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Examen

Exercice 1 20 points

Donald et Kim se battent pour la suprématie de la galaxie PEANUTS. Ces deux politiciens sont au
repos l’un par rapport à l’autre et se tirent dessus en utilisant des fusils dont les balles partent avec
une vitesse de 0.6c par rapport aux fusils. A chaque tir, un puissant flash lumineux est émis du fusil.
Kim annonce les affirmations reportées ci-dessous. Pour chacune d’elles, vous devez indiquer quelle
devrait être l’observation correspondante faite par le journaliste planétaire Darius, qui se trouve sur
une fusée. Cette fusée constitue un référentiel dans lequel les balles lancées par Donald sont au repos.
On suppose que Darius se trouve toujours entre Donald et Kim.

a) ” Ma distance de Donald est de 107 km.”
b) ” La vitesse des balles que je tire est de 0.6c. ”
c) ”Deux de nos balles sont entrées en collision : la quantité de mouvement relativiste et l’énergie

cinétique sont conservées.”
d) ” Après cette collision, la trajectoire de ma balle est déviée de 30°. ”
e) ” Je tire des balles à la fréquence de 10 Hz.”

Corrigé

Dans la suite, on considèrera les référentiels R (de Donald et Kim) et R′ (de Darius). On choisit les
axes x et x′ dans le même sens, pour que R′ se déplace avec une vitesse positive v par rapport à R
(voir Fig. 1).
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Avec ces choix, on assure que les transformations de Lorentz prennent leur forme conventionelle

∆x′ = γ(∆x− v∆t) ∆x = γ(∆x′ + v∆t′) (1)

∆t′ = γ(∆t− v

c2
∆x) ∆t = γ(∆t′ +

v

c2
∆x′) (2)

Si les axes x et x′ s’opposent et v est négative, il faudrait donc changer chaque signe dans ces formules,
mais les résultats suivants seront bien-sûr les mêmes. Avec v = 0.6c, le facteur γ est donc

γ ≡ 1√
1− v2

c2

= 1.25 (3)

a) (3 points) ” Ma distance de Donald est D = 107 km. ”
On s’intéresse à la distance entre Donald et Kim dans le référentiel de Darius, donc D′.
Comme ils ne sont pas au repos par rapport à R′, mais se déplacent avec −v, on trouve par
la contraction de longueurs

D′ =
D

γ
= 8× 106 km. (4)

b) (2 points) ” La vitesse des balles que je tire vaut 0.6c. ”
On veut trouver la vitesse des balles de Kim, observées dans le référentiel R′, donc u′x ≡ ∆x′

∆t′
.

On sait que leur vitesse dans R est ux ≡ ∆x
∆t

= −v, donc en utilisant la transformation des
vitesses (selon x) on trouve

u′x =
∆x′

∆t′
=

∆x− v∆t

∆t− v
c2

∆x
=

ux − v
1− uxv

c2

= −0.88 c. (5)

c) (3.5 points) ” Deux de nos balles sont entrées en collision : la quantité de mouvement relati-
viste et l’énergie cinétique sont conservées. ”
On se demande ici, si ces quantités sont aussi conservées dans R′. Les transformations de
Lorentz pour l’énergie cinétique E et la quantité de mouvement (selon x) px, sont donné par

E ′ = γ(E − vpx) E = γ(E ′ + vp′x) (6)

p′x = γ(px −
v

c2
E) px = γ(p′x +

v

c2
E ′) (7)

Notez que, a priori, elles sont définies pour des valeurs concrets d’énergie et quantité de
mouvement d’un objèt vu de différents référentiels. Mais on peut voir directement que ces
équations s’appliquent aussi à des sommes et différences de ces quantités, car ceci sont de
équations linéaires. Ici on considére dans R :

∆E = Ef − Ei = 0 ∆px = px,f − px,i = 0 (8)

où f et i dénotent les énergies et quantités de mouvement finales et initiales des deux balles
ensembles. Peu importe leurs contributions, on vient d’observer qu’on a toujours

∆E ′ = γ(∆E − v∆px) ∆p′x = γ(∆px −
v

c2
∆E) (9)

