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Cet examen comporte 5 exercices. Les exercices peuvent être traités dans n’importe quel ordre.
Vous avez à disposition 5 feuillets, vous traiterez donc chaque exercice sur un feuillet distinct.
Inscrivez votre nom sur chacun des feuillets que vous rendrez.

Exercice 1

Deux vaisseaux spatiaux identiques V1 et V2 voyagent vers le restaurant galactique Hôtel de Galaxie
(HdG) le long de la même ligne droite mais dans des sens opposés. On appelle R, R 1©, R 2©, les référentiels
de HdG, V1 et V2, respectivement. Dans le référentiel R, le vaisseau V1 a une vitesse v1 = 0.5c et sa
longueur vaut 100 m.

a) Quelle est la longueur propre des vaisseaux V1 et V2 ?
b) Quelle est la vitesse de V2 dans R sachant que sa longueur, mesurée dans R 1©, vaut 75 m ?

Les informations ci-après sont données dans le référentiel R de HdG. Le restaurant HdG envoie un message
radio annonçant qu’il fermera dans 3 heures. Au moment de l’envoi, V1 se trouve à 2.5× 109 km de HdG.

c) L’équipage de V1 arrivera-t-il à temps pour manger ?
La planète d’eau PLOUF19, fixe par rapport à HdG, se trouve à la distance de 2×109 km de HdG, mesurée
dans R. Les axes HdG−PLOUF19 et HdG−V1 sont perpendiculaires.

d) Quelle est la distance PLOUF19 − V1, mesurée dans R 1©, au moment de la réception du message
par V1 ?

Ayant décidé d’aller faire une baignade, V1 change de direction et se dirige vers PLOUF19 toujours à
la vitesse v1 = 0.5c, mesurée dans R. Malheureusement, à l’approche de PLOUF19, V1 perd le contrôle
et s’écrase à pleine vitesse dans l’eau (meau = 1017 kg). Toute l’énergie cinétique est convertie en chaleur
transférée à l’eau dont la température augmente de 50◦C.

e) Quelle est la masse du vaisseau V1 ?
Indications : Chaleur spécifique de l’eau liquide : ceau ' 4184 J kg−1.

Corrigé

Il est toujours utile de faire un dessin de la situation. Soit R, le référentiel lié à HdG et PLOUF19 et R 1©,
le référentiel lié à V1 en mouvement par rapport à R et R 2©, le référentiel lié à V2 en mouvement par
rapport à R. Les quantités mesurées et calculées dans R 1© (R 2©) sont notées 1© ( 2©).

V1 HdG V2

PLOUF19

R

v1

R(1)

v2

R(2)

a) Pour calculer la longueur propre de V1 L1
1©, on utilise l’expression pour la contraction des longueurs :



L1 = L1
1©

√
1− v21

c2
⇒ L2

2© = L1
1© =

L1√
1− v21

c2

= L1γ1

Application numérique : γ1 = 1√
1− 0.52c2

c2

= 1.1547 et L2
2© = L1

1© = 110× 1.1547 = 115.47 m.

b) Tout d’abord il ne fait aucun doute que le signe de v2 dans le référentiel R 1© est négatif. On va
d’abord estimer la vitesse de V2 dans le référentiel R 1© : v2

1©. L’énoncé nous donne L2
1© = 75 m et

au a) on a calculé L2
2©. La contraction des longueurs nous donne :

L2
1© =

L2
2©

γ?
L0

γ?
⇒ 1

γ?
=
L2

1©

L0

=

√
1− (v2 1©)2

c2
⇒ v2

1©

c
=

√
1−

(
L2

1©

L2
2©

)2

Application numérique : v2
1© ' −0.75c.

Pour répondre à la question posée (trouver la vitesse v2 de V2 dans R), on va utiliser la transfor-
mation relativiste des vitesses entre le référentiel R et le référentiel R 1© qui se déplace à la vitesse
v1 par rapport à R :

v2 =
v2

1© + v1

1 + v2 1©v1
c2

.

