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Examen

Exercice 1 20 points

Donald et Kim se battent pour la suprématie de la galaxie PEANUTS. Ces deux politiciens sont au
repos 1'un par rapport a 'autre et se tirent dessus en utilisant des fusils dont les balles partent avec
une vitesse de 0.6¢ par rapport aux fusils. A chaque tir, un puissant flash lumineux est émis du fusil.
Kim annonce les affirmations reportées ci-dessous. Pour chacune d’elles, vous devez indiquer quelle
devrait étre 'observation correspondante faite par le journaliste planétaire Darius, qui se trouve sur
une fusée. Cette fusée constitue un référentiel dans lequel les balles lancées par Donald sont au repos.
On suppose que Darius se trouve toujours entre Donald et Kim.

a) ” Ma distance de Donald est de 107 km.”

b) ” La vitesse des balles que je tire est de 0.6¢. ”

¢) 7 Deux de nos balles sont entrées en collision : la quantité de mouvement relativiste et 1’énergie

cinétique sont conservées.”
d) 7 Apres cette collision, la trajectoire de ma balle est déviée de 30°. ”
e) 7 Je tire des balles a la fréquence de 10 Hz.”

Corrigé

Dans la suite, on considerera les référentiels R (de Donald et Kim) et R’ (de Darius). On choisit les
axes r et 2’ dans le méme sens, pour que R’ se déplace avec une vitesse positive v par rapport a R
(voir Fig. 1).
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Avec ces choix, on assure que les transformations de Lorentz prennent leur forme conventionelle

Az' = y(Ax — vAt) Az = y(Az" + vAt) (1)
At = (At — %Am) At = (At + %AI’) (2)
C C

Si les axes x et 2’ s’opposent et v est négative, il faudrait donc changer chaque signe dans ces formules,
mais les résultats suivants seront bien-sir les mémes. Avec v = 0.6¢, le facteur v est donc

a)

LR (3)
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(3 points) ” Ma distance de Donald est D = 107 km. ”
On s’intéresse a la distance entre Donald et Kim dans le référentiel de Darius, donc D'
Comme ils ne sont pas au repos par rapport a R’, mais se déplacent avec —v, on trouve par
la contraction de longueurs
D
D' = =~ = 8x 10°km. (4)
Y
(2 points) ” La vitesse des balles que je tire vaut 0.6¢. ”
On veut trouver la vitesse des balles de Kim, observées dans le référentiel R’, donc u
On sait que leur vitesse dans R est u, = %
vitesses (selon z) on trouve
, Ax' Az — vAt Uy — V

- 0T - — —0.88¢. 5
Y TOAY T At ZAr 1- ‘ (5)

c2

1 — Az’
T = Av-
= —uv, donc en utilisant la transformation des

(3.5 points) ” Deux de nos balles sont entrées en collision : la quantité de mouvement relati-
viste et I’énergie cinétique sont conservées. ”

On se demande ici, si ces quantités sont aussi conservées dans R’. Les transformations de
Lorentz pour I'énergie cinétique F et la quantité de mouvement (selon x) p,, sont donné par

E = ~(E —vp,) E = ~y(E +vp)) (6)
v v
e = Y(Pe — gE) pe = (P, + gE’) (7)

Notez que, a priori, elles sont définies pour des valeurs concrets d’énergie et quantité de
mouvement d’un objet vu de différents référentiels. Mais on peut voir directement que ces
équations s’appliquent aussi a des sommes et différences de ces quantités, car ceci sont de
équations linéaires. Ici on considére dans R :

ou f et ¢ dénotent les énergies et quantités de mouvement finales et initiales des deuz balles
ensembles. Peu importe leurs contributions, on vient d’observer qu’on a toujours

AB' = 4(AE - vhp,) Ay, = y(Ap, — SAE) (9)

Donc, on trouve directement AE’ = Ap/, = 0 —I'énergie cinétique et la quantité de mouvement
sont aussi conservées dans R'.

Pour vérifier ceci, on pourrait également trouver E; et p; par les contributions de chaqune
des balles selon I’énoncé et donc calculer Ey et p, s. Apres application des transformations de
Lorentz a chaque quantité individuellement, on trouverait aussi que AE’ = E} —E/ =0et

Ap;c = p;:,f - plz,i =0.



d)

o ”

(5.5 points) ” Apres cette collision, la trajectoire de ma balle est déviée de 30°.
Etant donné que la quantité de mouvement et I'énergie cinétique sont conservées dans la
collision, on sait que la norme de la vitesse v reste constante pour chaque balle. Avec une
déviation de o« = 30°, on trouve dans R par projection :
V3 .
uy = —vcos(a) = 5 u, = vsin(a) = ¥
Par les transformations de vitesses (voir b)), on arrive a

Uy — U ;o uy/1—0v2/c?