Donc, on trouve directement ∆E ′ = ∆p′x = 0 – l’énergie cinétique et la quantité de mouvement
sont aussi conservées dans R′.
Pour vérifier ceci, on pourrait également trouver Ei et pi par les contributions de chaqune
des balles selon l’énoncé et donc calculer Ef et px,f . Après application des transformations de
Lorentz à chaque quantité individuellement, on trouverait aussi que ∆E ′ = E ′f − E ′i = 0 et
∆p′x = p′x,f − p′x,i = 0.
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d) (5.5 points) ” Après cette collision, la trajectoire de ma balle est déviée de 30°. ”
Etant donné que la quantité de mouvement et l’énergie cinétique sont conservées dans la
collision, on sait que la norme de la vitesse v reste constante pour chaque balle. Avec une
déviation de α = 30°, on trouve dans R par projection :

ux = −v cos(α) = −
√

3

2
v uy = v sin(α) =

1

2
v.

Par les transformations de vitesses (voir b)), on arrive à

u′x =
ux − v
1− uxv

c2

et u′y =
uy
√

1− v2/c2

1− uxv
c2

.

La déviation de la balle dans le référentiel R′ est ainsi donné par

tan(α′) =

∣∣∣∣u′yu′x
∣∣∣∣ =

∣∣∣∣∣uy
√

1− v2/c2

ux − v

∣∣∣∣∣ =

∣∣∣∣∣ 1
2
v

(−
√

3−2
2

)v

√
1− v2/c2

∣∣∣∣∣ =

∣∣∣∣∣
√

1− v2/c2

−
√

3− 2

∣∣∣∣∣ (10)

L’application numérique donne α′ ' 12°.
e) (6 points) ” Je tire des balles à la fréquence de 10 Hz. ”

On veut donc trouver la fréquence f ′ des tirs de Kim dans le référentiel R′. Il est plus intuitif
de considérer d’abord l’intervalle de temps ∆T entre 2 instants où Darius voit deux flashs
consécutifs (nos 2 événements ici) en R. Leur distance L en R est bien sûr données par
L = c∆t = c

f
, comme ils se propagent avec vitesse c, et il faut ∆t = 1

f
= 0.1s avant le

prochain flash. Comme la lumière se déplace avec c dans la direction négative, et Darius
approche avec +v, on a

∆T =
L

c+ v
=

1(
1 + v

c

)
f
.

Notez que la vitesse relative entre Darius et les éclatements en R est c+ v > c. Ceci n’est pas
une contradiction, comme seulement la vitesse d’un objet individuel est limitée par v < c. Les
vitesses relatives peuvent donc atteindre 2c.
Par contre, ce qui nous intéresse, c’est la fréquence f ′ = 1

∆T ′
en R′, donc il faut appliquer une

transformation de Lorentz. Comme les deux évenements (la réception des deux éclatements)
se passent sur le même endroit en R′ (Darius est au repos ici), on retrouve la dilatation de
temps par la transformation de Lorentz inverse :

∆T = γ(∆T ′ +
v

c2
∆x′︸︷︷︸

0

) ⇒ ∆T ′ =
∆T

γ
(11)

On pourrait également se demander de quelle distance Darius se déplace en R entre deux
flashs, et comme il se déplace avec +v, on a bien sûr ∆x = v∆T . Avec la transformation de
Lorentz on trouve aussi

∆T ′ = γ(∆T − v

c2
v∆T ) = γ (1− v2

c2
)︸ ︷︷ ︸

γ−2

∆T =
∆T

γ

Finalement,

f ′ =
γ

∆T
= γ(1 +

v

c
)f =

1 + v
c√

(1 + v
c
)(1− v

c
)
f. (12)

On reconnâıt la formule de l’effet Doppler relativiste.
Application numérique :

f ′ =

√
1 + v

c

1− v
c

f =
√

1.6/0.4f = 2f = 20 Hz
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Exercice 2 20 points