Application numérique : v2 ' −0.75c+0.5c
1− 0.75c×0.5c

c2
' −0.41c.

c) Dans le référentiel R, on a toutes les informations nécessaires pour répondre à la question posée.
V1 voyage à la vitesse v1 = 0.5c et la distance à parcourir avant la fermeture du restaurant est
∆x0 = 2.5× 1012 m. Le temps que va mettre V1 pour arriver sur HdG est donc

∆t =
∆x0
v1

.

Application numérique : ∆t = 2.5×1012
0.5×3×108 ' 1.67× 104 s ' 4 heures 37 minutes.

Pour répondre complètement à la question : non, V1 n’arrivera pas avant que le restaurant HdG
ferme ses portes.

d) Dans R, on doit trouver à quelle distance ∆x1 de HdG se trouve V1 au moment de la réception
du message. Dans le référentiel R 1©, la distance HdG−PLOUF19, notée ∆, ne change pas car
perpendiculaire à la direction de propagation de V1. Par contre, la distance ∆x1 va se contracter.
On calculera alors l’hypothénuse du triangle rectangle formé par V1-HdG-PLOUF19. On a deux
équations pour trouver ∆x1 :

∆x1 = c∆t1 et ∆x1 = ∆x0 − v1∆t1 ⇒ ∆t1 =
∆x0
c+ v1

⇒ ∆x1 =
c∆x0
c+ v1

=
∆x0

1 + v1
c

.

Dans le référentiel R 1©, la distance V1−PLOUF19 est donnée par

D 1© =
√

(∆x1 1©)2 + ∆2 =

√
γ1

(
∆x0

1 + v1
c

)2

+ ∆2

Application numérique : D 1© =

√
1.1547×

(
2.5×1012

1.5

)2
+ (2× 1012)2 ' 2.7× 1012 m.

e) L’énergie cinétique du vaisseau V1 est donnée par Ecin.,1 = (γ1 − 1)m1c
2 où m1 est la masse du

vaisseau que l’on cherche. De plus, l’énergie nécessaire pour augmenter la température de PLOUF19
de 50◦C est donnée par : Q = meauceau∆T . On obtient :

Q = Ecin.,1 ⇒ (γ1 − 1)m1c
2 = meauceau∆T ⇒ m1 =

meauceau∆T

(γ1 − 1)c2
.

Application numérique : m1 = 1017×4184×50
(1.1547−1)×9×1016 ' 15× 105 kg.



Exercice 2

Après le cours, de retour à la maison (considérée comme un réservoir à 20◦C et à 1 bar), Ivo se prépare un
thé en chauffant 1 kg d’eau dans une bouilloire jusqu’à 100◦C. Sitôt cette température atteinte, la bouilloire
s’arrête et, fatigué, Ivo s’endort. Quand il se réveille, l’eau s’est refroidie à la température ambiante.

a) Calculez le changement d’entropie de l’univers causé par le refroidissement de l’eau.
Cependant, Ivo a vraiment envie d’un thé. Il place 1 kg d’eau dans un four micro-onde (volume : 10 litres),
réglé à la puissance Pfour = 1200 W. Avec sa porte fermée, le four est parfaitement hermétique et isolé
et transfère toute sa puissance à l’eau liquide uniquement. Malheureusement, Ivo s’endort à nouveau. Il
est réveillé par l’explosion du four lorsque la différence de pression entre l’extérieur et l’intérieur de celui-
ci atteint 3.7 bars. Dans ces conditions, la pression de vapeur saturante de l’eau varie selon psat [bar] =
0.0438T [K]−15.3. On admet que la vapeur d’eau et l’air restent en équilibre thermique avec l’eau liquide.
De plus, on fait l’hypothèse que la chaleur échangée dans le processus de thermalisation est négligeable.

b) Calculez la température de la vapeur et de l’eau au moment de l’explosion du four.
c) Calculez la masse d’eau évaporée. Comparez celle-ci à la masse d’eau liquide initiale et discutez la

validité de l’hypothèse suggérée.
d) Combien de temps Ivo a-t-il dormi ?

