
pdV et retrouver le même résultat.

Comme attendu (compression ⇔ diminution du volume), ce travail est négatif.
c) (3 points)

Appliquons maintenant le premier principe au gaz dans la chambre A :

∆UA = Q−WA.

Le travail fait par le gaz de la chambre A (positif car expansion) est exactement égal et opposé au
travail fait sur le gaz de la chambre B : WA = −WB. On obtient donc :

Q = ∆UA −WB = n0CV ∆TA + n0CV
T0

2

= n0CV

(
17

4
T0 +

T0

2

)
=

19

4
n0CV T0 =

19

4

CV
R
p0V0.

d) (5 points)
Puisque le processus sur le gaz de la chambre B est adiabatique et réversible, le changement d’en-
tropie est nul : ∆SB = 0 J/K.
Pour la chambre A, le gaz subit aussi une transformation réversible, on calcule donc la variation
d’entropie d’un gaz parfait entre 2 états :

∆SA =

∫ final

ini.

dS = Sfinal − Sini. = nR ln

(
T

γ
γ−1

final

pfinal

)
− nR ln

(
T

γ
γ−1

ini.

pini.

)

= nR ln

(
pini.T

γ
γ−1

final

pfinalT
γ
γ−1

ini.

)

= nR ln

(
8

27

(
21

4

)3
)

= 3
p0V0

T0

ln

(
7

2

)
.

Pour calculer la variation d’entropie de l’Univers, il faut considérer la résistance électrique comme
un réservoir de chaleur, dont la variation d’entropie est donnée par :

∆Sres. = − Q

Tres.

= −
19
4
n0CV T0

19T0

= −n0CV
4

= −p0V0CV
4RT0

,

où Tres. = 19T0 est la température du réservoir et n0 = p0V0
RT0

.

∆Sunivers = ∆Sres. + ∆SA + ∆SB =
p0V0

T0

(
3 ln

(
7

2

)
− cV
R

)
=

p0V0

T0

(
3 ln

(
7

2

)
− 1

4(γ − 1)

)
=
p0V0

T0

(
3 ln

(
7

2

)
− 1

2

)
,

puisque R = cp − cV et γ = cp
cV

. De plus, comme attendu, ∆Sunivers > 0 puisque ln(7/2) > 1.
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Exercice 4 (20 points au total)

Dans une foire d’exposition, un inventeur présente deux moteurs. Son premier moteur travaille entre un
réservoir à haute température TH = 100◦C et un réservoir à basse température. Ce réservoir est initialement
formé d’un bassin de 100 kg de glace à -100◦C. Selon son inventeur, le rendement du moteur est de η = 50%.
Après 3275 s d’utilisation, on retrouve dans le bassin 50 kg d’eau à 0◦C et 50 kg de glace à 0◦C.

a) Calculez la puissance mécanique de ce moteur selon les affirmations de l’inventeur.
b) Montrez que le rendement prétendu n’est pas possible pendant toute la période considérée.

Le deuxième moteur est basé sur un cycle réversible pour un gaz parfait. Le cycle est constitué d’une
détente isobare, d’une transformation adiabatique et d’une transformation isotherme.

c) Dessinez ce cycle dans un diagramme p− V .

d) Démontrez que le rendement de ce cycle peut s’écrire comme η = 1− r ln(r)
r−1

où r < 1 est le rapport
entre le volume minimum et le volume maximum lors de la détente isobare.

Indications : Chaleur latente de fusion de la glace : Lf = 333 kJ/kg. Chaleur spécifique de la glace :
cglace = 2046 J/kg/K.

Corrigé

a) (5 points)
La chaleur échangée avec le bassin pendant 3725 s est QL :

QL = mglace fondueLf +mglacecpglace∆T.

A partir de la formule du rendement, η = 1 − QL
QH

, la chaleur échangée à haute température QH

peut s’écrire comme :

QH =
QL

1− η
.

Une autre expression pour le rendement est η = Wnet

QH
, ce qui donne

Wnet = η ×QH = η × QL

1− η
.