Un cylindre (diamètre : 40 cm) à parois isolées contient 5 moles de gaz parfait et est fermé par un
piston, également isolé, de masse 100 kg, qui peut coulisser sans frottement. A l’équilibre, le piston est
à une altitude de 1 m depuis le fond du cylindre et la pression extérieure est simplement la pression
atmosphérique.
L’isolation thermique au fond du cylindre est enlevée, et ce dernier est immédiatement mis en contact
thermique avec un bloc de glace de masse 140 g et à une température de -20◦C.
Après l’établissement de l’équilibre thermique, on observe que la température du gaz et de la glace
est de 0◦C mais que tout le bloc est encore à l’état de glace.

a) Déterminer si le gaz est mono-atomique ou di-atomique.
b) On pose alors sur le piston un solide de masse égale à celle du piston, et on attend que le

système atteigne un nouvel équilibre. Calculer alors la masse d’eau qui s’est formée.
Indications : Constante des gaz parfaits R = 8.314 J K−1 mol−1 ; Chaleur latente de fusion de la
glace à 0◦C : Lfus. = 333.6 kJ kg−1 ; Chaleur spécifique de la glace à 0◦C cglace ' 2110 J kg−1 K−1 ;
1 atm = 1.013× 105 Pa.

Corrigé

Le système étudié peut être représenté par la figure ci-dessous :

a) (12 points) Au contact de la glace, le gaz va perdre de la chaleur et se refroidir jusqu’à
Tfin. = 0◦C. Cette transformation se fait à pression constante

p1 = p0 +
Mpg

π (d/2)2 . (13)

La quantité de chaleur perdue par le gaz peut s’exprimer comme

Qgaz = ncp (Tfin. − Tini.,gaz) < 0, (14)
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où la valeur de la chaleur spécifique à pression constante cp dépend du nombre de degrés de
liberté et donc de la nature du gaz : mono-atomique (ν = 3) ou di-atomique (ν = 5),

cp = cv +R =
ν

2
R +R. (15)

Soit finalement,

Qgaz = nR
(ν

2
+ 1
)

(Tfin. − Tini.,gaz) . (16)

La temperature initiale du gaz est donnée par la loi des gaz parfaits

Tini.,gaz =
p1Vini.

nR
avec Vini. = π

(
d

2

)2

h.

De plus, la chaleur reçue par le bloc de glace pour augmenter sa temperature de Tini.,glace =
−20◦C à Tfin. = 0◦C est donnée par

Qglace = Mglacecglace (Tfin. − Tini.,glace) > 0. (17)

En posant :

|Qgaz| = |Qglace| ⇒
∣∣∣nR(ν

2
+ 1
)

(Tfin. − Tini.,gaz)
∣∣∣ = |Mglacecglace (Tfin. − Tini.,glace)|

on obtient :

ν =

∣∣∣∣2 [Mglacecglace

nR

(
Tfin. − Tini.,glace

Tfin. − Tini.,gaz

)
− 1

]∣∣∣∣ (18)

Applications numeriques :

p1 = 1.013× 105 +
100× 9.81

π × (0.2)2
' 1.091× 105 Pa.

Vini. = π × 0.22 × 1 ' 0.126 m3.

Tini.,gaz '
1.091× 105 × 0.126

5× 8.314
' 330.7 K = 57.7◦C.

ν =

∣∣∣∣2 [0.14× 2110

5× 8.314

(
0− (−20)

0− (57.7)

)
− 1

]∣∣∣∣ = 2.92 ' 3.

La réponse à la question posée est donc : le gaz étudié est un gaz mono-atomique.
Attention ! En arondissant le volume à 0.12m3 (ce qui est faux !), on trouve une valeur numé-
rique pour ν proche de 5.

b) (8 points) Le travail aditionnel fait sur le gaz par le solide ajouté entrâıne une augmentation
de l’énergie interne du gaz. Cette énergie interne supplémentaire va être perdue par le gaz
pour atteindre à nouveau l’équilibre thermique avec le bloc de glace. Suivant la valeur de cette
variation d’énergie interne, tout ou partie de la glace va fondre.
Le travail fait sur le gaz par le solide ajouté est

Wsolide = F∆x = p2∆V =

[
p1 +

Mpg

π(d/2)2

]
(V3 − V1) =

[
p1 +

Mpg

π(d/2)2

](
nRT1

p2

− nRT1

p1

)
.