Indications : On considère la vapeur d’eau et l’air comme des gaz parfaits. Négligez le volume d’eau liquide
par rapport au volume du four. Constante des gaz parfaits : R = 8.314 J mol−1 K−1. Chaleur latente
d’évaporation de l’eau : Le = 2256.4 kJ kg−1. Chaleur spécifique de l’eau liquide : ceau ' 4184 J kg−1 K−1.
Masse molaire de l’eau Meau = 18 g mol−1. 1 bar = 105 Pa.

Corrigé

a)

∆SUniv. = ∆Seau + ∆Sres. =

∫ Tf

Ti

δQ

dT
+
−Qeau

Tres.
= meauceau ln

(
Tf
Ti

)
+meauceau

Ti − Tf
Tres.

Application numérique : ∆SUniv. = 1× 4184× ln
(
293
373

)
+ 1× 4184× 80

293
' −1× 103 + 1.14× 103 =

0.14× 103 J K−1

b) Le point-clé de cette question est que la pression totale à l’intérieur du four est la somme de la
pression de vapeur d’eau et de la pression de l’air : ptot. = pvap. + pair. De plus, les deux gaz et l’eau
liquide sont à la même température T que l’on cherche. La pression de la vapeur d’eau est donnée
par l’équation de l’énoncé tandis que la pression de l’air est donnée par l’équation des gaz parfaits.

ptot. = aT − b︸ ︷︷ ︸
pvap.

+
nairR

Vfour
T︸ ︷︷ ︸

pair

=

(
a+

nairR

Vfour

)
T − b,

avec a = 4.38× 103, b = 15.3× 105 car p doit être exprimé en Pascals. Le volume occupé par l’air
est égal au volume du four puisque on néglige le volume occupé par l’eau liquide.
Le four explose lorsque ptot. − pext. = ∆p avec ∆p = 3.7 bars et pext. la pression de l’air ambiant (1
bar). Donc

pext. + ∆p =

(
a+

nairR

Vfour

)
T − b ⇒ T =

pext. + ∆p+ b

a+ nairR
Vfour

.

Que vaut nair ? On utilise la loi des gaz parfaits au moment où Ivo met son eau à chauffer : l’air est
encore à la température et à la pression ambiantes : nair = pext.Vfour

RText.
.

T =
pext. + ∆p+ b

a+ pext.
Text

.

La température ne dépend pas du volume du four.
Application numérique : T = 1×105+3.5×105+15.3×105

4.38×103+ 1×105

293

' 423 K = 150◦C.



c) Le four étant toujours en marche, il va apporter de la chaleur à l’eau liquide. L’eau liquide va
s’évaporer, faisant monter la pression dans le four. Or la température de vaporisation de l’eau varie
avec la pression donc le four fournit non seulement de la chaleur pour la transition de phase elle-
même mais également pour chauffer l’eau liquide jusqu’à la température de vaporisation. On cherche
donc à savoir quelle masse d’eau a été évaporée lorsque la pression atteint 3.7 bars de plus que la
pression atmosphérique dans le four. On utilise simplement la loi des gaz parfaits :

nvap. =
pvap.Vfour
RT

=
(aT − b)Vfour

RT
,

donc

mvap. = Meaunvap. =
(aT − b)MeauVfour

RT
.

Application numérique : nvap. = (4.38×103×451−15.3×105
8.314×451)×10−2 ' 0.9 mol et mvap = 18× 10−3 × 0.9 = 16.2×

10−3 kg.

La masse d’eau vaporisée est très petite devant la masse d’eau liquide initiale.

Pour vérifier l’hypothèse donnée dans l’énoncé, on doit calculer la quantité de chaleur absorbée par
l’air pour se réchauffer et la comparer à la chaleur absorbée par l’eau liquide pour se chauffer et
s’évaporer :

Qair = naircV ∆T = nair
5

2
R(T − Text.) =

5

2

pext.Vfour
Text.

T − Text.
T

=
5

2
pext.Vfour

1− Text.
T

Text
.

La quantité de chaleur aborbée par l’eau liquide est donnée par

Qeau = mvapLvap. +meauceau(T − Text),

où l’on a négligé la variation d’eau liquide à chauffer puisque mvap. � meau.

