
Physique générale II

Corrigé de l’examen du  juin 

Prof. A. Fasoli

Exercice 1

Une mole de gaz idéal monoatomique suit un cycle thermodynamique constitué par une transfor-
mation adiabatique réversible AB (VA = 19 l, TA = 308 K, VB = 9 l) suivie d’une transformation
isobare irréversible BC effectuée en maintenant le gaz en contact avec un réservoir à tempé-
rature TC = 210 K, suivie d’une isotherme réversible CD (VD = 5 l), durant laquelle le gaz
reste en contact avec le même réservoir et enfin une détente réversible DA, représentée dans le
diagramme p− V par un segment décrit par la relation p = pD + pA−pD

VA−VD
(V − VD).

a) Représentez le cycle dans le diagramme p− V . S’agit-il d’un cycle moteur ou réfrigérateur ?
b) Calculez la température au point B.
c) Calculez le travail effectué et la chaleur échangée pour chacune des transformations du cycle.
d) Calculez la variation d’entropie du gaz pour la transformation irréversible BC.
e) Calculez la variation d’entropie du gaz pour le cycle complet.
Indications : Constante des gaz parfaits : R = 8.314 J K−1 mol−1.

Corrigé

a) Gaz parfait monoatomique : γ = 5
3

et CV = 3
2
R.

Les 4 transformations du cylce sont :
– A→ B compression adiabatique : VB < VA et pB > pA.
– B → C compression isobare irréversible : VC < VB et pC < pB mais on ne peut pas

tracer directement de ligne entre B et C.
– C → D détente isotherme : VD > VC et pD > pC .
– D → A détente linéaire.
Le cycle tourne dans le sens anti-horaire. Il s’agit donc d’un réfrégirateur.

p
B

A

D

C

V

? ? ? ? ?

b) Pour une transformation adiabatique, on a TV γ−1 = cte⇒ TAV
γ−1
A = TBV

γ−1
B .

TB = TA

(
VA
VB

)γ−1
(1)
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Application numérique :

TB = 308×
(

19× 10−3

9× 10−3

) 5
3
−1

= 506 K

On peut arriver au même résultat en utilisant TB = pBVB
nR

avec pB = pA

(
VA
VB

)γ
et pA = nRTA

VA
.

c) Calculons les paramètres aux 4 points du cycle :

A B C D

T [K] 308 TA

(
VA
VB

)γ−1
= 506 210 TC

p [Pa] nRTA
VA

= 1.35× 105 pA

(
VA
VB

)γ
= 4.68× 105 pB

nRTC
VD

= 3.49× 105

V [m3] 19× 10−3 9× 10−3 nRTc
pB

= 3.7× 10−3 5× 10−3

Calculons maintenant les travaux effectués et chaleurs échangés :
A→ B : transformation adiabatique donc pas d’échange de chaleur

QA→B = 0 J

WA→B =

∫ B

A

pdV = C

∫ B

A

dV

V γ
=

C

1− γ
(
V 1−γ
B − V 1−γ

A

)
avec C = pAV

γ
A

WA→B =
PAVA
1− γ

((
VB
VA

)1−γ

− 1

)
=
nRTA
1− γ

((
VB
VA

)1−γ

− 1

)
= −2480 J (2)

B → C : isobare irréversible
Le travail n’étant pas une variable d’état, sa valeur dépend du chemin suivi :

WB→C =

∫ C

B

pdV

Or on ne sait pas comment varie la pression en fonction du volume le long du chemin irré-
versible donc on ne peut pas calculer directement le travail.
Cependant, on pourrait calculer le travail à partir du premier principe,

WB→C = QB→C −∆UB→C = QB→C − nCV (TC − TB),

mais on ne connâıt pas la quantité de chaleur échangée au cours de cette transformation.
Il n’est donc pas possible de calculer le travail avec les données du problème pour cette
transformation irréversible. Pour continuer, on peut approximer cette transformation par une
transformation réversible (ou une combinaison de transformations réversibles) pour lesquelles
on peut calculer le travail effectué. Par exemple, on peut approximer la transformation isobare
irréversible BC par une isobare réversible ainsi on obtient :