La puissance mécanique du moteur est donnée par le travail net divisé par le temps d’utilisation

Pmoteur =
Wnet

∆t
.

Application numériques :

QL = 50× 333× 103 + 100× 2046× (0− (−100)) = 3.710× 107 J,

QH =
3.710× 107

1− 0.5
= 7.420× 107 J,

Wnet = 0.5× 7.420× 107 = 3.710× 107 J,

et

Pmoteur =
3.710× 107

3275
' 11.32× 103 W.

b) (3 points)
Le rendement maximum possible pour un moteur qui travaille entre deux réservoirs de chaleur à
températures constantes TL et TH est donné par le rendement de Carnot :

ηCarnot = 1− TL
TH

.

9



Au début du fonctionement du moteur, le rendement de Carnot vaut 1 − 173
373

= 0.53 ce qui est
compatible avec l’affirmation de l’inventeur. Cependant au fur et à mesure que le moteur fonctionne
la température du réservoir froid varie et donc lorsque on a de l’eau et de la glace à 0◦C, le rendement
de Carnot vaut 1− 273

373
' 0.27. Donc il est impossible que le rendement du moteur reste à 0.5 comme

le prétend l’inventeur.
c) (4 points)

Il n’y a pas d’ambigüıté pour tracer ce cycle : le sens de parcours est connu car cycle moteur et on
sait qu’une adiabatique est ”plus raide” qu’une isotherme. Le deuxième cycle moteur se représente
comme ci-dessous dans le diagramme p− V :

p

V

BA

C
QL

QH

adiabatique

isotherm
e

d) (8 points)

L’expression que l’on demande de démontrer suggère qu’il est plus judicieux de partir du rendement
donné par :

η = 1− |QL|
|QH |

= 1− |QC→A|
|QA→B|

avec
QA→B = ncp∆T = ncp(TB − TA)

et

QC→A = ∆UC→A︸ ︷︷ ︸
=0

+WC→A = nRTA ln

(
VA
VC

)
.

Remarque 1 On peut également écrire QA→B = ∆UA→B +WA→B = ncV (TB − TA) + pA(VB − VA).

Remarque 2 On aurait pu démarrer l’exercice avec η =
|Wcycle|
|QH |

mais les calculs sont plus longs et

compliqués (voir annexe).
On essaie maintenant de faire apparaitre le rapport r = VA/VB sachant que pour l’isobare A→ B,

on a TA
TB

= VA
VB

et pour l’adiabatique, on a TV γ−1 = const. donc VC = VB

(
TB
TC

) 1
γ−1

= VB

(
TB
TA

) 1
γ−1

puisque TC = TA.

QA→B = ncp(TB − TA) = ncpTB

(
1− TA

TB

)
= ncpTB

(
1− VA

VB

)
= ncpTB(1− r)
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et

QC→A = nRTA ln

(
VA
VC

)
= nRTA ln

 VA

VB

(
TB
TA

) 1
γ−1

 = nRTA ln

(
r

(
TB
TA

)− 1
γ−1

)

= nRTA ln
(
r
(
r−1
)− 1

γ−1

)
= nRTA ln

(
r × r

1
γ−1

)
= RTA ln

(
r

γ
γ−1

)
= nRTA

γ

γ − 1
ln (r) = ncpTA ln(r).

Puisque, pour la dernière étape, on a utilisé :

γ

γ − 1
=

cp
cV

cp
cV
− 1

=

cp
cV

cp−cV
cV

=
cp
R
,

donc on obtient finalement :

η = 1− |QC→A|
|QA→B|

= 1− |ncpTA ln(r)|
|ncpTB(1− r)|

= 1− |r ln(r)|
|r − 1|

= 1− r ln(r)

r − 1
,

puisque TA/TB = r < 1. Il est important de vérifier que la fraction r ln(r)
r−1

est bien de signe positif,
puisque le rendement doit être inférieur à 1. C’est bien le cas puisque r−1 < 0 mais ln(r) < 0 aussi.
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Exercice 5 (20 points au total)

