
Examen de physique générale II – Section SV Prof. Furno

25 juin 2021

Procédure de relecture des examens :
— Vous avez à votre disposition :

1. Un corrigé détaillé

2. Le barème de l’examen

3. Un tableau qui résume les points que vous avez obtenus à chaque question

4. Une feuille de papier et un crayon

— Vous relisez votre examen sans poser de questions, sans prendre de photos, sans écrire
sur la copie. Vous notez toutes vos remarques/observations sur la feuille de papier à
disposition.

— Si vous le jugez utile, vous écrivez un mail à Prof. Furno dans lequel vos observations
sont détaillées et pour lesquelles vous pensez que des points n’ont pas été donné.

— Sur la base de cet email, Prof. Furno passe à travers votre examen et vous répond
également par email.

Exercice 1 (20 points au total)

Deux voitures identiques A et B (masse au repos
m = 1000 kg, longueur au repos L0 = 10 m) roulent,
à vitesse constante, vers l’Est sur une autoroute ter-
restre rectiligne, orientée Ouest-Est. Robert, un ob-
servateur dans le référentiel terrestre, mesure la vi-
tesse de chaque voiture : vA = 4/5c et vB = 3/5c.
La voiture A veut dépasser la voiture B. Dans le réfé-
rentiel de Robert, la manœuvre de dépassement com-
mence quand l’avant de la voiture A et l’arrière de
la voiture B sont alignés à la direction Nord-Sud et
termine quand l’avant de la voiture B et l’arrière de
la voiture A sont alignés à la direction Nord-Sud.
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a) Quelle est la durée de la manœuvre de dépassement mesurée dans le référentiel de Robert ?
b) Au début de la manœuvre, un photon est lancé vers l’Est depuis l’avant de la voiture A. On définit

l’événement suivant : le photon et l’avant de la voiture B sont alignés à la direction Nord-Sud dans
le référentiel de Robert. Combien de temps s’est-il écoulé depuis le lancement du photon, mesuré
dans le référentiel de Robert ? Même question, mesuré dans le référentiel de la voiture B.

c) Un photon est lancé depuis la voiture B. Dans le référentiel de Robert, le photon voyage vers le
Nord-Est. Sa trajectoire forme ainsi un angle de π/4 avec la direction Ouest-Est. Dans le référentiel
de la voiture B, quelle est la valeur de l’angle que la trajectoire du photon forme avec un axe dirigé
selon la direction Ouest-Est ?

d) Pour atteindre la vitesse vB finale depuis une situation de repos dans le référentiel de Robert, la
voiture B a subi une phase d’accélération pendant laquelle une force constante F = 2.25 × 106 N,
parallèle à l’autoroute et selon le sens de marche, a été appliquée. Dans le référentiel de Robert,
combien de temps a duré cette phase d’accélération ?

Indications : Vitesse de la lumière : c = 3× 108 m/s.

Corrigé
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Dans le référentiel de Robert, les longueurs des voitures sont contractées par rapport à leur longueur
au repos :

LA =
L0

γA
= L0

√
1− v2

A

c2
=

3

5
L0 et LB =

L0

γB
= L0

√
1− v2

B

c2
=

4

5
L0.

Comme indiqué sur la figure, dans le référentiel de Robert, la distance ∆ séparant les deux événe-
ments peut s’écrire de deux façons :

∆x = vA∆t− LA = vB∆t+ LB ⇒ ∆t(vA − vB) = LB + LA,

donc

∆t =
LB + LA
vA − vB

=
L0

(
4
5

+ 3
5

)
c
(

4
5
− 3

5

) = 7
L0

c
. (1)

Application numérique : ∆t ' 2.33× 10−7 s.
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Dans le référentiel de Robert, la distance entre les deux événements peut s’écrire comme

∆x = c∆t = vB∆t+ LB ⇒ ∆t(c− vB) = LB,
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donc

∆t =
LB

c− vB
=

4
5
L0

c
(
1− 3

5

) = 2
L0

c
.