W rev
B→C =

∫ C

B

pdV = pB

∫ C

B

dV = pB(VC − VB) = −2480 J (3)
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∆UB→C =
3

2
nR(TC − TB) = −3691 J

QB→C = ∆UB→C +W rev
B→C ' −6174 J (4)

C → D : isotherme
∆UC→D = 0 J

WC→D =

∫ D

C

pdV =

∫ D

C

nRT

V
dV = nRTc

∫ D

C

dV

V
= nRTC ln

(
VD
VC

)
= 525 J (5)

QC→D = ∆UC→D +WC→D = 525 J (6)

D → A : détente

WD→A =

∫ A

D

pdV =

∫ A

D

pD + α(V − VD)dV avec α =
pA − pD
VA − VD

= pD

∫ A

D

dV + α

∫ A

D

(V − VD)dV

= pD(VA − VD) + α
(VA − VD)2

2
= pD(VA − VD) +

1

2
(pA − pD)(VA − VD)

⇒ WD→A =
1

2
(pA + pD)(VA − VD) = 3388 J (7)

∆UD→A =

∫ A

D

3

2
nRdT =

3

2
nR(TA − TD) = 1222 J

QD→A = ∆UD→A +WD→A = 4602 J (8)

On vérifie que ∆Ucycle ' 0 comme attendu.
d) On ne sait pas calculer la variation d’entropie pour une transformation irréversible. Cepen-

dant l’entropie étant une variable d’état, sa variation entre 2 états ne dépend pas du chemin
suivi mais seulement des états initial et final. On peut donc calculer la variation d’entropie
sur BC pour une transformation équivalente réversible (par exemple, une isobare réversible)
avec

∆SB→C =

∫ C

B

δQ

T
.

Le premier principe de la thermodynamique s’écrit : dU = δQ− δW donc

δQ = dU + δW = nCV dT + pdV = nCVRdT + p
nRdT

p︸ ︷︷ ︸
car p est constante

= n (CV +R) dT (9)

Finalement,

∆SB→C =

∫ C

B

δQ

T
= n (CV +R)

∫ C

B

dT

T
= n (CV +R) ln

(
TC
TB

)
=

5

2
nR ln

(
TC
TB

)
(10)

Application numérique :

∆SB→C = 1×
(

3

2
R +R

)
× ln

(
210

506

)
= −18 J K−1.
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e) La variation d’entropie sur le cycle
∆Scycle = 0

car l’entropie est une variable d’état : sa variation entre deux états ne dépend pas du chemin
suivi même pour un cycle irréversible.

Exercice 2

On veut construire un moteur qui fonctionne avec 3 moles d’un gaz parfait diatomique qui
parcourt un cycle composé de trois transformations réversibles : une compression adiabatique
à partir d’une température TA = 30◦C, une détente isotherme à une température TH = 80◦C et
une compression à pression constante pL = 2× 104 Pa.
a) Représentez ce cycle dans les diagrammes p− V , T − S et p− S.
b) Calculez la variation d’enthalpie pour chaque transformation en fonction des paramètres TA,
TH et pL.

c) Calculez le rendement du moteur et vérifiez qu’il est inférieur à celui qui travaille selon le
cycle de Carnot entre les mêmes températures minimale et maximale.

Indications : Constante des gaz parfaits : R = 8.314 J K−1 mol−1.

Corrigé

Le moteur fonctionne avec n = 3 moles d’un gaz parfait, donc pV = nRT . De plus, le gaz est di-
atomique, donc il a ν = 5 degrés de liberté, ce qui implique que CV = ν

2
R = 5

2
R et γ = 2+ν

ν
= 7

5
.

Les paramètres aux trois états du cycle sont :

A B C
T [K] TA = 303 TH = 353 TH = 353

p [Pa] pL = 2× 104 pL

(
TA
TH

) γ
1−γ ' 3.41× 104 pL = 2× 104

V [m3] nRTA
pL

= 0.38 nRTH
pL

(
TH
TA

) γ
1−γ ' 0.26 nRTH

pL
= 0.44

a) – Diagramme p − V : compression adiabatique A → B : ∆V < 0, ∆p > 0 et ∆T > 0 ;
détente isotherme B → C : ∆V > 0, ∆p < 0 et ∆T = 0 ; compression isobare C → A :
∆V < 0, ∆p = 0 et ∆T < 0.

