Physique générale 11
CORRIGE DE L’EXAMEN DU 19 JUIN 2015

Prof. A. Fasoli

Exercice 1

Une mole de gaz idéal monoatomique suit un cycle thermodynamique constitué par une transfor-
mation adiabatique réversible AB (V4 = 191, Ty = 308 K, V = 91) suivie d’une transformation
isobare irréversible BC' effectuée en maintenant le gaz en contact avec un réservoir a tempé-
rature T = 210K, suivie d'une isotherme réversible CD (Vp = 51), durant laquelle le gaz
reste en contact avec le méme réservoir et enfin une détente réversible DA, représentée dans le
diagramme p — V' par un segment décrit par la relation p = pp + % (V —Vp).

a) Représentez le cycle dans le diagramme p — V. S’agit-il d’un cycle moteur ou réfrigérateur ?
b) Calculez la température au point B.

c¢) Calculez le travail effectué et la chaleur échangée pour chacune des transformations du cycle.
d) Calculez la variation d’entropie du gaz pour la transformation irréversible BC'

e) Calculez la variation d’entropie du gaz pour le cycle complet.

Indications : Constante des gaz parfaits : R = 8.314 J K~ mol~!.

Corrigé

R.

[\ o)

a) Gaz parfait monoatomique : v = g et Cy =
Les 4 transformations du cylce sont :
— A — B compression adiabatique : Vg < V4 et pg > pa.
— B — C compression isobare irréversible : Vo < Vg et pc < pp mais on ne peut pas
tracer directement de ligne entre B et C.
— (' — D détente isotherme : Vp > Vi et pp > pe.
— D — A détente linéaire.
Le cycle tourne dans le sens anti-horaire. Il s’agit donc d’un réfrégirateur.

A
p
Coowuro B
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b) Pour une transformation adiabatique, on a TV = cte = TV ' = TV 1.
A B

To— T (3—3) )
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Application numérique :

5
19 x 1073\ 3
Ty — 308 x (u) — 506K

9 x 103
.
On peut arriver au méme résultat en utilisant T = % avec pg = pa (%) et pa = nR%.
c¢) Calculons les parametres aux 4 points du cycle :
A B C D

v—1

T [K] 308 Ty (1) =s06 210 Te
Y

p [Pa] | ML — 1.35 % 10° | py (V—g) — 4.68 x 107 o5 nRTe — 349 x 10°
V [m3] 19 x 1073 9 x 1073 we = 3.7 x 107 5x 1073

Calculons maintenant les travaux effectués et chaleurs échangés :
A — B : transformation adiabatique donc pas d’échange de chaleur

QA%B =0J

B B av C L )
Wag = / pdV = C/ Z i (VB_V — VA_V) avec C' = pu V),
A A -7

PaVa [ (V\"? nRT ( (Ve\' 7
|/'/ = _— —_ 1 = _— —_ 1 _= —24 2
S Y <<VA) L=~ \\Va 0 @

B — C' :isobare irréversible
Le travail n’étant pas une variable d’état, sa valeur dépend du chemin suivi :

c
W= [ pdv
B
Or on ne sait pas comment varie la pression en fonction du volume le long du chemin irré-
versible donc on ne peut pas calculer directement le travail.
Cependant, on pourrait calculer le travail a partir du premier principe,

Wpoe = Qpse — AUpe = Qpse — nCy (T — T'B),

mais on ne connait pas la quantité de chaleur échangée au cours de cette transformation.

Il n’est donc pas possible de calculer le travail avec les données du probleme pour cette
transformation irréversible. Pour continuer, on peut approximer cette transformation par une
transformation réversible (ou une combinaison de transformations réversibles) pour lesquelles
on peut calculer le travail effectué. Par exemple, on peut approximer la transformation isobare
irréversible BC par une isobare réversible ainsi on obtient :

C C
Wéelc = /B pdV = pB/B dv = pB(VC — VB) = —2480J (3)



AUp o = gnR(TC — Tp) = —3691J

Qpsc =AUpc+WgY o~ —6174] (4)
C — D : isotherme
AUcp=01J
‘WHD=/DMVZ/QEELszRR/D@QZMHMHC@):5%J (5)
c c V c V Ve
Qc—p = AUc—p + Weop =525 (6)