En hiver, Ivo veut prendre sa voiture pour aller à l’EPFL. La température de l’air externe est de 0◦C et
sur le pare-brise (surface : 1 m2, épaisseur : 5 mm) une couche de glace d’épaisseur 1 mm s’est formée. La
glace est en équilibre thermique avec l’air externe et la surface externe du pare-brise. Avant de démarrer,
Ivo doit dégeler la glace et essaie différentes méthodes.

a) Il met en fonctionnement le chauffage dans l’habitacle et augmente ainsi instantanément la tem-
pérature de la surface interne du pare-brise à 20◦C, qui reste constante par la suite. Combien de
temps faut-il attendre pour dégeler toute la glace et la transformer en eau à 0◦C ?

b) Il impose instantanément un flux d’air à température constante 30◦C, parallèle à la surface interne
du pare-brise. Quelle est la température de la surface interne du pare-brise ? Combien de temps
faut-il attendre pour dégeler toute la glace et la transformer en eau à 0◦C ?

c) Il augmente instantanément la vitesse du flux d’air sans en changer la température. Justifiez de
manière qualitative, si le temps est plus court ou plus long qu’à la question b).

Indications : Vous ferez les hypothèses suivantes : géométrie plane, effets de bord négligés, régime sta-
tionnaire : ∂T

∂t
= 0. Conductivité thermique du verre k = 0.73 W/m/K. Coefficient de transfert ther-

mique air-verre h = 65 W/m2/K (pour les conditions de la question b)). Masse volumique de la glace :
ρglace = 910 kg m−3. Chaleur latente de fusion de la glace : Lf = 333 kJ/kg.

Corrigé

h
ab

it
ac

le

couche de glace

pare-brise

∆xg

∆xv

ex
té

ri
eu

r

h
ab

it
ac

le

ex
té

ri
eu

r

h
ab

it
ac

le

ex
té

ri
eu

r

Tv =?Tv = 20◦C

Ta = 30◦C

a) b)
T
g

=
0◦

C

T
g

=
0◦

C

Soit Sv = 1 m2 la surface du pare-brise et ∆xv = 5 mm son épaisseur. On note ∆xg = 1 mm l’épaisseur de
la couche de glace, Tv = 20◦C la température sur la surface interne du pare-brise, Tg = 0◦C la température
de la couche de glace, et Ta = 30◦C la température du flux d’air.

a) (6 points)
Le flux de chaleur total diffusé à travers le pare-brise peut être exprimé avec la loi de Fourrier :

δQ

dt

∣∣∣∣
vitre

= kvitreSv
Tv − Tg

∆xv
.

La chaleur nécessaire pour dégeler toute la glace et la transformer en eau à 0◦C est donnée par
Q = Lfmglace = LfρglaceSv∆xg. On peut donc dériver le temps ∆t1 qu’il faut attendre pour que
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toute la glace soit transformée en eau,

∆t1 =
Q∆xv

kvitreSv(Tv − Tg)
=
Lfρglace∆xg∆xv
kvitre(Tv − Tg)

= 104 s.

Il faut donc attendre environ 1 minute et 40 secondes.
b) (8 points)

On considère maintenant le cas où on a un flux d’air chaud à 30◦C. Le transfert de chaleur se fait
par convection puisque le fluide (air) est en mouvement. De plus, on est dans un régime stationnaire,
le flux de chaleur total δQ/dt qui passe par la couche d’air en contact avec la surface interne du
pare-brise est le même que celui qui passe par le pare-brise, c’est-à-dire

δQ

dt

∣∣∣∣
air

=
δQ

dt

∣∣∣∣
vitre

.

Le flux de chaleur total par convection s’écrit :

δQ

dt

∣∣∣∣
air

= hair-vitreSv(Ta − Tv)

et donc

hair-vitreSv(Ta − Tv) = kvitreSv
Tv − Tg

∆xv
,

d’où on peut dériver la température interne du pare-brise,

Tv =
hair-vitre∆xvTa + kvitreTg
kvitre + hair-vitre∆xv

= 9.2◦C.