/_ R—
Uy = 0w et u, = —uw

c? c?

La déviation de la balle dans le référentiel R’ est ainsi donné par

u, uy/1 — v?/c? v 1—v2/c?
t N =4 =2 = 2 1 —0v2/c?| = | Y—n— 10
anfal) = || < | V= |(@2)U\/ e = M )

L’application numérique donne o/ ~ 12°.

(6 points) ” Je tire des balles a la fréquence de 10 Hz. ”

On veut donc trouver la fréquence f’ des tirs de Kim dans le référentiel R'. 11 est plus intuitif
de considérer d’abord l'intervalle de temps AT entre 2 instants ou Darius voit deux flashs
consécutifs (nos 2 événements ici) en R. Leur distance L en R est bien sur données par
L = cAt = %, comme ils se propagent avec vitesse ¢, et il faut At = 1 = 0.1s avant le
prochain flash. Comme la lumiere se déplace avec ¢ dans la direction négative, et Darius

approche avec +v, on a
AT = civ - (1+1”)f'
(&

Notez que la vitesse relative entre Darius et les éclatements en R est ¢+ v > ¢. Ceci n’est pas
une contradiction, comme seulement la vitesse d’un objet individuel est limitée par v < c. Les
vitesses relatives peuvent donc atteindre 2c.

Par contre, ce qui nous intéresse, c¢’est la fréquence f' = ﬁ en R’, donc il faut appliquer une
transformation de Lorentz. Comme les deux évenements (la réception des deux éclatements)
se passent sur le méme endroit en R’ (Darius est au repos ici), on retrouve la dilatation de

temps par la transformation de Lorentz inverse :

AT

/ v / o
ATZW(ATngAx) = AT = 5

0

(11)

On pourrait également se demander de quelle distance Darius se déplace en R entre deux
flashs, et comme il se déplace avec +wv, on a bien str Ax = vAT. Avec la transformation de
Lorentz on trouve aussi

2
AT' = 4(AT — Z0AT) = v(1 — =) AT = af
c c y
y—2
Finalement,
, y v 14 =
f'=x7 =0+ 2)f N %)f (12)

On reconnait la formule de 'effet Doppler relativiste.
Application numérique :

/=

1+2
o/ = V16/04f = 2f = 20Hz



Exercice 2 20 points

Un cylindre (diametre : 40 cm) & parois isolées contient 5 moles de gaz parfait et est fermé par un
piston, également isolé, de masse 100 kg, qui peut coulisser sans frottement. A 1’équilibre, le piston est
a une altitude de 1 m depuis le fond du cylindre et la pression extérieure est simplement la pression
atmosphérique.
L’isolation thermique au fond du cylindre est enlevée, et ce dernier est immédiatement mis en contact
thermique avec un bloc de glace de masse 140 g et a une température de -20°C.
Apres I'établissement de 1’équilibre thermique, on observe que la température du gaz et de la glace
est de 0°C mais que tout le bloc est encore a I’état de glace.

a) Déterminer si le gaz est mono-atomique ou di-atomique.

b) On pose alors sur le piston un solide de masse égale a celle du piston, et on attend que le

systeme atteigne un nouvel équilibre. Calculer alors la masse d’eau qui s’est formée.

Indications : Constante des gaz parfaits R = 8.314 J K 'mol~!; Chaleur latente de fusion de la
glace & 0°C : Lg,s = 333.6kJkg™'; Chaleur spécifique de la glace & 0°C cgace ~ 2110 J kg1 K™
latm = 1.013 x 10° Pa.