D — A : détente

A A pA—p
Wpsa = / pdV = / pp +a(V = Vp)dV avec o = =2
D D Va—Vp

A A
= pD/ dV+a/ (V—VD)dV

D D

Vi — Vp)? |
= pp(Va—"Vp) + &(ATD) =pp(Va—Vp)+ §(PA —pp)(Va—Vp)
1
= Wpoa = §(pA +pp)(VA — VD) = 3388J (7)
43 3
AUpoa = [ SnRAT = SnR(Ty—Tp) = 1222

D

Qpoa = AUpa+Wpa=4602] (8)

On vérifie que AUqyce ~ 0 comme attendu.

d) On ne sait pas calculer la variation d’entropie pour une transformation irréversible. Cepen-
dant ’entropie étant une variable d’état, sa variation entre 2 états ne dépend pas du chemin
suivi mais seulement des états initial et final. On peut donc calculer la variation d’entropie
sur BC pour une transformation équivalente réversible (par exemple, une isobare réversible)
avec

C 5@
ASB—»C :/B ?
Le premier principe de la thermodynamique s’écrit : dU = @) — 6W donc
nRdT
0Q = dU 4+ oW = nCydT + pdV =nCyRdT + p =n(Cy+R)dT (9)
\“E_./

car p est constante
Finalement,
AS —/CéQ—n(C' +R)/CdT—n(C' + R)In Te —5ann Te (10)
B%C’—BT— \%4 BT— \% TB —2 TB

Application numérique :

210

~— ) =—-18JK L
506)

ASg ,c=1x (;R+R) Xln(



e) La variation d’entropie sur le cycle
AScycle =0

car I'entropie est une variable d’état : sa variation entre deux états ne dépend pas du chemin
suivi méme pour un cycle irréversible.

Exercice 2

On veut construire un moteur qui fonctionne avec 3 moles d'un gaz parfait diatomique qui

parcourt un cycle composé de trois transformations réversibles : une compression adiabatique

a partir d’'une température Ty = 30°C, une détente isotherme a une température Ty = 80°C et

une compression a pression constante p; = 2 x 10* Pa.

a) Représentez ce cycle dans les diagrammes p — V|, T — S et p— S.

b) Calculez la variation d’enthalpie pour chaque transformation en fonction des parametres Ty,
TH et PL-

c¢) Calculez le rendement du moteur et vérifiez qu'il est inférieur a celui qui travaille selon le
cycle de Carnot entre les mémes températures minimale et maximale.

Indications : Constante des gaz parfaits : R = 8.314 J K~ mol~!.

Corrigé

Le moteur fonctionne avec n = 3 moles d’un gaz parfait, donc pV' = nRT. De plus, le gaz est di-

atomique, donc il a v = 5 degrés de liberté, ce qui implique que Cy = £ R = %R ety = HT” = %

Les parametres aux trois états du cycle sont :

A B C
TIK | Tx=303 Ty = 353 Ty = 353
p[Pa] | pr=2x10* | pr (%) T 341 x 10 | pp =2 x 10
e/
V] | 2038 | BT (L)~ 006 | 25— 044
PL ) DL Ta - PL )

a) — Diagramme p — V' : compression adiabatique A — B : AV < 0, Ap > 0 et AT > 0;
détente isotherme B — C : AV > 0, Ap < 0 et AT = 0; compression isobare C' — A :
AV <0, Ap=0et AT < 0.

— Diagramme T — S : compression adiabatique A — B : pas d’échange de chaleur donc
AS =0 et AT > 0; détente isotherme B — C' : AT =0 donc AU = 0 donc §Q) = W et
OW > 0 car AV > 0 donc AS > 0. Compression isobare C' — A : AT <0 et AS < 0. La
dépendance T' = f(S) n’est pas forcément connue...

— Diagramme p — S : il se déduit aisément des deux autres.



v S
b) La variable d’état enthalpie est définie comme H = U + pV. La variation d’enthalpie est
donnée par :

dH = dU + d(pV) = dU + pdV + Vdp = nCydT + pdV + Vdp.