Application numérique : ∆t ' 6.67× 10−8s.
Dans le référentiel de la voiture B, ce temps est donné par la transformation de Lorentz :

∆t|B = γB

(
∆t− vB

c2
∆
)

= γB

(
∆t− vB

c2
∆tc

)
= γB∆t

(
1− vB

c

)
=

5

4
∆t

(
1− 3

5

)
=

∆t

2
.

Application numérique : ∆t|B ' 3.333× 10−8s.
Remarque : on peut arriver au même résultat en remarquant que dans le référentiel de la voiture

B, celle-ci est au repos. Donc le photon doit parcourir la distance L0 à la vitesse à c : ∆t|B = L0

c
=

10
3×108

= 3.333× 10−8 s.
c) La trajectoire du photon forme un angle de θ = π/4 avec l’axe x dans le référentiel de Robert. Les

composantes de la vitesse du photon s’écrivent :

vph,x = cos θ × c =

√
2

2
c et vph,y = sin θ × c =

√
2

2
c

En considérant le référentiel de la voiture B, avec x′ Ouest-Est et y′ selon Sud-Nord, les composantes
de la vitesse du photon sont modifiées selon les transformations de Lorentz. On peut exprimer les
composantes dans ce référentiel :

v′ph,x =
vph,x − vB
1− vBvph,x

c2

et v′ph,y =
vph,y

γB
(
1− vBvph,x

c2

) (2)

et donc

θ′ = tan−1

(
v′ph,y
v′ph,x

)
= tan−1

(
vph,y

γB(vph,x − vB)

)
. (3)

Application numérique : θ = tan−1

( √
2

2

1.25
(√

2
2
−0.6

)
)
' 79◦.

d) La quantité de mouvement de la voiture B, lorsque sa vitesse vaut vB est donnée par l’expression
relativiste pB = γBmBvB.
Pour augmenter la quantité de mouvement de la voiture B, une force F constante est appliquée
pendant un temps ∆t :

dp

dt
= F ⇒ Intégration :p− p0 = F∆t = pB − 0 ⇒ ∆t =

γBmBvB
F

.

Application numérique : ∆t = 1.25×1000×0.6×3×108

2.25×106
= 1× 105 s.
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Exercice 2 (20 points au total)

Etat initial
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Bloc de glace

Un récipient à parois rigides et thermiquement isolées est
fermé par un piston mobile qui peut coulisser sans frotte-
ment et qui permet d’échanger de la chaleur mais pas de
matière. Le récipient est encore divisé en deux chambres
(A et B) par une paroi interne fixe, rigide et thermique-
ment isolante et qui ne permet pas d’échange de matière.
Dans l’état initial, les deux chambres ont le même volume
VA = VB = 0.664 m3.

La chambre A contient nA = 40 moles d’un gaz parfait di-atomique à la pression pA = 2 bar. La chambre
B contient nB = 40 moles d’un gaz parfait mono-atomique à la pression pB = 1.6 bar. Chaque chambre,
individuellement, est à l’équilibre. Dans cet exercice, on arrondit la valeur de la constante des gaz parfaits
à R = 8.3 J/K/mol.
Le gaz de la chambre B subit une compression isotherme réversible jusqu’à l’état final qui correspond à la
pression pB,f = 16 bar.

a) Donnez les valeurs de la température, de la pression et du volume du gaz dans chaque chambre à
l’état final (fin de la compression isotherme réversible).

b) Pour le gaz de la chambre B, calculez la chaleur échangée et le travail effectué lors de la compression
isotherme réversible.