La masse de glace fondue est simplement donnée par :

m′ =
Wsolide

Lf

.
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Application numérique :

p2 = 1.091× 105 +
100× 9.81

π(0.2/2)2
' 1.1694× 105 Pa

Wsolide = 5× 8.314× 1.1694× 105

(
273

1.1694× 105
− 273

1.091× 105

)
' −811 J.

m′ =
−811

333.6× 103
' 0.0024 kg ' 2.4 g.

A l’équilibre, on a donc un gaz à 0◦C, 138 g de glace à 0◦C et 2 g d’eau liquide à 0◦C.
Si la valeur du travail fait par le solide ajouté avait été bien plus grande, toute la glace aurait pu
fondre et à l’équilibre thermique, on aurait eu un gaz et 140 g d’eau liquide à une température
T>0◦C.

Autre méthode : calculer la température du gaz après sa compression :
Le changement interne du gaz est très rapide lorsque le deuxieme poids est posé, donc il
s’agit d’un processus adiabatique, mais irréversible donc on ne peut pas utiliser la relation
pV γ = const. Alors, il faut séparer le processus en deux étapes : la compression adiabatique
qui va augmenter la temperature du gaz ; puis la chaleur perdue par le gaz au contact du bloc
de glace et qui va en fondre tout ou partie.
Le travail fait par le piston sur le gaz

Wrecu = p2 (Vf,2 − Vf,1) = −Wpiston,

et avec le premiere principe,

∆U = −Wrecu ⇒ ncv (Tf,2 − Tf,1, ) = −p2 (Vf,2 − Vf,1)

avec

p2 = p1 +
Mpg

π (d/2)2 .

Grâce à la loi des gaz parfaits

ncv (Tf,2 − Tf,1) = −p2

(
nRTf,2

p2

− nRTf,1

p1

)
,

et donc

Tf,2 = Tf,1

(
p2/p1 + ν

2

1 + ν
2

)
.

Applications numeriques :

Tf,2 = 273.15×

(
1.17×105

1.01×105
+ 3/2

1 + 3/2

)
= 280.99 K ' 281 K.

Comme le processus est à pression constante, la chaleur perdue par le gaz est donnée par

Q = ncp (Tf,2 − Tf,1) = nR
ν + 2

2
(Tf,2 − Tf,1) =

5

2
nR (Tf,2 − Tf,1) .
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Cette énergie disponible sert à faire fondre une masse m′ de glace :

5

2
nR (Tf,2 − Tf,1) = m′Lf ⇒ m′ =

5
2
nR (Tf,2 − Tf,1)

Lf

. (19)

Application numérique :

m′ =
2.5× 5× 8.314× (281− 273)

336.5× 103
= 0.0024 kg ' 2.4 g. (20)
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Exercice 3 20 points

Une mole de gaz parfait à une température de 25◦C et une pression de 1 atm suit les transformations
réversibles suivantes :

(i) : détente isotherme jusqu’à 0.5 atm ;
(ii) : détente isobare jusqu’à 100◦C ;
(iii) : compression isotherme jusqu’à 1 atm ;
(iv) : compression isobare jusqu’à 25◦C ;
a) Représenter l’ensemble de ces transformations sur un diagramme p− V .
b) Après la transformation (iv), est-ce que la fraction des molécules du gaz qui ont une vitesse

supérieure à 200 m/s est plus grande ou plus petite qu’après la transformation (ii) ? Justifiez
votre réponse.

Depuis le même état initial, le gaz suit le processus cyclique suivant :
(v) : détente isobare jusqu’à 100◦C ;
(vi) : réduction de la pression à volume constant jusqu’à une pression p ;
(vii) : compression isobare à la pression p jusqu’à un volume de 24.5 l ;
(viii) : augmentation de la pression jusqu’à 1 atm à volume constant ;
c) Calculer p tel que la valeur du travail fait sur le gaz dans la première suite de processus ((i)

à (iv)) soit la même que celle du travail fourni par le gaz dans la deuxième série de processus
((v) à (viii)).

d) Est-ce que la valeur de la variation d’enthalpie sur les processus (i) - (iv) est inférieure,
supérieure ou égale à celle sur les processus (v) - (viii) ? Justifier votre réponse.