Ainsi, on obtient :

! ! ! f !
AH—/ nC’wiT—i—/ pdV—i—/ Vdp—nC’V(Tf—Ti)—l—/ pdV—i—/ Vdp (11)

Wi%f

Il est important de noter que I'entropie et ’enthalpie sont des variables d’état, ce qui signifie
que leur variation ne dépent pas du chemin suivi, mais seulement de 1’état intial et final.
Donc pour un cycle complet, on a :

AScyCle =0J Kil et AHcycle =01J.

A— B:
C’est une transformation adiabatique, donc il n’y a pas d’échange de chaleur : Q4,5 = 0.

B

AHyp = \AUA—>B+WA—>B+/ Vdp
:QA:B:O A
B B -~ o
V v V _1 _1
C va [ () B )y
A A P ==
1
5 nR ol 17l
Pr ( pZA> Ta\™ ! 1-2
= 1 1 pL T_H —Pr,
AH = Th|l ——1) == Ty —T 1
= AH,,p - 1nR A (TA ) 2nR( 1 —Tha) (13)

7
= 5 x3x8314 (353 — 303) ~ 4.36 x 10*J

On peut arriver plus vite (et plus surement!) au résultat avec :

A1T—[AHB = All—_[cycle - AFIB%C _AHCHA
—_—



B — C : isotherme

T T,
AHpoc = ”CV(TG—TB)+/ pdV+/ Vdp=/ n]?/HanL/ nhilw o
—_—

On a utilisé

B B B B p

0
) (5) (3 (2
VB DB L DB

= AHp,c = nRTy <ln (@> “In (@» =0J. (14)

Ve _ nRTy _pB
B

Vi PL nRTH

C — A :isobare

A]—IC—>A

= A]—IC’—>A

pPL PL

p

pL’

A A
nCy(Ta — Te) + / pdV + / Vdp
C C

TLCV(TA - Tc) +pL(VA - Vc) +0

nRT nRT
nCyv(Ts — Tu) + pr ( 4 H)
L pL
7
nCyv(Ta —Ty) +nR(Ts —Ty) = §”R(TA —Tw) (15)

7
5 X3 x 8314 % (303 — 353) ~ —4.36 x 10°J

¢) Le rendement du moteur est donné par :

_ |chcle’ -1 ‘QL’

=1— 16
Lo Qnl 10
De plus, d’apres le premier principe de la thermodynamique :
Q=AU+ W.
On en déduit que :
c c
av Vi
Qu = AUBc+WBC:0+/ pdV:nRTH/ — =nRIyln e
B B V VB
Ta ﬁ o
ne () Ty\™7
= nRIyln <@) =nRIlyIn SCLVAN nRITy In ((—A) 7)
PL PL Ty
Y Ta i Ty
= Th——In|— ) =nRly——In| — 1
= Qu nR Hl—WH(TH> nR Hv—ln(TA) (17)

353

7
= 314 x = In(=—) ~4. 103
3 x &3 ><2><353><n(303> 70 x 10°J
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A
Qr = AUca+Wea=nCy(Ts —Tc) + / pdV

c
= nC\/(TA — Tc) —l—pL(VA — Vc)
7
= Qr = AHcesa= §nR(TA —Th) (18)

7
= 5 x3x 8314 x (303 -353) = —4.36 x 10°J

Ce qui nous donne :
|QL] 1 4.36 x 103

=1- = ~ 7.20 % 19
Qx| 470 x 10° ’ (19)
Le rendement d’un cycle de Carnot est donné par :
17, 303
amnot = 1 — —— = 1 — —— ~ 14.16 20
MICarnot Ty 353 % (20)

On obtient donc effectivement que : 7 < Ncarmot-

Exercice 3

Une pépite d’or de 25 g est englobée dans un bloc de glace de masse 3 kg qui flotte sur un lac.