Application numérique : Qair = 2.5 × 105 × 10−2
1− 293

423

293
' 1100 J et Qeau = 1.8 × 10−2 × 2256.4 ×

103 + 4184× 1× (423− 293) ' 5.8× 105 J.

Qair � Qeau donc l’hypothèse est bien justifiée.

d) Le temps nécessaire est donné par ∆t× Pfour = Qeau :

∆t =
Qeau

Pfour

=
Meaunvap.Lvap. +meauceau(T − Text)

Pfour

.

Application numérique :∆t = 5.8×105
1200

' 480 s = 8 minutes.



Exercice 3

Un cycle thermodynamique est composé des 4 transformations suivantes, considérées comme réversibles :
A→ B : Compression adiabatique depuis (TA = 27 ◦C, pA = 100 kPa) jusqu’à (TB, pB) tel que le

rapport de compression est r = pB
pA

= 6.25.
B → C : Transformation isobare jusqu’à TC = 800 ◦C.
C → D : Expansion adiabatique jusqu’à pA.
D → A : Transformation isobare.
a) Tracez le cycle dans les diagrammes p − V et T − S. Justifiez brièvement l’allure des différentes

courbes.
b) Calculez, pour une mole d’air, les chaleurs échangées et le travail du cycle.
c) Démontrez que le rendement de ce cycle ne dépend que du rapport de compression r et de l’exposant

adiabatique γ du gaz considéré. Calculez ce rendement pour l’air.
d) La chaleur perdue par ce cycle est rejetée dans une rivière avec un débit d’eau Driv. = 1000 kg s−1,

dont l’augmentation de température ne peut dépasser ∆Triv. = 0.2 ◦C. Calculez la puissance méca-
nique maximale que l’on peut extraire de ce cycle.

Indications : Considerez l’air comme un gaz parfait avec 5 degrés de liberté. Constante des gaz parfaits :
R = 8.314 J mol−1 K−1. Chaleur spécifique de l’eau liquide : ceau ' 4184 J kg−1 K−1.

Corrigé

a) Diagrammes dans p− V et T − S avec γ = ν+2
ν

= 7
5

= 1.4 :

A

C

D

T ∝ exp(S)

T ∝ exp(S)

T

S

B

V

p

p ∝ V−γ

A D

CB

p ∝ V−γ

p [Pa] V [m3] T [K]

A 100× 103 VA = nRTA
pA

= 2.5× 10−2 300

B 6.25pA = 625× 103 VA

(
pA
pB

) 1
γ

= VA
(
1
r

) 1
γ ' 6.7× 10−3 TA

(
1
r

)(1−γ)/γ ' 506

C pB nRTC/pB ' 14.3× 10−3 1073

D pA VC

(
pC
pD

) 1
γ

= VC

(
pB
pA

) 1
γ

= VCr
1
γ ' 5.2× 10−2 TCr

(1−γ)/γ ' 635

b) Wcycle = WAB +WBC +WCD +WDA

QAB = QCD = 0

WAB =

∫ VB

VA

pdV = pAV
γ
A

∫ VB

VA

V −γdV =
pAVA
1− γ

((
VB
VA

)1−γ

− 1

)
=
pAVA
1− γ

((
1

r

)(1−γ/γ)

− 1

)
.

∆UAB = 0−WAB.

WBC =

∫ VC

VB

pdV = pC(VC − VB).

∆UBC = QBC −WBC = ncV ∆T = n
5

2
R(TC − TB).

QBC = ncp∆T = ncP (TC − TB) = n
7

2
R(TC − TB) = ∆UBC +WBC .



WCD =

∫ VD

VC

pdV = pCV
γ
C

∫ VD

VC

V −γdV =
pCVC
1− γ

((
VD
VC

)1−γ

− 1

)
= −∆UBC .

WDA =

∫ VA

VD

pdV = pD(VA − VD).

∆UDA = QDA −WDA = ncV ∆T = n
5

2
R(TD − TA).

QDA = ncp∆T = ncp(TD − TA) = WDA + ∆UDA.