On observe que la température interne du pare-brise dans ce cas-ci est plus basse que celle trouvée
en a). Le temps qu’il faut attendre pour dégeler la couche de glace est donc plus élevé,

∆t2 =
Lfρglace∆xg∆xv
kvitre(Tv − Tg)

=
Lfρglace∆xg
Ta − Tg

(
1

hair-vitre

+
∆xv
kvitre

)
= 225 s.

c) (6 points)
L’augmentation de la vitesse du flux d’air va diminuer l’épaisseur de la couche limite δ. En consé-
quence, le coefficient de transfert de chaleur va augmenter (hair-vitre ∝ k

δ
) et le transfert de chaleur

entre l’air et le pare-brise est amélioré puisque le flux de chaleur par convection augmente. Finale-
ment, le temps de fonte trouvé au b) va être réduit.
Dans la limite hair-vitre � kvitre/∆xv on a

∆t3 '
Lfρglace∆xg∆xv
kvitre(Ta − Tg)

= 69 s , (1)

qui est le temps correspondant à la température interne du pare-brise égale à la température de
l’air, Tv = Ta = 30◦C.
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Annexe - Alternative à Exercice 4-d)

η =
Wcycle

QH

WAB = pAVA

(
VB
VA
− 1

)
Isobare

WBC =
1

1− γ
pBVB

((
VC
VB

)1−γ

− 1

)
Adiabatique TBV

γ−1
B = TCV

γ−1
C

WCA = nRTA ln

(
VA
VC

)
= pAVA ln

(
VA
VC

)
Isotherme

Wcycle =
1

1− γ
pBVB

((
VC
VB

)1−γ

− 1

)
+ pAVA

(
VB
VA
− 1

)
+ pAVA ln

(
VA
VC

)
=

1

1− γ
pBVB

(
TC
TB
− 1

)
+ pAVA

(
VB
VA
− 1

)
+ pAVA ln

(
VA
VC

)
= pBVB

[
1

1− γ

(
TC(= TA)

TB
− 1

)
+ ��pAVA

��pBVB

(
VB
VA
− 1

)
+ ��pAVA

��pBVB
ln

(
VA
VC

)]
= pBVB

[
1

1− γ

(
TA
TB
− 1

)
+

(
1− VA

VB

)
+
VA
VB

ln

(
VA
VC

)]
Wcycle = pBVB

[
1

1− γ

(
VA
VB
− 1

)
+

(
1− VA

VB

)
+
VA
VB

ln

(
VA
VC

)]
= pBVB

[
1

1− γ

(
TA
TB
− 1

)
+

(
1− VA

VB

)
+
VA
VB

ln

(
VA
VC

)]
Wcycle = pBVB

[
1

1− γ
(r − 1) + (1− r) + r ln

(
VA
VC

)]
Considérons le dernier terme : sur l’adiabatique on a :

T−1
B V 1−γ

B = T−1
C V 1−γ

C ⇒ V 1−γ
C =

TC
TB

V 1−γ
B ⇒ VC = VB

(
TC
TB

) 1
1−γ

,

donc

r ln

(
VA
VC

)
= r ln

(
VA
VB

(
TB
TC

) 1
1−γ
)

= r ln

(
VA
VB

)
+ r

1

1− γ
ln

(
TB

TC(= TA)

)
= r ln r +

r

1− γ
ln

(
1

r

)
et finalement,

Wcycle = pBVB

[
1

1− γ
(r − 1) + (1− r) + r ln r +

r

1− γ
ln

(
1

r

)]
= pBVB

[
1

1− γ
(r − 1)− (r − 1) +

(
1− 1

1− γ
r ln r

)]
= pBVB

[
(r − 1)

(
�1− �1 + γ

1− γ

)
+

(
�1− γ − �1

1− γ

)
r ln r

]
= pBVB

[
γ

1− γ
(r − 1)− γ

1− γ
r ln r

]
.
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De plus,
QH = QAB = ncpTB(1− r),

donc enfin ( !)

η =
Wcycle

QH

=
�������
pBVB

(
γ

1−γ

)
(r − 1− r ln r)

����ncpTB(1− r)

= 1− r ln r

r − 1
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