On veut faire couler le bloc afin de déposer la pépite d’or au fond du lac. Pour cela on chauffe

le bloc avec une puissance de 300 W.

a) Quelle masse de glace doit fondre afin que le bloc puisse couler ?

b) Au bout de combien de temps le bloc coulera si sa température est 0°C 7

¢) On suppose maintenant que la température initiale de la glace est -3°C. Est-ce que le fait
de pousser le bloc de glace a 10 m de profondeur, ou la pression a doublé par rapport a la
surface, joue un role significatif dans la durée du processus de fonte ? Justifiez votre réponse
sur la base d’une analyse d’ordres de grandeur. On utilisera 1’équation de Clausius-Clapeyron
pour la transition de phase solide-liquide a température constante : %E = T(\T/nL—L—fV:g)

Indications : Masse volumique de l'or p,, = 19.3 x 103kgm™2; Masse volumique de la glace

Peace = 916kgm™3; Chaleur latente de fusion de la glace Ly = 3.33 x 10° Jkg™'; latm =

1.013 x 10° Pa; Principe d’Archimede : "Tout corps plongé dans un fluide subit une poussée

verticale, dirigée de bas en haut, égale au poids du fluide déplacé”.

Corrigé

a) La condition pour I'immersion complete du bloc est que sa densité soit plus grande que
celle de 'eau. On peut trouver cette condition aussi en disant que la norme du poids du bloc
\ﬁg,bloc] doit étre plus grand que la norme de la force d’Archimede \ﬁ 4| pour le cas ou tout le
volume du bloc est submergé :

‘ﬁg,bloc’ Z |ﬁA| = Mplocd 2 Mequd = ‘/blocpeaug =



La masse et le volume du bloc sont une combinaison de l'or et de la glace, donc on peut
résoudre I'inégalité ci-dessus pour la seule inconnue : la masse de glace a partir de laquelle le
bloc coulera, notée mgy; ; :

Mp; Meor + Mgl 1 Mor + Mg 1
= > Peau = - . > Pean = mor mi T = Peau
‘/bloc ‘/07“ + ‘/gl 1 oL+ ’
’ Por Pglace
Mor Mgl Peau Pea
= Moy + mgl,l Z ( + —& eau = Moy — Moy > mgl,l - gl,1
Por Pylace Por Pylace
1 __ Peau
Por
= Mg < Mor Jea 1 (22)
Pglace
Application numérique :
1000
_ 3
mg1 < 25 x 1072 x —100396*10 = 0.258kg
916

I1 faut donc que Amg = Mg o — M1 = 3 —0.258 = 2.742kg de glace fonde avant que le bloc
puisse couler jusqu’au fond du lac.

b) Le temps At qu’il faut pour faire fondre le bloc peut étre trouvé a partir de la chaleur
latente de fusion de la glace :

Mgro — Mg1) Ly

PchauffageAt = Q = A/'nglLf = At = ( (23)

Pchauffage

Application numérique :

3 — 0.258) x 3.33 x 10°

(
At =
300

= 3043 s = 50min 43s

¢) En faisant 'hypothese que le changement de la température de fusion sera petit (AT < 7)),
on peut calculer ce changement directement a partir de I’équation de Clausius-Clapeyron,
sans intégration :

1 1
dpeau Ap mLf T(‘/eau - Vl) T (Peau - P_l>
~ = = ATy = L2 Ap = 2 (prom — Po)
ATy — ATy T(Vigu — Vy) ! mL; Ly "
Application numérique
273 x (b — o)
AT, = 10009167 » 1,013 x 10° = —0.0076 K
d 333% 100 8

Ce résultat vérifie 'hypothese AT < T qu’on avait fait et donc il n’y avait pas besoin
d’intégrer 1’équation de Clausius-Clapeyron. On voit également que le changement de la
température de fusion a 10 m de profondeur sera tres petit en comparaison avec le changement
de temperature de AT = |Tj — T| = 3°C avant la fonte. Le fait que le bloc est soumis & une
pression plus forte ne joue donc pas un role significatif sur le temps de fonte du bloc de glace.