Applications numériques : WAB ' −4291 J ; WBC ' 4711 J ; QBC ' 16.5 kJ ; ∆UBC ' 11.8 kJ ;
WCD ' 9091 J ; WDA ' −2790 J ; ∆UDA ' −6976 J ; QDA ' −9767 J ; Wcycle ' 6720 J.
Remarque : On pouvait avoir tous les points de la question en calculant simplement QBC et QDA

et Wcycle = QH −QL = QBC −QDA.
c)

η = 1− |QL|
|QH |

= 1− |QDA|
|QBC |

= 1− ncp|TA − TD|
ncp|TC − TB|

= 1− TA|1− TD/TA|
TB|TC/TB − 1|

= 1− TA
TB

,

puisque

TD
TA

=
TC
TA
r(1−γ)/γ et

TC
TB

=
TC

TA
(
1
r

)(1−γ)/γ =
TC
TA
r(1−γ)/γ donc

TD
TA

=
TC
TB

.

On obtient donc

η = 1− TA
TB

= 1− TA

TA
(
1
r

)(1−γ)/γ = 1− r
1−γ
γ .

Application numérique : γ = ν+2
ν

= 7
5

= 1.4 ; η = 1− 6.25
1−1.4
1.4 ' 0.41.

On peut vérifier notre résultat en calculant : η =
∣∣∣Wcycle

QH

∣∣∣ ' 6720
16500

' 0.41.

d) η =
∣∣∣ WQH ∣∣∣⇒ |W | = η|QH | mais |QH | = |W |+ |QL| donc η(|W |+ |QL|) = |W | soit

(1− η)|W | = η|QL| ⇒ |W | = η

1− η
|QL|

La puissance mécanique demandée Pmec. est la dérivée temporelle du travail fourni par le cycle. Elle
est limitée par la variation de température maximale que peut supporter l’eau de la rivière.

Pmec. =
d|W |
dt

=
η

1− η
d|QL|
dt

=
η

1− η
ceau∆Triv.

dmeau

dt
=

η

1− η
ceau∆Triv.Driv.

Application numérique : Pmec. = 0.41
1−0.41 × 4184× 0.2× 1000 ' 5.8× 105 W = 580 kW.



Exercice 4

Une mole de gaz parfait, à l’équilibre thermique avec un réservoir, subit une compression isotherme ré-
versible à partir de l’état initial (pA, TA, VA) jusqu’au volume VB < VA. Elle subit ensuite une expansion
adiabatique irréversible qui la ramène à l’état initial A.

a) Représentez les deux transformations dans les diagrammes p− V et T − S.
b) Pour chaque transformation, calculez la variation d’énergie interne, le travail et la variation d’en-

tropie du gaz. Une fois les deux transformations effectuées, calculez le changement d’entropie de
l’univers.

La chaleur échangée lors de la compression isotherme est transférée, par un cycle de Carnot qui fonctionne
en mode réfrigérateur, du réservoir à TA au réservoir à TH > TA.

c) Exprimez TH , en fonction de TA, sachant que le coefficient de performance du réfrigérateur vaut 5.
Calculez le travail fait sur le gaz par le réfrigérateur sur un cycle complet.

En partant du même état initial (pA, TA, VA), on pourrait aussi utiliser une compression adiabatique
réversible pour atteindre VB.

d) En utilisant l’approche microscopique, expliquez qualitativement la différence de variation d’entropie
du gaz entre ces deux types de compression réversible.

Corrigé

a) Diagrammes p− V et T − S
p

V

A

p
∝
V −

1

B

T

S

?
??

?

AB

? ? ? ?

b) Expressions pour le travail, la chaleur, la variation d’énergie interne et la variation d’entropie (n = 1)

WA→B =

∫ B

A

pdV =

∫ B

A

nRT
dV

V
= nRTA ln

(
VB
VA

)
< 0

∆UA→B = ncV ∆T = ncV (TB − TA) = 0

QA→B = ∆U +WA→B = nRTA ln

(
VB
VA

)
< 0

∆SA→B =

∫ B

A

δQ

TA
= nR ln

(
VB
VA

)
< 0

Ce qui donne le sens de la flèche pour le diagramme T − S.