– Diagramme T − S : compression adiabatique A → B : pas d’échange de chaleur donc
∆S = 0 et ∆T > 0 ; détente isotherme B → C : ∆T = 0 donc ∆U = 0 donc δQ = δW et
δW > 0 car ∆V > 0 donc ∆S > 0. Compression isobare C → A : ∆T < 0 et ∆S < 0. La
dépendance T = f(S) n’est pas forcément connue...

– Diagramme p− S : il se déduit aisément des deux autres.
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S

Tp

V

A

B

C A

CB

p

B

C

S

A

b) La variable d’état enthalpie est définie comme H ≡ U + pV . La variation d’enthalpie est
donnée par :

dH = dU + d(pV ) = dU + pdV + V dp = nCV dT + pdV + V dp.

Ainsi, on obtient :

∆H =

∫ f

i

nCV dT +

∫ f

i

pdV +

∫ f

i

V dp = nCV (Tf − Ti) +

∫ f

i

pdV︸ ︷︷ ︸
Wi→f

+

∫ f

i

V dp (11)

Il est important de noter que l’entropie et l’enthalpie sont des variables d’état, ce qui signifie
que leur variation ne dépent pas du chemin suivi, mais seulement de l’état intial et final.
Donc pour un cycle complet, on a :

∆Scycle = 0 J K−1 et ∆Hcycle = 0 J.

A→ B :
C’est une transformation adiabatique, donc il n’y a pas d’échange de chaleur : QA→B = 0.

∆HA→B = ∆UA→B +WA→B︸ ︷︷ ︸
=QA→B=0

+

∫ B

A

V dp

=

∫ B

A

V dp =

∫ B

A

(
pAV

γ
A

p

) 1
γ

dp =
p

1
γ

AVA
1− 1

γ

(
p
1− 1

γ

B − p
1− 1

γ

A

)
(12)

=
p

1
γ

L

(
nRTA
pL

)
1− 1

γ

(pL(TA
TH

) γ
1−γ
)1− 1

γ

− p
1− 1

γ

L


= ...

⇒ ∆HA→B =
γ

γ − 1
nRTA

(
TH
TA
− 1

)
=

7

2
nR(TH − TA) (13)

=
7

2
× 3× 8.314 (353− 303) ' 4.36× 103 J

On peut arriver plus vite (et plus surement !) au résultat avec :

∆HA→B = ∆Hcycle︸ ︷︷ ︸
=0

−∆HB→C︸ ︷︷ ︸
=0

−∆HC→A
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B → C : isotherme

∆HB→C = nCV (TC − TB)︸ ︷︷ ︸
=0

+

∫ C

B

pdV +

∫ C

B

V dp =

∫ C

B

nRTH
V

dV +

∫ C

B

nRTH
p

dp

= nRTH ln

(
VC
VB

)
+ nRTH ln

(
pC
pB

)
= nRTH

(
ln

(
pB
pL

)
+ ln

(
pL
pB

))
⇒ ∆HB→C = nRTH

(
ln

(
pB
pL

)
− ln

(
pB
pL

))
= 0 J. (14)

On a utilisé VC
VB

= nRTH
pL

pB
nRTH

= pB
pL

.

C → A : isobare

∆HC→A = nCV (TA − TC) +

∫ A

C

pdV +

∫ A

C

V dp

= nCV (TA − TC) + pL(VA − VC) + 0

= nCV (TA − TH) + pL

(
nRTA
pL

− nRTH
pL

)
⇒ ∆HC→A = nCV (TA − TH) + nR(TA − TH) =

7

2
nR(TA − TH) (15)

=
7

2
× 3× 8.314× (303− 353) ' −4.36× 103 J

c) Le rendement du moteur est donné par :

η =
|Wcycle|
|QH |

= 1− |QL|
|QH |

(16)

De plus, d’après le premier principe de la thermodynamique :

Q = ∆U +W.