Corrigé

Le systeme étudié peut étre représenté par la figure ci-dessous :

M,=100kg

d=40cm
h=Tm

n=>5

M,=140g
T,,=-20°C

a) (12 points) Au contact de la glace, le gaz va perdre de la chaleur et se refroidir jusqu’a
Thn. = 0°C. Cette transformation se fait a pression constante

Mg

=1y + —2L . 13
P1 = Do 7r(d/2)2 ( )

La quantité de chaleur perdue par le gaz peut s’exprimer comme
anz = Ncp (Tﬁn. - ﬂni.,gaz) < 07 (14)
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ou la valeur de la chaleur spécifique a pression constante ¢, dépend du nombre de degrés de
liberté et donc de la nature du gaz : mono-atomique (v = 3) ou di-atomique (v = 5),

cp:cv—i-R:gR—i-R. (15)
Soit finalement,
v

anz =nR (5 + 1) (Tﬁn. - jﬂ’int,gaz) . (16)

La temperature initiale du gaz est donnée par la loi des gaz parfaits

2

P1Vini. d
7—'ini az — ‘/;ni. = 5 h.
e 7 avec 7r <2>

De plus, la chaleur regue par le bloc de glace pour augmenter sa temperature de Ty glace =
—20°C a T, = 0°C est donnée par

leace - Mglacecglace (Tﬁn. - ﬂni.,glace) > 0. (17)

En posant :

1%
‘anz’ = ‘leace‘ = ’nR (5 + 1) (Tﬁn. - ﬂni.,gaz) = ‘Mglacecglace (Tﬁn - 7jini.,glace)|

M, laceCglace <Tﬁn. - T‘ini. 1ace> :| ‘
v=12 g £ 2 —1 18
’ |: nR Tﬁn. - CFini.,gaz ( )

on obtient :

Applications numeriques :

100 x 9.81

W ~ 1.091 x 105 Pa.
™ .

pp = 1.013 x 10° +

Vi =7 % 0.22 x 1 ~0.126 m®.
1091 x 10° x 0.126

71ini.,gauz —= 5% 8314 ~ 330.7TK = 57.7 C
0.14 x 2110 /0 — (—20)
=2 1| =292 ~3.
v ’ { 5 % 8.314 (0 - (57.7)) }

La réponse a la question posée est donc : le gaz étudié est un gaz mono-atomique.
Attention ! En arondissant le volume & 0.12m? (ce qui est faux!), on trouve une valeur numé-
rique pour v proche de 5.

b) (8 points) Le travail aditionnel fait sur le gaz par le solide ajouté entraine une augmentation
de I'énergie interne du gaz. Cette énergie interne supplémentaire va étre perdue par le gaz
pour atteindre a nouveau l’équilibre thermique avec le bloc de glace. Suivant la valeur de cette
variation d’énergie interne, tout ou partie de la glace va fondre.

Le travail fait sur le gaz par le solide ajouté est

M.
Weotide = FAz = poAV = [pl + pJ } (V3 —Vp) = {]h + -

o M,g } (nRT1 nRT1>.

(d/2)? -

D2 P1
La masse de glace fondue est simplement donnée par :

r Wsolide
Ly



Application numérique :

100 x 9.81
=1.091 x 10° + ———"— ~1.1694 x 10° P
b2 T 0272 Sl
273 273
Weotide = 5 X 8.314 x 1.1694 x 10° — ~ —811J.
tide = 2 ¢ 8 8 <1.1694 % 10°  1.091 x 105)
—811
e T~ 0.0024ke ~ 240,
" 3336 % 10° & &

A T’équilibre, on a donc un gaz a 0°C, 138 g de glace a 0°C et 2 g d’eau liquide a 0°C.
Si la valeur du travail fait par le solide ajouté avait été bien plus grande, toute la glace aurait pu
fondre et a 1’équilibre thermique, on aurait eu un gaz et 140 g d’eau liquide a une température

T>0°C.

Autre méthode : calculer la température du gaz apres sa compression :

Le changement interne du gaz est tres rapide lorsque le deuxieme poids est posé, donc il
s’agit d'un processus adiabatique, mais irréversible donc on ne peut pas utiliser la relation
pV7 = const. Alors, il faut séparer le processus en deux étapes : la compression adiabatique
qui va augmenter la temperature du gaz; puis la chaleur perdue par le gaz au contact du bloc
de glace et qui va en fondre tout ou partie.

Le travail fait par le piston sur le gaz

Wieew = P2 (Vi2 — Vi1) = —Wiiston
et avec le premiere principe,
AU = —Wieew =  ncy (Tf,z — Tf,l,) = —P2 (Vf,z - Vf,l)
avec

M,g

—p + —P
P2 y4! 7T(d/2)2

Grace a la loi des gaz parfaits

RT; RT;
ney (Tro — Tip) = —po <n p 2 _Z2 ) M) ;
2 1

et donc

+ 14
Tro=Tg, (p—Q/pl 2) .