8



Alternative : On obtient le méme résultat en faisant le calcul de facon rigoureuse :

10m 10m
mLf de mLf Tf 1
dpeau = / = Piom — Po = In 7
/Om (‘/eau - ‘/gl) 0om Tf (Vveau - ‘/gl) Tf,O

1 1
= Ttiom = T exp <M<p10m - po))

Ly

Application numérique :

N
Tp1 =273 X exp (% x 1.013 x 105> = 272.9924K

Exercice 4

Un systeme A contient n fois le nombre de particules d’un autre systeme B. Leurs capacités
thermiques a volume constant sont liées par la relation simple Cy, 4 = nCy p. Initialement
chaque systeme est isolé, et la température du systeme A est plus élevée que celle du systeme

B. Ensuite, les deux systemes sont mis en contact, sans changer les volumes, a travers une

cloison fixe qui laisse passer la chaleur mais pas les particules. Une fois 1’équilibre atteint, les

deux températures sont identiques et égales a 7.

a) Calculez la température d’équilibre T7.

b) Calculez la variation d’entropie de I'univers AS,;y ..

c) Dans le cas n > 1, montrez que Ty =~ Ty (1 — 1—733) et ASyny. >~ Cyp(x — 1 —Inx) ou
p=1Io.

d) Si, en plus de la chaleur, la cloison laissait passer les particules d’un systeme a l'autre, la
variation d’entropie de I'univers serait-elle plus grande ou plus petite qu’au b) 7 Justifiez votre
réponse par un raisonnement qualitatif.

Indications : In(1 +¢€) ~esie < 1.

Corrigé

Remarque : : la donnée est un peu ambigiie. Deux approches sont possibles. Elles sont reportées

ci-dessous et ont €té jugées équivalentes pour l’obtention des points.

a) La température d’équilibre est detérminée en posant la condition d’équilibre entre les échanges
de chaleur Q4 + @p = 0 (Toute la chaleur perdue par le systeme A est regue par le systeme
B). De plus, le premier principe de la thermodynamique donne Q = AU +W = Cy AT + 0
car aucun travail n’est fait puisqu’il n'y a pas de variation de volume.



Approche A

Qa+0Qp = 0
= C\/,A<Tf — TA) + C\/73<Tf — TB) =0
= HCMB(Tf — TA) + CV7B(Tf — TB) = 0

= Tf(ﬂ‘i‘l) = nly+1T15 (25)
n 1 n—}-;—B
I+ A+n+1 & n+1 4 (26)
Approche B
Qa+Q@p = 0
= nACMA(Tf — TA) + nBCV,B(Tf — TB) =0
= nQnBC'uB(Tf — TA) + TZBCVB(Tf — TB) = 0 car np=nng et OV,A = TZCV’B
= Tin*+1) = n*Ta+Ts (27)
n? 1 n? + 1o

= T,= T s = ——2T 28
Iyl A+n2+1 B n2+1 4 (28)

b) Le processus d’atteinte de la température d’équilibre est un processus irreversible. On ne
sait pas calculer la variation d’entropie pour un tel processus. Cependant, I'entropie étant
une variable d’état, sa variation entre 2 états ne dépend pas du chemin suivi. On peut donc
calculer la variation d’entropie pour un processus réversible qui se passe entre les meémes états
initial et final.

Si notre univers est constitué des deux systemes A et B, isolés du reste, la variation d’entropie
de l'univers sera la somme des deux variations d’entropie pour A et B.

ASuie = AS4 + ASp (29)

Dans notre systeme se réalise une variation de température sans changement de volume. Nous
pouvons donc calculer la variation d’entropie comme :

Approche A
1 6Q Trar
AS = — = -
s /T 2 —a /T - (30)
d’otur :
ASy = nC /deT Cypl (Tf) Cypl (T?> (31)
=N — =N 1 p— = n e .
A V,B . T V,B T, V,B T
De méme,
Ty
ASB:C\/’BIH e (32)
Tp
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La variation totale sera donc :

ASuniv = CV,B In (

Approche B

d’ou :

Trar
—_— =N nBCV,B

ASA = HACV,A/

Ta

De méme,
Ty
ASp = nBCV,B /
T
La variation totale sera donc :

n2

n2

ASuniv = nBC'MB In (
A

/Tf dT
v, T

dT

T

T T T
! ) + nBC‘/,B In (—f) = nBCV7B In (
Ts

Tn+1

f
T Tg

)

n2+1

)

f
TV Tg

ol npg est le nombre de moles contenues dans le systeme B.