On en déduit que :

QH = ∆UBC +WBC = 0 +

∫ C

B

pdV = nRTH

∫ C

B

dV

V
= nRTH ln

(
VC
VB

)

= nRTH ln

(
pB
pL

)
= nRTH ln

pL
(
TA
TH

) γ
1−γ

pL

 = nRTH ln

((
TA
TH

) γ
1−γ
)

⇒ QH = nRTH
γ

1− γ
ln

(
TA
TH

)
= nRTH

γ

γ − 1
ln

(
TH
TA

)
(17)

= 3× 8.314× 7

2
× 353× ln

(
353

303

)
' 4.70× 103 J
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QL = ∆UCA +WCA = nCV (TA − TC) +

∫ A

C

pdV

= nCV (TA − TC) + pL(VA − VC)

⇒ QL = ∆HC→A =
7

2
nR(TA − TH) (18)

=
7

2
× 3× 8.314× (303− 353) = −4.36× 103 J

Ce qui nous donne :

η = 1− |QL|
|QH |

= 1− 4.36× 103

4.70× 103
' 7.20 % (19)

Le rendement d’un cycle de Carnot est donné par :

ηCarnot = 1− TL
TH

= 1− 303

353
' 14.16% (20)

On obtient donc effectivement que : η < ηCarnot.

Exercice 3

Une pépite d’or de 25 g est englobée dans un bloc de glace de masse 3 kg qui flotte sur un lac.
On veut faire couler le bloc afin de déposer la pépite d’or au fond du lac. Pour cela on chauffe
le bloc avec une puissance de 300 W.
a) Quelle masse de glace doit fondre afin que le bloc puisse couler ?
b) Au bout de combien de temps le bloc coulera si sa température est 0℃ ?
c) On suppose maintenant que la température initiale de la glace est -3℃. Est-ce que le fait

de pousser le bloc de glace à 10 m de profondeur, où la pression a doublé par rapport à la
surface, joue un rôle significatif dans la durée du processus de fonte ? Justifiez votre réponse
sur la base d’une analyse d’ordres de grandeur. On utilisera l’équation de Clausius-Clapeyron
pour la transition de phase solide-liquide à température constante : dpL

dT
=

mLf
T (VL−VS)

.

Indications : Masse volumique de l’or ρor = 19.3 × 103 kg m−3 ; Masse volumique de la glace
ρglace = 916 kg m−3 ; Chaleur latente de fusion de la glace Lf = 3.33 × 105 J kg−1 ; 1 atm =
1.013 × 105 Pa ; Principe d’Archimède : ”Tout corps plongé dans un fluide subit une poussée
verticale, dirigée de bas en haut, égale au poids du fluide déplacé”.

Corrigé

a) La condition pour l’immersion complète du bloc est que sa densité soit plus grande que
celle de l’eau. On peut trouver cette condition aussi en disant que la norme du poids du bloc
|~Fg,bloc| doit être plus grand que la norme de la force d’Archimède |~FA| pour le cas où tout le
volume du bloc est submergé :

|~Fg,bloc| ≥ |~FA| ⇒ mblocg ≥ meaug = Vblocρeaug ⇒
mbloc

Vbloc
= ρbloc ≥ ρeau (21)
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La masse et le volume du bloc sont une combinaison de l’or et de la glace, donc on peut
résoudre l’inégalité ci-dessus pour la seule inconnue : la masse de glace à partir de laquelle le
bloc coulera, notée mgl,1 :

mbloc

Vbloc
≥ ρeau ⇒

mor +mgl,1

Vor + Vgl,1
≥ ρeau ⇒

mor +mgl,1

mor
ρor

+
mgl,1
ρglace

≥ ρeau

⇒ mor +mgl,1 ≥
(
mor

ρor
+
mgl,1

ρglace

)
ρeau ⇒ mor −mor

ρeau
ρor
≥ mgl,1

ρeau
ρglace

−mgl,1

⇒ mgl,1 ≤ mor

1− ρeau
ρor

ρeau
ρglace

− 1
(22)