1+¢

Applications numeriques :

1.17x105
Tio = 273.15 x <—1-01§105 +3/2

= 280.99 K ~ 281 K.
1+3/2 )

Comme le processus est a pression constante, la chaleur perdue par le gaz est donnée par

v+2
2

5
Q =ncy,(Ttp —Tt1) =nR (Tto —Tt1) = 5713 (Tto — Tta) -



Cette énergie disponible sert a faire fondre une masse m’ de glace :

5
—nR (ng — Tf 1) = m’Lf = m =
2 ) ) Lf

Application numérique :

;2.5 x5 x 8314 x (281 — 273)
m =
336.5 x 103

gnR (Tf72 - Tf71)

=0.0024kg ~2.4¢g.

(19)

(20)



Exercice 3

20 points

Une mole de gaz parfait a une température de 25°C et une pression de 1 atm suit les transformations

réversibles suivantes :
(i) : détente isotherme jusqu’a 0.5 atm ;
(i1) : détente isobare jusqu’a 100°C;
(17i) : compression isotherme jusqu’a 1 atm
(iv) : compression isobare jusqu’a 25°C;

a) Représenter I'ensemble de ces transformations sur un diagramme p —

V.

b) Apres la transformation (iv), est-ce que la fraction des molécules du gaz qui ont une vitesse
supérieure a 200 m/s est plus grande ou plus petite qu’apres la transformation (7i) 7 Justifiez

votre réponse.
Depuis le méme état initial, le gaz suit le processus cyclique suivant :
(v) : détente isobare jusqu’'a 100°C;

(vi) : réduction de la pression a volume constant jusqu’a une pression p;
(vii) : compression isobare a la pression p jusqu’a un volume de 24.5 1;

(viii) : augmentation de la pression jusqu’a 1 atm & volume constant ;

c¢) Calculer p tel que la valeur du travail fait sur le gaz dans la premiere suite de processus ((7)
a (iv)) soit la méme que celle du travail fourni par le gaz dans la deuxiéme série de processus

((v) & (viii)).

d) Est-ce que la valeur de la variation d’enthalpie sur les processus (i) - (iv) est inférieure,
supérieure ou égale a celle sur les processus (v) - (viii)? Justifier votre réponse.
Indications : 1atm = 1.013 x 10° Pa; Constante des gaz parfaits : R = 8.314J K ' mol™!;

Corrigé

a) (4 points) Cycle dans le diagramme p — V' : nous avons deux processus isothermes et deux
isobares. Nous pouvons les dessiner comme la figure ci-dessous. On fera bien attention a
respecter les volumes en particulier V, < Vp < Vp. L’ensemble de ces 4 transformations

constitue un cycle réfrigérateur.

p
A

pA=pD

© atm p[Pa] V [m’] T[K]
A | 1.013 x 10° | nRTx/pa=0.0245 298
B pa/2 2V4=0.0490 Ty
pB=pcC C pA/Q QHRTc/pA =0.0612 373
0.5 atm D Pa nRTC/pA:0.0?)OG TC

b) (2 points) La température du gaz est plus élevée apres le processus (ii) qu’apres le processus
(iv). Or la distribution des vitesses, supposée de Maxwell, ne dépend que de la température.
Donc, pour répondre a la question posée, la fraction de molécules ayant une vitesse supérieure
a 200 m/s sera plus grande apres le processus (i) qu’apres le processus (iv).

c) (10 points) Pour le deuxieme cycle, nous avons deux processus isochores et deux isobares.

Nous pouvons le dessiner comme la figure ci-dessous :

8




A
PASPp [~~~ — — A P> © B’
| p [Pa] V [m’] T[K]
wm (v Yo A [1.013 x 10° | nRT4/pa=0.0245 | 298
1 B’ pa nRTp [pa=0.0306 373
Pl p C p Vi Tpp/pa

D i © D’ p 0.0245 pVD//n/R
| |
| |
] 1 > v
Va =Vb VB =Vc

Le travail total est donné par
Weyae1 = Wiy + Wiy + Wiy + Wiy = Wasg + Wpao + Weop + Wpa.