Indications : 1 atm = 1.013× 105 Pa ; Constante des gaz parfaits : R = 8.314 J K−1 mol−1 ;

Corrigé

a) (4 points) Cycle dans le diagramme p − V : nous avons deux processus isothermes et deux
isobares. Nous pouvons les dessiner comme la figure ci-dessous. On fera bien attention à
respecter les volumes en particulier VA < VD < VB. L’ensemble de ces 4 transformations
constitue un cycle réfrigérateur.

p

V

pA=pD

pB=pC

VA VB VC

1 atm

0.5 atm

(i)

(ii)

(iii)

(iv)

VD

A

B C

D
p [Pa] V [m3] T [K]

A 1.013× 105 nRTA/pA=0.0245 298
B pA/2 2VA=0.0490 TA
C pA/2 2nRTC/pA =0.0612 373
D pA nRTC/pA=0.0306 TC

b) (2 points) La température du gaz est plus élevée après le processus (ii) qu’après le processus
(iv). Or la distribution des vitesses, supposée de Maxwell, ne dépend que de la température.
Donc, pour répondre à la question posée, la fraction de molécules ayant une vitesse supérieure
à 200 m/s sera plus grande après le processus (ii) qu’après le processus (iv).

c) (10 points) Pour le deuxième cycle, nous avons deux processus isochores et deux isobares.
Nous pouvons le dessiner comme la figure ci-dessous :
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p

V

pA=pB’

p

VA VB’ =VC’

1 atm
(viii)

(vii)

(vi)

(v)A B’

C’D’

=VD’

p [Pa] V [m3] T [K]
A 1.013× 105 nRTA/pA=0.0245 298
B’ pA nRTB′/pA=0.0306 373
C’ p VB′ TB′p/pA
D’ p 0.0245 pVD′/n/R

Le travail total est donné par

Wcycle 1 = W(i) +W(ii) +W(iii) +W(iv) = WA→B +WB→C +WC→D +WD→A.

Le travail entre A et B vaut :

WA→B =

∫ VB

VA

pdV =

∫ VB

VA

nRTA
V

dV = nRTA ln

(
VB
VA

)
= nRTA ln(2).

Le travail entre B et C vaut :

WB→C =

∫ VC

VB

pBdV = pB(VC − VB) = 0.5pA

(
2nRTC
pA

− 2nRTA
pA

)
= nR(TC − TA).

Le travail entre C et D vaut :

WC→D =

∫ VD

VC

pdV =

∫ VD

VC

nRTC
V

dV = nRTC ln

(
VD
VC

)
= nRTC ln(0.5).

Le travail entre D et A vaut :

WD→A =

∫ VA

VD

pAdV = pA(VA − VD) = pA

(
nRTA
pA

− nRTC
pA

)
= nR(TA − TC).

Finalement, le travail fait le long du cycle vaut :

Wcycle 1 = nRTA ln(2) + nR(TC − TA) + nRTC ln(0.5) + nR(TA − TC).

Application numérique :

Wcycle 1 = 1× 8.314× 298× ln(2) + 1× 8.314× 373× ln(0.5) ' −432 J.

Le cycle étudié est un réfrigérateur donc le travail total sur le cycle doit être négatif, qui est
bien ce que l’on trouve.
Pour le deuxième cycle, le travail total s’écrit :

Wcycle 2 = Wv +Wvi +Wvii +Wviii = WA→B′ +WB′→C′︸ ︷︷ ︸
=0

+WC′→D′ +WD′→A︸ ︷︷ ︸
=0

.
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Le travail entre B’ et C’, ainsi qu’entre D’ et A’, vaut 0 car les transformations sont isochores.
Soit :

Wcycle 2 = pA(VB′ − VA) + p(VD′ − VC′) = (pA − p)(VB′ − VA) = nR
pA − p

pA
(TB′ − TA).