Application numérique :

mgl,1 ≤ 25× 10−3 ×
1− 1000

19.6×103
1000
916
− 1

= 0.258 kg

Il faut donc que ∆mgl = mgl,0−mgl,1 = 3− 0.258 = 2.742 kg de glace fonde avant que le bloc
puisse couler jusqu’au fond du lac.

b) Le temps ∆t qu’il faut pour faire fondre le bloc peut être trouvé à partir de la chaleur
latente de fusion de la glace :

Pchauffage∆t = Q = ∆mglLf ⇒ ∆t =
(mgl,0 −mgl,1) Lf

Pchauffage
(23)

Application numérique :

∆t =
(3− 0.258)× 3.33× 105

300
= 3043 s = 50 min 43 s

c) En faisant l’hypothèse que le changement de la température de fusion sera petit (∆T � T ),
on peut calculer ce changement directement à partir de l’équation de Clausius-Clapeyron,
sans intégration :

dpeau
dTf

' ∆p

∆Tf
=

mLf
T (Veau − Vgl)

⇒ ∆Tf =
T (Veau − Vgl)

mLf
∆p =

T
(

1
ρeau
− 1

ρgl

)
Lf

(p10m − p0)

(24)
Application numérique

∆Tf =
273×

(
1

1000
− 1

916

)
3.33× 105

× 1.013× 105 = −0.0076 K

Ce résultat vérifie l’hypothèse ∆T � T qu’on avait fait et donc il n’y avait pas besoin
d’intégrer l’équation de Clausius-Clapeyron. On voit également que le changement de la
température de fusion à 10 m de profondeur sera très petit en comparaison avec le changement
de temperature de ∆T = |T0−Tf | = 3 ◦C avant la fonte. Le fait que le bloc est soumis à une
pression plus forte ne joue donc pas un rôle significatif sur le temps de fonte du bloc de glace.
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Alternative : On obtient le même résultat en faisant le calcul de façon rigoureuse :∫ 10m

0m

dpeau =
mLf

(Veau − Vgl)

∫ 10m

0m

dTf
Tf
⇒ p10m − p0 =

mLf
(Veau − Vgl)

ln

(
Tf,1
Tf,0

)

⇒ Tf,10m = Tf,0 exp

(
1

ρeau
− 1

ρgl

Lf
(p10m − p0)

)
Application numérique :

Tf,1 = 273× exp

((
1

1000
− 1

916

)
3.33× 105

× 1.013× 105

)
= 272.9924 K

Exercice 4

Un système A contient n fois le nombre de particules d’un autre système B. Leurs capacités
thermiques à volume constant sont liées par la relation simple CV,A = nCV,B. Initialement
chaque système est isolé, et la température du système A est plus élevée que celle du système
B. Ensuite, les deux systèmes sont mis en contact, sans changer les volumes, à travers une
cloison fixe qui laisse passer la chaleur mais pas les particules. Une fois l’équilibre atteint, les
deux températures sont identiques et égales à Tf .
a) Calculez la température d’équilibre Tf .
b) Calculez la variation d’entropie de l’univers ∆Suniv..
c) Dans le cas n � 1, montrez que Tf ' TA

(
1− 1−x

n

)
et ∆Suniv. ' CV,B(x − 1 − lnx) où

x = TB
TA

.
d) Si, en plus de la chaleur, la cloison laissait passer les particules d’un système à l’autre, la

variation d’entropie de l’univers serait-elle plus grande ou plus petite qu’au b) ? Justifiez votre
réponse par un raisonnement qualitatif.

Indications : ln(1 + ε) ' ε si ε� 1.