Le travail entre A et B vaut :

Ve Ve T
Waen= [ pav = [ ”@A&%—MHMnG%)—anm@»

Va Va A

Le travail entre B et C vaut :

QHRTC QHRTA >

PA pba

Ve
WB%C = / deV = pB(VC — VB) = 0.5]9,4 ( = nR(TC — TA).

Ve

Le travail entre C et D vaut :

Vb > nRT,
Weep = [ pav = c

Ve Ve

dV =nRI¢In <@> =nRTc1n(0.5).
Ve

Le travail entre D et A vaut :

= TZR(TA - Tc)

TLRTA o HRTO>

Va
Wpa = / padV =pa(Va—Vp) =pa <
PA pA

Vb

Finalement, le travail fait le long du cycle vaut :
Weyae1 = nRT4In(2) + nR(Te — Ta) + nRTc1n(0.5) + nR(Ta — Tc).

Application numérique :

Wegeter = 1 X 8.314 x 298 x In(2) + 1 x 8.314 x 373 x In(0.5) ~ —432 J.

Le cycle étudié est un réfrigérateur donc le travail total sur le cycle doit étre négatif, qui est
bien ce que 'on trouve.
Pour le deuxieme cycle, le travail total s’écrit :

Weyate2 = Wy + Wi + Wi + Wi = Wasp + Weor +Weorspr + Wpra
=0 =0



Le travail entre B’ et C’; ainsi qu’entre D’ et A’, vaut 0 car les transformations sont isochores.
Soit :

chcle2 = pA(VB’ - VA) + p(VD/ - VC’/) = (pA - p)(VB’ - VA) = anAp; p(TB' - TA)
Finalement,
‘WC clel‘ = ’Wc cle2’ = P =Dp4a 1_M . (21)
Y 4 nR(TBr - TA)

Application numérique :

432
1 x 8.314 x (373 — 298)

p=1.013 x 10° x (1 — ) ~ 3.11 x 10* Pa ~ 0.3 atm.

d) (4 points) Nous savons que l'enthalpie est une variable d’état. Or, la variation d'une va-
riable d’état entre deux états ne dépend pas du chemin suivi. De plus, les deux séries de
transformations étudiées sont des cycles. Donc :

A]’—Icyclel = A]I:ycle2 = 0. (22)

10



Exercice 4 20 points

Un inventeur a développé une méthode pour faire fonctionner un moteur sur un cycle de Carnot, entre
deux réservoirs, un a haute température (T = 177°C ), I'autre a basse température (7, = —223°C).
La chaleur prise du réservoir a haute température par unité de temps est de 500 J/s, et celle relachée
au réservoir a basse température est de 100 J/s. Malheureusement, il y a une fuite dans le réservoir
a haute température, et une quantité de chaleur par unité de temps de 50 J/s "fuit” de la source
chaude, en passant directement au réservoir a basse température.

a)
b)

c)

c)

Représenter le systeme sur un diagramme a blocs.

Quelle est la puissance produite par ce moteur "avec fuite”?

Quel est le rendement de ce moteur "avec fuite”? Quel serait le rendement maximum qui peut
étre obtenu avec un moteur qui fonctionne entre ces températures ?

Expliquer brievement pourquoi I’entropie augmente pendant le fonctionnement du moteur.
Quelle est la valeur de la production d’entropie par seconde ?

Corrigé

(2 points) Soient Qy, la chaleur perdue par le réservoir a Ty, Q;y, la chaleur qui entre dans le
cycle de Carnot, ()., la chaleur qui sort du cycle de Carnot, @1, la chaleur qui est recue par le
réservoir a 17, et Qy = 50 J la chaleur transférée par la fuite. Avec les données de I'exercice, il
n’y a qu'une fagon de dessiner le moteur : Qg = 500J = Qi +Qf et Qr = 100J = Qour + Q-
Ce qui donne comme schéma-bloc :

moteur

Q,=500J Ty
3 Q, 450
Bl
R 4 W
A Cycle de
Ne) Carnot I

,,,,,,,,,,,,,,,,,,

Q =100J T,

(2 points) Un bilan énergétique permet de trouver la puissance produite par le moteur sim-
plement comme

W =Qpu — Qr =500 — 100 = 400 W. (23)

(5 points) Le rendement de ce moteur est calculé comme le rapport entre l’effet utile (la
puissance produite sous forme de travail par unité de temps) et le priz a payer (la chaleur
nécessaire par unité de temps) :

W Qu-—Qp 400

Nmoteur = —— = = 0.80. (24)
Qu Qu 500
Le rendement maximum est obtenu si ’on considere seulement le cycle de Carnot :
Qout 50
arnot = 1 — —— =1 — — = 0.89 > Nmoteur- 25
TICarnot 0. 150 Thmot (25)
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On peut également calculer le rendement maximum en utilisant la température des réservoirs.