Finalement,

|Wcycle 1| = |Wcycle 2| ⇒ p = pA

(
1− |Wcycle,1|

nR(TB′ − TA)

)
. (21)

Application numérique :

p = 1.013× 105 ×
(

1− 432

1× 8.314× (373− 298)

)
' 3.11× 104 Pa ' 0.3 atm.

d) (4 points) Nous savons que l’enthalpie est une variable d’état. Or, la variation d’une va-
riable d’état entre deux états ne dépend pas du chemin suivi. De plus, les deux séries de
transformations étudiées sont des cycles. Donc :

∆Hcycle 1 = ∆Hcycle 2 = 0. (22)
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Exercice 4 20 points

Un inventeur a développé une méthode pour faire fonctionner un moteur sur un cycle de Carnot, entre
deux réservoirs, un à haute température (TH = 177 ◦C ), l’autre à basse température (TL = −223 ◦C).
La chaleur prise du réservoir à haute température par unité de temps est de 500 J/s, et celle relâchée
au réservoir à basse température est de 100 J/s. Malheureusement, il y a une fuite dans le réservoir
à haute température, et une quantité de chaleur par unité de temps de 50 J/s ”fuit” de la source
chaude, en passant directement au réservoir à basse température.

a) Représenter le système sur un diagramme à blocs.
b) Quelle est la puissance produite par ce moteur ”avec fuite”?
c) Quel est le rendement de ce moteur ”avec fuite”? Quel serait le rendement maximum qui peut

être obtenu avec un moteur qui fonctionne entre ces températures ?
d) Expliquer brièvement pourquoi l’entropie augmente pendant le fonctionnement du moteur.
e) Quelle est la valeur de la production d’entropie par seconde ?

Corrigé

a) (2 points) Soient QH , la chaleur perdue par le réservoir à TH , Qin, la chaleur qui entre dans le
cycle de Carnot, Qout, la chaleur qui sort du cycle de Carnot, QL, la chaleur qui est reçue par le
réservoir à TL et Qf = 50 J la chaleur transférée par la fuite. Avec les données de l’exercice, il
n’y a qu’une façon de dessiner le moteur : QH = 500 J = Qin +Qf et QL = 100 J = Qout +Qf .
Ce qui donne comme schéma-bloc :

Cycle de

Carnot

Q    = 500 J
H

Q    = 450 J
in

Q
   

 =
 5

0
 J

f

Q    = 50 J
out

Q    = 100 J
L

b) (2 points) Un bilan énergétique permet de trouver la puissance produite par le moteur sim-
plement comme

Ẇ = Q̇H − Q̇L = 500− 100 = 400 W. (23)

c) (5 points) Le rendement de ce moteur est calculé comme le rapport entre l’effet utile (la
puissance produite sous forme de travail par unité de temps) et le prix à payer (la chaleur
nécessaire par unité de temps) :

ηmoteur ≡
Ẇ

Q̇H

=
Q̇H − Q̇L

Q̇H

=
400

500
= 0.80. (24)

Le rendement maximum est obtenu si l’on considère seulement le cycle de Carnot :

ηCarnot = 1− Q̇out

Q̇in

= 1− 50

450
= 0.89 > ηmoteur. (25)
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On peut également calculer le rendement maximum en utilisant la température des réservoirs.

ηCarnot ≡ 1− TL
TH

= 1− 50

450
= 0.89. (26)

d) (6 points) Le moteur fonctionne entre deux réservoirs à température constante. Le cycle de
Carnot est réversible et il ne génère pas d’entropie. Il y a une génération d’entropie seulement
pour l’échange direct de chaleur entre les deux réservoirs due à la fuite de chaleur. Ceci est en
fait un processus spontané, donc irréversible.

e) (5 points) Pour évaluer la génération d’entropie, le système (isolé) est divisé en trois parties :
le réservoir à haute température TH , le réservoir à basse température TL et le cycle de Carnot.
La variation d’entropie pour chaque partie est donnée par :

∆ṠH =

∮
H

˙δQ

T
=
−Q̇H

TH
= −500

450
= −1.11 J s−1 K−1,

∆Ṡcyc = 0 (Le cycle de Carnot est reversible),

∆ṠL =

∮
L

˙δQ

T
=
Q̇L

TL
=

100

50
= 2 J s−1 K−1.