∆UB→A = −∆UA→B = 0 Variable d’état

QB→A = 0 Transformation adiabatique

WB→A = QB→A −∆UB→A = 0

∆SB→A = −∆SA→B = −nR ln

(
VB
VA

)
> 0 Variable d’état



Changement d’entropie de l’Univers sur le cycle complet :

∆SUniv. = ∆Scycle + ∆Sres. = 0− 1

TA

∫
δQA→B = nR ln

(
VA
VB

)
> 0.

c)

Cideal =
TA

TH − TA
⇒ Cideal(TH − TA) = TA ⇒ TH =

1 + Cideal
Cideal

TA =
6

5
TA.

Cideal =
QA

QH −QA

=
QA

Wcycle

⇒ Wcycle =
QA

Cideal
=
RTA

5
ln

(
VB
VA

)
.

d) La définition microscopique de l’entropie est :

S = kB ln Ω

où kB est la constante de Boltzmann et Ω est le nombre de micro-états associés à un macro-état.
En particulier, on sait que le nombre de micro-états est une fonction de la température (l’énergie)
du gaz ainsi que du volume occupé. De plus, ce nombre augmente avec la température ainsi qu’avec
le volume :

Ω = Ω(T, V ) et
∂Ω

∂T
> 0 et

∂Ω

∂V
> 0.

Donc :
— Compression isotherme : le volume diminue (VB < VA) et la température ne varie pas donc le

nombre de micro-états diminue et donc l’entropie diminue.
— Compression adiabatique : le volume diminue de la même manière (Ω ↘) mais cette fois, la

température augmente (Ω ↗) donc éventuellement on peut avoir un équilibre entre les deux
tendances opposées de telle sorte que la variation d’entropie soit nulle (∆S = 0).



Exercice 5

Pour se rafrâıchir, nous allons faire une bataille de bombes à eau à T = 0◦C. Pour cela, on utilise des
sphères indéformables (diamètre intérieur : 40 cm) dont l’épaisseur de la coque en plastique vaut 3 mm. Les
sphères sont entièrement remplies d’eau et placées au congélateur. Malheureusement, on a trop attendu
et toute l’eau est gelée à 0◦C. Afin de faire fondre l’eau gelée, les sphères sont posées sur une table qui
se trouve à l’équilibre thermique avec l’air ambiant (Tair = Ttable = 30◦C). On veut calculer le temps
nécessaire ∆tfonte pour que l’eau fonde complètement dans les cas suivants.

a) On fait l’hypothèse que la surface extérieure de la sphère est immédiatement en équilibre thermique
avec l’air ambiant. Calculez ∆tfonte. Justifiez les approximations que vous faites.

b) On fait l’hypothèse plus réaliste que la chaleur échangée entre la sphère et l’air ambiant se fait par
convection. Calculez ∆tfonte. Justifiez les approximations que vous faites.

c) Si le vent souffle plus fort, le temps calculé au point b) va-t-il augmenter ou diminuer ? Justifiez
votre réponse.

Indications : On fait les hypothèses suivantes : on considère un régime stationnaire : ∂T
∂t

= 0 ; la masse
volumique de l’eau (ρeau) est égale à la masse volumique de la glace (ρglace = 910 kg m−3) ; la chaleur qui
traverse la surface intérieure de la sphère est immédiatement transférée à toute la glace. Chaleur latente
de fusion de la glace Lglace = 334 kJ kg−1. Conductivité thermique du plastique kplas. = 0.03 Wm−1K−1.
Coefficient de transfert thermique air−plastique : h = 30 Wm−2K−1.

Corrigé

a) Pour que la glace fonde, la chaleur de l’air ambiant doit traverser la coque en plastique. Le temps
que l’on cherche est le rapport entre la chaleur nécessaire à fondre toute la glace sur le taux de
chaleur qui arrive depuis l’air à travers la coque : ∆tfonte = Qfonte

dQ/dt
.