Ncarmot = 1 — % =1- % = (.89. (26)
d) (6 points) Le moteur fonctionne entre deux réservoirs a température constante. Le cycle de
Carnot est réversible et il ne génere pas d’entropie. Il y a une génération d’entropie seulement
pour ’échange direct de chaleur entre les deux réservoirs due a la fuite de chaleur. Ceci est en
fait un processus spontané, donc irréversible.
e) (5 points) Pour évaluer la génération d’entropie, le systeme (isolé) est divisé en trois parties :
le réservoir a haute température Ty, le réservoir a basse température 77, et le cycle de Carnot.
La variation d’entropie pour chaque partie est donnée par :

ASy = ?{ 00 _ ZQu 500 6 K™,
g T Ty 450
ASCyC =0 (Le cycle de Carnot est reversible),

: 5Q Q100 e
NI s A 2 T Y O
St ng T, 50 20°

Donc
ASyys = ASy + ASeyae + ASp = —1.114+0+2=0.89Js ' K~' > 0. (27)

Le résultat obtenu est bien en accord avec le deuxieme principe de la thermodynamique.

Alternative

Une autre interprétation a été acceptée :

QH:an+Qf:5OOJ+Qf et QL:Qout+Qf:100J+Qf

Q,=550J T,

Carnot

Q, =150J T,

Winotewr = Qs — Q1 = 550 — 150 = 400 W.
W Qu-—Qp 400

Tlmoteur = = — ~0.73.
Qu Qu 550
Qout 100
arnozl_ - =1-—=08> moteur -
e ' Qin 500 Thmot

12



MAIS cette valeur n’est pas consistente avec le rendement calculé avec la température des réservoirs!!
C’est pourquot tous les points ne peuvent étre donnés pour cette interprétation.

Donc

. . . 5 o
_J 0@ _ —@u _ 550 1. K

ASuye =0 (Le cycle de Carnot est reversible),

: 6Q Qp 150 ey
AS; = ¢ — =" =—=3]s K.
L %:T T, 50 >

ASeys = A8y + ASeyee + AS, = =122 4043 =1.78Js ' K™! > 0.

13



Exercice 5 20 points

Suite & une éruption volcanique, 3 x 10° kg de lave forment une couche de 10 km? autour du cratere
du volcan. La partie interne de la lave (coté sol) est a 1200°C, et la partie externe (coté atmosphere)
est a 450 °C. La température de I’environnement autour est de 27°C. On considere la lave et 'envi-
ronnement autour comme des corps noirs, et on néglige les transferts thermiques entre la lave et le

sol.

a)

Quelle est la puissance nette transférée par la surface externe de la lave a I’environnement par
rayonnement ?

Déterminer I'ordre de grandeur du temps nécessaire pour que la lave atteigne une température
égale a celle de 'environnement autour ? Justifier vos approximations.

Si la puissance transférée par la partie interne a la partie externe par conduction est égale a
la puissance calculée en (a), quelle est 1'épaisseur de la couche de lave ?

Il pleut tres fort (201/m?/heure), et 'on suppose que toute I'eau de la pluie est évaporée
immédiatement des qu’elle rentre en contact avec la lave (autrement dit, on néglige le temps
et I'énergie pour que l'eau arrive a 100°C une fois en contact avec la lave), et que la couche
d’eau de pluie empeéche totalement la lave de rayonner, dans quel sens et de combien variera
I'ordre de grandeur du temps de refroidissement de la lave ? Faites les mémes approximations
qu’en (b), et justifiez de leur impact sur l’estimation du temps nécessaire.

Indications : conductibilité thermique de la lave kjve = 2 W/m/K; chaleur spécifique de la lave
Clave = 800 J/kg/K ; constante de Stefan-Boltzmann op = 5.7 x 107W m—2K~*; chaleur latente de
vaporisation de l'eau Ly,, = 2'260 kJ/kg.