Donc
∆Ṡsys = ∆ṠH + ∆Ṡcycle + ∆ṠL = −1.11 + 0 + 2 = 0.89 J s−1 K−1 ≥ 0. (27)

Le résultat obtenu est bien en accord avec le deuxième principe de la thermodynamique.

Alternative

Une autre interprétation a été acceptée :

QH = Qin +Qf = 500 J +Qf et QL = Qout +Qf = 100 J +Qf .

Cycle de

Carnot

Q    = 500 J
in

Q
   

 =
 5

0
 J

f

Q    = 100 J
out

Q    = 150 J
L

Q    = 550 J
H

Ẇmoteur = Q̇H − Q̇L = 550− 150 = 400 W.

ηmoteur ≡
Ẇ

Q̇H

=
Q̇H − Q̇L

Q̇H

=
400

550
' 0.73.

ηCarnot = 1− Q̇out

Q̇in

= 1− 100

500
= 0.8 > ηmoteur.
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MAIS cette valeur n’est pas consistente avec le rendement calculé avec la température des réservoirs ! !
C’est pourquoi tous les points ne peuvent être donnés pour cette interprétation.

∆ṠH =

∮
H

˙δQ

T
=
−Q̇H

TH
= −550

450
= −1.22 J s−1 K−1,

∆Ṡcyc = 0 (Le cycle de Carnot est reversible),

∆ṠL =

∮
L

˙δQ

T
=
Q̇L

TL
=

150

50
= 3 J s−1 K−1.

Donc
∆Ṡsys = ∆ṠH + ∆Ṡcycle + ∆ṠL = −1.22 + 0 + 3 = 1.78 J s−1 K−1 ≥ 0.
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Exercice 5 20 points

Suite à une éruption volcanique, 3× 109 kg de lave forment une couche de 10 km2 autour du cratère
du volcan. La partie interne de la lave (côté sol) est à 1200 ◦C, et la partie externe (côté atmosphère)
est à 450 ◦C. La température de l’environnement autour est de 27 ◦C. On considère la lave et l’envi-
ronnement autour comme des corps noirs, et on néglige les transferts thermiques entre la lave et le
sol.

a) Quelle est la puissance nette transférée par la surface externe de la lave à l’environnement par
rayonnement ?

b) Déterminer l’ordre de grandeur du temps nécessaire pour que la lave atteigne une température
égale à celle de l’environnement autour ? Justifier vos approximations.

c) Si la puissance transférée par la partie interne à la partie externe par conduction est égale à
la puissance calculée en (a), quelle est l’épaisseur de la couche de lave ?

d) Il pleut très fort (20l/m2/heure), et l’on suppose que toute l’eau de la pluie est évaporée
immédiatement dès qu’elle rentre en contact avec la lave (autrement dit, on néglige le temps
et l’énergie pour que l’eau arrive à 100 ◦C une fois en contact avec la lave), et que la couche
d’eau de pluie empêche totalement la lave de rayonner, dans quel sens et de combien variera
l’ordre de grandeur du temps de refroidissement de la lave ? Faites les mêmes approximations
qu’en (b), et justifiez de leur impact sur l’estimation du temps nécessaire.

Indications : conductibilité thermique de la lave klave = 2 W/m/K ; chaleur spécifique de la lave
clave = 800 J/kg/K ; constante de Stefan-Boltzmann σB = 5.7× 10−8W m−2 K−4 ; chaleur latente de
vaporisation de l’eau Lvap. = 2’260 kJ/kg.

Corrigé

a) (3 points) D’après la loi de Stefan-Boltzmann, la puissance totale rayonnée par la lave est

Pray.,lave = SσBT
4
e ,

où S = 10 km2 est la surface de la couche de lave, et Te = 450◦C sa température externe. De
plus, l’environnement agit également comme un corps noir à Tenv = 27◦C, qui cède donc à la
lave, par rayonnement, une puissance

Penv.→lave = SσBT
4
env.