Corrigé

Remarque : : la donnée est un peu ambigüe. Deux approches sont possibles. Elles sont reportées
ci-dessous et ont été jugées équivalentes pour l’obtention des points.
a) La température d’équilibre est detérminée en posant la condition d’équilibre entre les échanges

de chaleur QA +QB = 0 (Toute la chaleur perdue par le système A est reçue par le système
B). De plus, le premier principe de la thermodynamique donne Q = ∆U + W = CV ∆T + 0
car aucun travail n’est fait puisqu’il n’y a pas de variation de volume.
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Approche A

QA +QB = 0

⇒ CV,A(Tf − TA) + CV,B(Tf − TB) = 0

⇒ nCV,B(Tf − TA) + CV,B(Tf − TB) = 0

⇒ Tf (n+ 1) = nTA + TB (25)

⇒ Tf =
n

n+ 1
TA +

1

n+ 1
TB =

n+ TB
TA

n+ 1
TA (26)

Approche B

QA +QB = 0

⇒ nACV,A(Tf − TA) + nBCV,B(Tf − TB) = 0

⇒ n2nBCV,B(Tf − TA) + nBCV,B(Tf − TB) = 0 car nA = nnB et CV,A = nCV,B

⇒ Tf (n
2 + 1) = n2TA + TB (27)

⇒ Tf =
n2

n2 + 1
TA +

1

n2 + 1
TB =

n2 + TB
TA

n2 + 1
TA (28)

b) Le processus d’atteinte de la température d’équilibre est un processus irreversible. On ne
sait pas calculer la variation d’entropie pour un tel processus. Cependant, l’entropie étant
une variable d’état, sa variation entre 2 états ne dépend pas du chemin suivi. On peut donc
calculer la variation d’entropie pour un processus réversible qui se passe entre les mêmes états
initial et final.
Si notre univers est constitué des deux systèmes A et B, isolés du reste, la variation d’entropie
de l’univers sera la somme des deux variations d’entropie pour A et B.

∆Suniv = ∆SA + ∆SB (29)

Dans notre système se réalise une variation de température sans changement de volume. Nous
pouvons donc calculer la variation d’entropie comme :

Approche A

∆S =

∫ Tf

T

δQ

T
= CV

∫ Tf

T

dT

T
(30)

d’où :

∆SA = nCV,B

∫ Tf

TA

dT

T
= nCV,B ln

(
Tf
TA

)
= CV,B ln

(
T nf
T nA

)
. (31)

De même,

∆SB = CV,B ln

(
Tf
TB

)
(32)
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La variation totale sera donc :

∆Suniv = CV,B ln

(
T n+1
f

T nATB

)
(33)

Approche B

∆S =

∫ Tf

T

δQ

T
= nCV

∫ Tf

T

dT

T
(34)

d’où :

∆SA = nACV,A

∫ Tf

TA

dT

T
= n2nBCV,B

∫ Tf

TA

dT

T
= n2nBCV,B ln

(
Tf
TA

)
= nBCV,B ln

(
T n

2

f

T n
2

A

)
< 0

(35)
De même,

∆SB = nBCV,B

∫ Tf

TB

dT

T
= nBCV,B ln

(
Tf
TB

)
> 0 (36)

La variation totale sera donc :

∆Suniv = nBCV,B ln

(
T n

2

f

T n
2

A

)
+ nBCV,B ln

(
Tf
TB

)
= nBCV,B ln

(
T n

2+1
f

T n
2

A TB

)
(37)

où nB est le nombre de moles contenues dans le système B.

c) Approche A

En posant x ≡ TB
TA

nous obtenons :

Tf =
n+ x

n+ 1
TA ⇒ Tf =

n+ 1− 1 + x

n+ 1
TA =

(
1− 1− x

n+ 1

)
TA. (38)

Pour n� 1, l’expression ci-dessus se simplifie comme suit :

Tf '
(

1− 1− x
n

)
TA (39)

Nous pouvons utiliser cette dernière équation pour déterminer la variation d’entropie sous la
condition n� 1 :

∆Suniv = CV,B ln

(
T n+1
f

T nATB

)
= CV,B

(
ln

(
T n+1
f

T n+1
A

)
− lnx

)

∆Suniv = CV,B [(n+ 1) lnTf − (n+ 1) lnTA − lnx]