Au cours de la compression isotherme réversible, le gaz de la chambre B échange de la chaleur seulement
avec un bloc de glace de masse de 2 kg, à travers le piston. A l’état initial, la température de la glace est
200 K.

c) Calculez, entre l’état initial et l’état final, le changement d’entropie du gaz dans chaque chambre
ainsi que celui de l’univers.

d) Représentez la transformation pour le gaz B dans un diagramme T − S.
Une fois l’état final atteint, le piston devient instantanément thermiquement isolant et est bloqué dans
sa position. Dans ces conditions, la paroi interne qui sépare les deux chambres se brise et les deux gaz se
mélangent jusqu’à l’équilibre à la température Tf = 370 K.

e) Calculez le nombre de degrés de liberté des molécules di-atomiques du gaz de la chambre A.
Indication : Chaleur spécifique de la glace cglace = 2.44 kJ/kg/K ; Négligez l’épaisseur et la masse de la
paroi interne et du piston mobile.

Corrigé

a) — Chambre A : Aucun changement pour le gaz dans la chambre A après la compression isotherme
du gaz de la chambre B, puisque la paroi interne ainsi que la paroi du récipient sont fixes, rigides
et thermiquement isolantes.
— VA = 0.664 m3 (donné)
— pA = 2 bar (donné)
— La température est donnée par la loi des gaz parfaits :

TA =
pAVA
nAR

Application numérique :

TA =
2× 0.664

40× 8.3
= 400 K.

— Chambre B :
— pression : pB = 16 bar (donné)
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— Comme la transformation est isotherme, la température du gaz dans la chambre B est calculée
avec l’équation des gaz parfaits avec les conditions initiales :

TB =
pB,iVB,i
nBR

.

Application numérique :

TB =
1.6× 105 × 0.664

40× 8.3
= 320 K.

— Le volume final de la chambre B est donné par la loi des gaz parfaits avec les conditions
finales :

VB,f =
nBRTB
pB,f

.

Application numérique : VB,f = 0.0664 m3.
C’est une transformation isotherme donc d’après le premier principe de la thermodynamique la
variation d’énergie interne est nulle (∆T = 0) donc la chaleur dégagée par le gaz correspond au
travail effectué sur le gaz. Pour un gaz parfait, cela correspond à :

Q = W = nBRTB ln

(
VB,f
VB,i

)
. (4)

Application numérique : W = 40× 8.3× 320× ln(0.1) ' −244.6 kJ.
Comme attendu le signe du travail est négatif (travail fait sur le gaz).

b)c) Le gaz dans la chambre A ne subit aucune transformation. Il reste dans son état d’équilibre, sa
variation d’entropie est donc nulle :

∆SA = 0 (5)

Le gaz dans la chambre B subit une compression isotherme. Etant un gaz idéal, le changement
d’entropie peut être calculé comme suit :

∆SB = nB R ln

(
VB,f
VB,i

)
. (6)

Application numérique : ∆SB = −0.7645 kJ/K.
Le changement d’entropie de l’univers est la somme du changement d’entropie du gaz dans la
chambre B et du changement d’entropie du bloc de glace.

∆Sunivers = ∆SA︸︷︷︸
=0

+∆SB + ∆Sglace, (7)

avec

∆Sglace =

∫ Tglace,f

Tglace,i

δQ

T
= mglacecglace

∫ Tglace,f

Tglace,i

dT

T
= mglace cglace ln

(
Tglace,f

Tglace,i

)
. (8)

La température du bloc de glace augmente car il reçoit toute la chaleur dégagée par le gaz :

Tglace,f = Tglace,i +
Q

mglacecglace

. (9)

Applications numériques :

Tglace,f = 200 +
244.6× 103

2× 2.44× 103
' 250 K,

∆Sglace = 2× 2.44× 103 ln

(
250

200

)
' 1.09× 103 J/K,

∆Sunivers − 764.5 + 1.09× 103 ' 324.44 J/K.