De manière générale, la loi de Fourier en géométrie sphérique s’écrit :

J =
1

A

dQ

dt
=
Q̇

A
= −kdT

dr

Pendant l’échange de chaleur, le taux de chaleur échangée (Q̇) ne varie pas, contrairement au flux
J . Ceci est valable tant que les températures de la glace et de la coque restent constantes. Ce qui
est bien le cas pendant la transition de phase de la glace. On cherche donc à évaluer le taux de
chaleur échangée :

Q̇ = −A(r)k
dT

dr
= −4πr2k

dT

dr
⇒ Q̇

4π

dr

r2
= −kdT,

et l’on doit maintenant intégrer entre rint. = R et rext. = R + d :

Q̇

4π

∫ rext.

rint.

dr

r2
= −k

∫ T (rext.)

T (rint.)

dT ⇒ Q̇

4π

(
1

rint.
− 1

rext.

)
= −k [T (rext.)− T (rint.)]

⇒ Q̇ = 4π
rext.rint.
rext. − rint.

k [T (rint.)− T (rext.)] = 4π
R(R + d)

d
k (Tglace − Tair])

puisque l’énoncé nous dit que la surface externe de la coque est à la température de l’air. La chaleur
nécessaire pour fondre toute la glace est donnée par :

Qfonte = mglaceLglace = ρglaceVsphereLglace =
4

3
πR3ρglaceLglace.

Finalement :

∆tfonte =
4
3
πR3ρglaceLglace

4πR(R+d)
d

k (Tglace − Tair)
=

dR2ρglaceLglace

3(R + d)k (Tglace − Tair)



Application numérique : ∆tfonte = 3×10−3×0.22×910×334×103
3×0.203×0.03×30 = 6.65× 104 s ' 18 heures.

Remarque : L’approximation plane A(r) = A peut-être acceptée si elle est justifiée : dplas. �
Rsphere.

b) Si la convection entre l’air et la coque est considérée, la température extérieure de celle-ci n’est
pas égale à celle de l’air. C’est là le point-clé de cette question. Le taux de chaleur échangée par
convection est donné par

Q̇conv. = 4π(R + d)2h [T (rext.)− Tair] .

De plus comme rappelé au a), le taux de chaleur échangée est conservé donc

Q̇cond. = Q̇conv. ⇒ 4π
R(R + d)

d
k [Tglace − T (rext.)] = 4π(R + d)2h [T (rext.)− Tair] ,

où dans l’expression de Q̇cond. on a gardé T (rext.), la température extérieure de la coque. De l’équa-
tion précédente, on obtient :

T (rext.) =
R
d
kTglace + (R + d)hTair

(R + d)h+ R
d
k

.

Application numérique : T (rext.) =
0.2

0.003
×0.03×273+0.203×30×303
0.203×30+ 0.2

0.03
×0.03 ' 295 K < Tair. On remplace cette

valeur soit dans Q̇cond. soit dans Q̇conv. et on trouve ∆tfonte :

∆tfonte =
dR2ρglaceLglace

3(R + d)k (Tglace − T (rext.))︸ ︷︷ ︸
Qfonte

dQcond./dt

=
R3ρglaceLglace

3(R + d)2h (T (rext.)− Tair)︸ ︷︷ ︸
Qfonte

dQconv./dt

Application numérique : ∆tfonte = 3×10−3×0.22×910×334×103
3×0.203×0.03×(273−295.7) = 8.79× 104 s ' 24 heures.

c) Le temps de fonte trouvé au b) va donc être réduit. En effet, la vitesse du vent va générer de la
turbulence autour de la coque, ce qui va améliorer le transfert de chaleur par convection entre l’air
et la coque. L’épaisseur de la couche limite va diminuer et le coefficient de transfert de chaleur h va
augmenter. Le cas a) représente le cas limite d’une convection parfaite (h→∞).

air airplastique

Tint = 0◦C

Text = 30◦C

a)

plastique

Tint = 0◦C
Tair = 30◦C Tair = 30◦C

b)
couche limite

Text =?glace glace