c) Approche A

En posant x = % nous obtenons :
n+ax n+l-1+x 1—=
T, = T = 1T;= Ty=11- Ty.
IS R ! n+1 4 ( n+1> 4

Pour n > 1, I’expression ci-dessus se simplifie comme suit :

Nous pouvons utiliser cette derniere équation pour déterminer la variation d’entropie sous la

condition n > 1 :
Tn+1

f
T Ty

ASuniv = CV7B In (

ASuniv -
~ Cyp (n—l—l)ln((l—
>~ CV,B (n + 1) In (1 —
= ASuniv ~ CV,B (TL + 1) In (1 —

>:

Cvplin+1)InTy — (n+1)InT4 — Inz]
1—

n

11—z

n

11

1—=zx

)7

Tn+1
Cvp | In Tfn—+1 —Inzx
A

T

> TA> —(n+1)InTy — 1nx1

I) +(n+1)InTy—(n+1)InTy —ln:c}

)]

Trdr
= nC’V/ —
r T
T T}
— nQHBCV,B In (T_f) =npCypln <TJ;2> <0
A A
T
= nBCV,B In (T—f> >0
B

(37)

(38)

(39)

(40)



En remarquant que In(1 + €) ~ € si € < 1, I"équation précédente devient :

1 -1
ASuniv ~ Cy p (n + (x—1)—1In x) puisque r—- <1 (41)
n
Finalement,
) n+1
ASuiv ¥ Cyp(r —1—1Inz) puisque —— ~1 pour n — oo (42)
n
Approche B
En posant x = ;—B nous obtenons :
A
n®+x n+1—-14+z 1—=2
N ! n?+1 A ( n2+1) A (43)
Pour n > 1, I'expression ci-dessus se simplifie comme suit :
1—=2
Ty~ (1 - ) Ty (44)

Nous pouvons utiliser cette derniere équation pour déterminer la variation d’entropie sous la
condition n > 1 :

T}12+1 T}#H T, T}12+1
ASuniv = TLBCV’B In <T22T3> = nBCV,B In (W@) = nBC’VyB (ln (W) — 1n:1:>

[ T

ASuiv = npCyp |(n”+1)In (—f> —1In x}
Ta
(1

— ;290 T
~ nBCV,B (n2+1)ln <T—7;)A> —lnx]

= ASumiv =~ npCyp -(nz +1)In (1 1 T;x) —1In :c} (45)
En remarquant que In(1 +€) ~ e si e <<_1, I’équation précédente devient :
ASuniv ~npCy.p (ni;— ! (x—1)—1In a:') puisque xT—l <1 (46)
Finalement,
ASuniy ~npCyp(x—1—1Inz) puisque nl_l)ﬂl_loo ni;— ! =1 (47)

d) Si la cloison laisse passer les particules en plus de la chaleur, il y aura toujours équilibre des
températures mais en plus les particules de A et de B vont se mélanger entre elles pour tendre
vers un état de désordre plus élevé (augmentation du nombre de micro-états possibles) donc
l'augmentation d’entropie sera plus élevée qu’au b).
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Exercice 5

Le corps d’'un homme peut étre considéré comme un cylindre de 1.8 m de long et 30 cm de

diametre. La température a l'intérieur du corps reste constante (37°C), mais la température

a la surface varie en fonction des conditions extérieures. La peau, d’épaisseur 10 mm, a une

conductibilité thermique de kpeay = 0.7 W m~1°C! et est recouverte d’une couche d’air, piégé

par les habits que ’homme porte, de 4 mm d’épaisseur et de conductibilité thermique k.; =

0.025 Wm~t°C™",

a) Pendant la journée, ’homme reste a 'ombre, dans de lair a 45 °C. En négligeant le rayon-
nement et la convection, calculez la température de la surface externe de sa peau.

b) Si ’homme transpire, on peut considérer que la couche d’air est remplacée par une couche
d'eau (kean = 0.6 Wm™! OC_l) de méme épaisseur. L’évaporation de cette couche l'aide a
évacuer de la chaleur. Si I’'on suppose que tout ce que I'homme boit donne lieu a évaporation,
combien de litres d’eau doit-il boire par heure au minimum pour que la température de la
couche externe de sa peau soit égale a la température du corps? La température extérieure
est toujours de 45°C. On néglige les pertes de chaleur par rayonnement.