' CV,B

[
(n+ 1) ln

((
1− 1− x

n

)
TA

)
− (n+ 1) lnTA − lnx

]
' CV,B

[
(n+ 1) ln

(
1− 1− x

n

)
+ (n+ 1) lnTA − (n+ 1) lnTA − lnx

]
⇒ ∆Suniv ' CV,B

[
(n+ 1) ln

(
1− 1− x

n

)
− lnx

]
(40)
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En remarquant que ln(1 + ε) ' ε si ε� 1, l’équation précédente devient :

∆Suniv ' CV,B

(
n+ 1

n
(x− 1)− lnx

)
puisque

x− 1

n
� 1 (41)

Finalement,

∆Suniv ' CV,B (x− 1− lnx) puisque
n+ 1

n
' 1 pour n→∞ (42)

Approche B

En posant x ≡ TB
TA

nous obtenons :

Tf =
n2 + x

n2 + 1
TA ⇒ Tf =

n2 + 1− 1 + x

n2 + 1
TA =

(
1− 1− x

n2 + 1

)
TA. (43)

Pour n� 1, l’expression ci-dessus se simplifie comme suit :

Tf '
(

1− 1− x
n2

)
TA (44)

Nous pouvons utiliser cette dernière équation pour déterminer la variation d’entropie sous la
condition n� 1 :

∆Suniv = nBCV,B ln

(
T n

2+1
f

T n
2

A TB

)
= nBCV,B ln

(
T n

2+1
f

T n
2+1

A

TA
TB

)
= nBCV,B

(
ln

(
T n

2+1
f

T n
2+1

A

)
− lnx

)

∆Suniv = nBCV,B

[
(n2 + 1) ln

(
Tf
TA

)
− lnx

]
' nBCV,B

[
(n2 + 1) ln

((
1− 1−x

n2

)
TA

TA

)
− lnx

]

⇒ ∆Suniv ' nBCV,B

[
(n2 + 1) ln

(
1− 1− x

n2

)
− lnx

]
(45)

En remarquant que ln(1 + ε) ' ε si ε� 1, l’équation précédente devient :

∆Suniv ' nBCV,B

(
n2 + 1

n2
(x− 1)− lnx

)
puisque

x− 1

n
� 1 (46)

Finalement,

∆Suniv ' nBCV,B (x− 1− lnx) puisque lim
n→+∞

n2 + 1

n2
= 1 (47)

d) Si la cloison laisse passer les particules en plus de la chaleur, il y aura toujours équilibre des
températures mais en plus les particules de A et de B vont se mélanger entre elles pour tendre
vers un état de désordre plus élevé (augmentation du nombre de micro-états possibles) donc
l’augmentation d’entropie sera plus élevée qu’au b).
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Exercice 5

Le corps d’un homme peut être considéré comme un cylindre de 1.8 m de long et 30 cm de
diamètre. La température à l’intérieur du corps reste constante (37℃), mais la température
à la surface varie en fonction des conditions extérieures. La peau, d’épaisseur 10 mm, a une
conductibilité thermique de kpeau = 0.7 W m−1 ◦C−1 et est recouverte d’une couche d’air, piégé
par les habits que l’homme porte, de 4 mm d’épaisseur et de conductibilité thermique kair =
0.025 W m−1 ◦C−1.
a) Pendant la journée, l’homme reste à l’ombre, dans de l’air à 45 ℃. En négligeant le rayon-

nement et la convection, calculez la température de la surface externe de sa peau.
b) Si l’homme transpire, on peut considérer que la couche d’air est remplacée par une couche

d’eau (keau = 0.6 W m−1 ◦C−1) de même épaisseur. L’évaporation de cette couche l’aide à
évacuer de la chaleur. Si l’on suppose que tout ce que l’homme boit donne lieu à évaporation,
combien de litres d’eau doit-il boire par heure au minimum pour que la température de la
couche externe de sa peau soit égale à la température du corps ? La température extérieure
est toujours de 45℃. On néglige les pertes de chaleur par rayonnement.

c) Pendant la nuit, l’air se refroidit et la température de la couche externe de la peau vaut 8℃.
On peut négliger tout transfert de chaleur sauf l’échange d’énergie par rayonnement avec le
ciel, sans nuage ni lune, qui peut être considéré comme un corps noir à une température de
-30℃. En supposant que l’émissivité de la couche externe de la peau est e = 0.85, calculez la
puissance que l’homme doit utiliser pour maintenir sa température interne à 37℃. A combien
de plaques de chocolat de 100 g correspond l’énergie qu’il doit consommer durant la nuit (8h) ?