Corrigé

a)

(3 points) D’apres la loi de Stefan-Boltzmann, la puissance totale rayonnée par la lave est

4
Pray.,lave = SUBT ;

e

ott S = 10km? est la surface de la couche de lave, et T, = 450°C sa température externe. De
plus, I'environnement agit également comme un corps noir a Ty, = 27°C, qui cede donc a la
lave, par rayonnement, une puissance

4
Penv.—>lave = SUBT

env’

La puissance transférée nette par la surface externe de la lave a I’environnement par rayonne-
ment est donc
4 4N A~ 4
Pnet,lave—)env = SUB (Te =T, ) ~ SUBTe (28)

env

car T, > T.,,. L’application numérique donne Pt jgpe—ens =~ 155.9 GW.
(8 points) Pour simplifier, on étudie dans cette question I’évolution de la température moyenne
de la lave T. On fait 'hypothese que la température de surface de la lave est proche de sa
température moyenne (au fur et & mesure que la lave se refroidit, on s’attend & voir le gradient
de température en son sein diminuer). On peut donc écrire

oT

~ 4 4
MiaveClave =, ~ _SUB(T - T,

at env) ? (29)

ou encore, comme on néglige les variations spatiales de T' (on prend ici une valeur moyennée
dans le volume)
MiaveClave dT

SUB T4—T4

env

= —dt. (30)
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On supose que, pendant le refroidissement, la lave reste en moyenne bien plus chaude que son

environnement, de sorte que 7% — T2 '~ T%. On a alors

MaveClave dT -

— = —dt 1
SO’B T4 (3 )

Ce qui mene a
S tl . to _ MiaveClave |:_i . _i:|
3Sop |1} T}
Pour Ty = (1200 + 450)/2 = 825°C, T} = 27°C, on obtient 7 ~ 5 x 10* s ~ 14 h.
Attention, en faisant 'hypothese que la puissance rayonnée est liée a la température moyenne
de la lave et non sa température de surface, on sur-estime le flux radiatif et on sous-estime
donc le temps de refroidissement. Si 'on prend T} = 100°C (voir question d) pour comprendre
pourquoi), on obtient T & 2.5 x 10* s, c’est a dire environ 7 heures.
(3 points) La puissance transférée par la partie interne a la partie externe par conduction doit
étre égale a la puissance calculée au point a). On doit donc avoir égalité des flux de chaleur,
ce qui mene a
(T; = T¢)
[
ou T; = 1200°C est la température interne de la lave et [, I’épaisseur de la couche. Il vient
donc

EaveS ~ SopT! (33)

(Tz - Te)
O'B,T’él
(6 points) Notons D le débit d’eau de pluie (D = 201/m?/heure). Si I'on suppose que toute

I’eau de la pluie est évaporée immédiatement des qu’elle rentre en contact avec la lave, la
puissance totale retirée de la lave par I'eau lors de son évaporation est donnée par

| = Kiave ~ 9.6 cm (34)

f)lave—mau - SDpeauL (35)

L’application numérique donne Pye_sean =~ 12.6 GW.
Ce chiffre peut sembler beaucoup plus petit que la valeur trouvée dans la question a), mais
il ne dépend pas de Tj,y., contrairement a Petjave—seny qui diminuera fortement au fur et a
mesure que la lave se refroidit.
Calculons donc le temps nécessaire a la pluie pour refroidir la lave. On s’intéresse encore une
fois a I’évolution de la température moyenne de la couche de lave, en négligeant cette fois-ci
la radiation. On a donc _
or

mlaveclavea ~ _SDpeauLa
ce qui mene a ~

mlaveclave%_f ~ _SDpeauL;
ol encore

MiaveClave 4
———dT = —dt
SDpeauL 7

et donc

mavec ave 'R 'R
r=ti—ty= Tt (7). (36)

Pour T = (1200 + 450)/2 = 825°C, Ty = 100°C, on obtient 7 &~ 13 x 10° s ~ 4 h.
Notez bien qu’ici on doit considérer T} = 100°C car une fois la température de la lave inférieure
a 100°C, l'eau ne se vaporise plus et refroidit la lave par conduction (non traitée ici).
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Il apparait donc, en comparant avec les chiffres de la question b), que le refroidissement par
I'eau de pluie est plus efficace. C’est logique, car si le flux thermique radiatif est tres fort
initialement, sa variation en T le fait rapidement décroitre & mesure que la lave se refroidit,
alors que la chaleur retirée par 1’eau ne dépend pas de la température de la lave (tant qu’elle
est a plus de 100°C).
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