¢) Pendant la nuit, lair se refroidit et la température de la couche externe de la peau vaut 8°C.
On peut négliger tout transfert de chaleur sauf ’échange d’énergie par rayonnement avec le
ciel, sans nuage ni lune, qui peut étre considéré comme un corps noir a une température de
-30°C. En supposant que ’émissivité de la couche externe de la peau est e = 0.85, calculez la
puissance que 'homme doit utiliser pour maintenir sa température interne a 37°C. A combien
de plaques de chocolat de 100 g correspond ’énergie qu’il doit consommer durant la nuit (8h) ?

Indications : On négligera la surface des extrémités du cylindre. On négligera tous les effets dus

aux habits portés ; Chaleur latente de vaporisation de I'eau L, = 2.257 x 10° Jkg=! ; Constante

de Stefan-Boltzmann : o = 5.67 x 1078 Wm 2 K~*; Valeur énergétique d’une plaque de cho-
colat de 100 g : 520 kcal; 1cal =4.184J

Corrigé

a) La surface extérieure de I'homme vaut (on néglige la surface des extrémités du cylindre) :
Seyt = mdh = 7 x 0.3 x 1.8 = 1.696 m* (48)

La température de la surface de la peau est représentée par T,. Le flux de chaleur qui traverse
la couche de peau est égal au flux qui traverse la couche d’air. On obtient :

k eau kaw
Jpeau - Jair = dp (T Tcorps) d. (Text - Tsp)
peau air
ey Fia Fa k
eau 1; Mvair Ts air Tex peau Tcor .
dpeau P * dair P dalr vt dpeau P
k eaudair kaird eau alrd eau k eaudair
P Ty, + PR, — T + = T,

k
sp sp =
dpeau dair dpeau dair dpeau dalr
Ko

(kpeaudair + kairdpeau)Tsp =

air dpeau

corps
dpeau dair

ext T kpeau daercorps

kalrdpeauText + kpeau daercorps

= Ty
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kpeau dair + kair dpeau

(49)



Application numérique :

318 x 0.025 x 0.01 + 310 x 0.7 x 0.004
T, = = 310.65 K = 37.65°C 50
P 0.025 x 0.01 + 0.7 x 0.004 (50)

b) La température da la couche externe de la peau est la méme que la température du corps
(Tsp = Teorps = 37°C = 310K) donc il n’y a pas de flux de chaleur a travers la peau. Tout le
flux de chaleur qui traverse la couche d’eau va évaporer I’eau de la transpiration a la surface
externe de la peau. La masse, et donc le volume, d’eau qui s’évapore se détermine en égalisant
les quantités de chaleur :

keau
Qevap = Jeau X Scyl X At = meauLv = d_Scyl(Text - Tsp)At
keau C Tex _Ts
= Mean = et = Top) (51)

deauL’v
Application numérique : Pour At = 1h = 3600s,

0.6 x 1.696 x (318 — 310) x 3600
0.004 x 2.257 x 106
Le volume d’eau a boire par heure est donc 3.24 1.
¢) Ty vaut maintenant 8 °C (281 K). La surface de la peau émet de la chaleur par rayonnement
a la température Tg, et absorbe la chaleur émise par le ciel a la température T¢;. La puissance
rayonnée nette est donnée par :

~ 3.24 kg (52)

Mequ =

Pray = €0pSep(Ty, — Tia) (53)
Application numérique :

Py = 0.85 x 5.67 x 107% x 1.696 x (281* — 243%) = 224.6 W (54)

L’énergie rayonnée au cours de la nuit (8 heures) est :
Eray = Pray Atyuic = 224.6 x 8 x 3600 ~ 6.45 x 10°J ~ 1.54 x 10° cal = 1540 keal

Pour maintenir sa température, I'homme doit fournir cette quantité d’énergie a partir des
plaques de chocolat. Il doit manger :

E 1540
N, aques — = = ~ 3. B}
plad Eplaque 520 ( )
a) b)

T, T, = 37°C

conduction

V)

dpcau

évaporation
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