La puissance transférée nette par la surface externe de la lave à l’environnement par rayonne-
ment est donc

Pnet,lave→env = SσB
(
T 4
e − T 4

env

)
≈ SσBT

4
e (28)

car Te � Tenv. L’application numérique donne Pnet,lave→env ≈ 155.9 GW.
b) (8 points) Pour simplifier, on étudie dans cette question l’évolution de la température moyenne

de la lave T̄ . On fait l’hypothèse que la température de surface de la lave est proche de sa
température moyenne (au fur et à mesure que la lave se refroidit, on s’attend à voir le gradient
de température en son sein diminuer). On peut donc écrire

mlaveclave
∂T̄

∂t
≈ −SσB(T̄ 4 − T 4

env), (29)

ou encore, comme on néglige les variations spatiales de T (on prend ici une valeur moyennée
dans le volume)

mlaveclave

SσB

dT̄

T̄ 4 − T 4
env

= −dt. (30)
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On supose que, pendant le refroidissement, la lave reste en moyenne bien plus chaude que son
environnement, de sorte que T̄ 4 − T 4

env ≈ T̄ 4. On a alors

mlaveclave

SσB

dT̄

T̄ 4
= −dt (31)

Ce qui mène à

τ = t1 − t0 =
mlaveclave

3SσB

[
1

T̄ 3
1

− 1

T̄ 3
0

]
. (32)

Pour T̄0 = (1200 + 450)/2 = 825◦C, T̄1 = 27◦C, on obtient τ ≈ 5× 104 s ≈ 14 h.
Attention, en faisant l’hypothèse que la puissance rayonnée est liée à la température moyenne
de la lave et non sa température de surface, on sur-estime le flux radiatif et on sous-estime
donc le temps de refroidissement. Si l’on prend T̄1 = 100◦C (voir question d) pour comprendre
pourquoi), on obtient τ ≈ 2.5× 104 s, c’est à dire environ 7 heures.

c) (3 points) La puissance transférée par la partie interne à la partie externe par conduction doit
être égale à la puissance calculée au point a). On doit donc avoir égalité des flux de chaleur,
ce qui mène à

klaveS
(Ti − Te)

l
≈ SσBT

4
e (33)

où Ti = 1200◦C est la température interne de la lave et l, l’épaisseur de la couche. Il vient
donc

l = klave
(Ti − Te)
σBT 4

e

≈ 9.6 cm (34)

d) (6 points) Notons D le débit d’eau de pluie (D = 20l/m2/heure). Si l’on suppose que toute
l’eau de la pluie est évaporée immédiatement dès qu’elle rentre en contact avec la lave, la
puissance totale retirée de la lave par l’eau lors de son évaporation est donnée par

Plave→eau = SDρeauL (35)

L’application numérique donne Plave→eau ≈ 12.6 GW.
Ce chiffre peut sembler beaucoup plus petit que la valeur trouvée dans la question a), mais
il ne dépend pas de Tlave, contrairement à Pnet,lave→env qui diminuera fortement au fur et à
mesure que la lave se refroidit.
Calculons donc le temps nécessaire à la pluie pour refroidir la lave. On s’intéresse encore une
fois à l’évolution de la température moyenne de la couche de lave, en négligeant cette fois-ci
la radiation. On a donc

mlaveclave
∂T̄

∂t
≈ −SDρeauL,

ce qui mène à

mlaveclave
∂T̄

∂t
≈ −SDρeauL,

où encore
mlaveclave

SDρeauL
dT̄ = −dt,

et donc
τ = t1 − t0 =

mlaveclave

SDρeauL

(
T̄0 − T̄1

)
. (36)

Pour T̄0 = (1200 + 450)/2 = 825◦C, T̄1 = 100◦C, on obtient τ ≈ 13× 103 s ≈ 4 h.
Notez bien qu’ici on doit considérer T̄1 = 100◦C car une fois la température de la lave inférieure
à 100◦C, l’eau ne se vaporise plus et refroidit la lave par conduction (non traitée ici).
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Il apparait donc, en comparant avec les chiffres de la question b), que le refroidissement par
l’eau de pluie est plus efficace. C’est logique, car si le flux thermique radiatif est très fort
initialement, sa variation en T 4 le fait rapidement décroitre à mesure que la lave se refroidit,
alors que la chaleur retirée par l’eau ne dépend pas de la température de la lave (tant qu’elle
est à plus de 100◦C).
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