Indications : On négligera la surface des extrémités du cylindre. On négligera tous les effets dus
aux habits portés ; Chaleur latente de vaporisation de l’eau Lv = 2.257× 106 J kg−1 ; Constante
de Stefan-Boltzmann : σB = 5.67× 10−8 W m−2 K−4 ; Valeur énergétique d’une plaque de cho-
colat de 100 g : 520 kcal ; 1 cal = 4.184 J

Corrigé

a) La surface extérieure de l’homme vaut (on néglige la surface des extrémités du cylindre) :

Scyl = πdh = π × 0.3× 1.8 = 1.696 m2 (48)

La température de la surface de la peau est représentée par Tsp. Le flux de chaleur qui traverse
la couche de peau est égal au flux qui traverse la couche d’air. On obtient :

Jpeau = Jair ⇒
kpeau
dpeau

(Tsp − Tcorps) =
kair
dair

(Text − Tsp)

kpeau
dpeau

Tsp +
kair
dair

Tsp =
kair
dair

Text +
kpeau
dpeau

Tcorps

kpeaudair
dpeaudair

Tsp +
kairdpeau
dpeaudair

Tsp =
kairdpeau
dpeaudair

Text +
kpeaudair
dpeaudair

Tcorps

(kpeaudair + kairdpeau)Tsp = kairdpeauText + kpeaudairTcorps

⇒ Tsp =
kairdpeauText + kpeaudairTcorps

kpeaudair + kairdpeau
(49)
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Application numérique :

Tsp =
318× 0.025× 0.01 + 310× 0.7× 0.004

0.025× 0.01 + 0.7× 0.004
= 310.65 K = 37.65 ◦C (50)

b) La température da la couche externe de la peau est la même que la température du corps
(Tsp = Tcorps = 37◦C = 310 K) donc il n’y a pas de flux de chaleur à travers la peau. Tout le
flux de chaleur qui traverse la couche d’eau va évaporer l’eau de la transpiration à la surface
externe de la peau. La masse, et donc le volume, d’eau qui s’évapore se détermine en égalisant
les quantités de chaleur :

Qevap = Jeau × Scyl ×∆t⇒ meauLv =
keau
deau

Scyl(Text − Tsp)∆t

⇒ meau =
keauScyl(Text − Tsp)

deauLv
∆t (51)

Application numérique : Pour ∆t = 1 h = 3600 s,

meau =
0.6× 1.696× (318− 310)× 3600

0.004× 2.257× 106
' 3.24 kg (52)

Le volume d’eau à boire par heure est donc 3.24 l.
c) Tsp vaut maintenant 8 ◦C (281 K). La surface de la peau émet de la chaleur par rayonnement

à la température Tsp et absorbe la chaleur émise par le ciel à la température Tciel. La puissance
rayonnée nette est donnée par :

Pray = eσBScyl(T
4
sp − T 4

ciel) (53)

Application numérique :

Pray = 0.85× 5.67× 10−8 × 1.696× (2814 − 2434) = 224.6 W (54)

L’énergie rayonnée au cours de la nuit (8 heures) est :

Eray = Pray ∆tnuit = 224.6× 8× 3600 ' 6.45× 106 J ' 1.54× 106 cal = 1540 kcal

Pour maintenir sa température, l’homme doit fournir cette quantité d’énergie à partir des
plaques de chocolat. Il doit manger :

Nplaques =
Eray

Eplaque

=
1540

520
' 3. (55)

dpeau

kpeau

Tcorps = 37◦C

b)

keau

deau

Tsp = 37◦C

conduction

évaporation

conduction

dpeau

kpeau Tsp

kair

Tcorps = 37◦C

dair

a)

Text = 45◦C Text = 45◦C
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