L’entropie de l’univers augmente comme attendu.
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d) Le gaz A ne subit aucune transformation. Le gaz B subit une transformation isotherme réversible
que l’on peut représenter dans le diagramme T − S comme suit :

e) D’où partir pour répondre à la question posée ? On nous dit que le gaz est di-atomique donc sa
molécule peut avoir 5 ou 7 degrés de liberté. En conséquence la réponse ”νA = 5 car le gaz est
di-atomique” n’est pas valable !
On doit donc estimer cV,A ≡ νA

2
R.

Lorsque la paroi se brise et que les 2 gaz se mélangent jusqu’à thermalisation, il n’y a pas d’échange
de chaleur avec l’extérieur (parois isolantes) et pas de travail effectué (volume total constant). En
conséquence, la variation totale d’énergie interne est nulle :

∆U = 0⇔ ∆UA = −∆UB. (10)

��nAcV,A(Tf − TA) = −��nBcV,B(Tf − TB) ⇒ cV,A = −cV,B
Tf − TB
Tf − TA

,

avec les valeurs numériques obtenues au point a) pour les températures, on obtient :

cV,A = −cV,B
370− 320

370− 400
=

5

3
cV,B.

Or la valeur de cV,B est connue et non-ambigüe : le gaz B est monoatomique donc cV,B = 3
2
R.

Finalement,

cV,A =
5

�3

�3

2
R =

5

2
R ⇒ νA = 5. (11)
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Exercice 3 (20 points au total)

Un gaz idéal mono-atomique subit un cycle moteur constitué d’une expansion adiabatique irréversible d’un
état A avec volume VA = 1 m3, pression pA = 2 bar à un état B avec VB = 2 m3, suivi d’une compression
isobare réversible jusqu’à un état C et enfin d’une transformation isochore réversible jusqu’à l’état initial
A. Dans les états A, B et C, le gaz est à l’équilibre.

a) Représentez le cycle ABCA sur un diagramme p− V .
b) Lors de l’expansion adiabatique A → B, la variation d’énergie interne vaut ∆UAB = −0.9× 105 J.

Calculez la pression du gaz en C.
c) Calculez les chaleurs échangées lors des transformations B → C et C → A ainsi que le rendement

du cycle.
d) Calculez le rendement du cycle de Carnot idéal qui échange de la chaleur avec deux sources aux

températures extrêmes du cycle ABCA considéré.
e) Sur le diagramme du cycle ABCA de la question a), dessinez l’adiabatique réversible A → B′

subissant le même changement de volume que lors de la transformation A→ B.
f) Soit une transformation adiabatique irréversible d’un gaz parfait, à partir d’un état d’équilibre initial

avec pression pinitial et volume Vinitial jusqu’à un état d’équilibre final avec pression pfinal et volume
Vfinal. Un résultat tout à fait général est : pfinalV

γ
final > pinitialV

γ
initial où γ est l’exposant adiabatique.

Démontrez cette relation.

Corrigé

a) Le cycle en question est un cycle moteur donc le sens de parcours est sens horaire. La transformation
adiabatique irréversible ne peut pas être dessinée avec un trait plein ! Le diagramme est :

b) Notons tout d’abord que la pression en C est égale à la pression en B car le processus BC est isobare.

pC = pB.

Le processus A→ B étant une transformation adiabatique irréversible, il n’est pas possible d’utiliser
l’équation pV γ = const.
On part de la variation de l’énergie interne :

∆UAB = ncV (TB − TA).

Avec la loi des gaz parfaits pV = nRT on peut remplacer TA = pAVA/nR et TB = pBVB/nR.
Le nombre de moles n’est pas donné dans l’énoncé donc on doit le garder comme une variable. En
fait comme on le voit ci-après le nombre de moles en jeu et la constante des gaz parfaits (cV = 3

2
R

pour gaz mono-atomique) se simplifient systématiquement. Aucune information ne manquait dans
l’énoncé !

∆UAB = ncV

(
pBVB
nR

− pAVA
nR

)
=

�ncV

�nR
(pBVB − pAVA) =

3
2��R

��R
(pBVB − pAVA) (12)
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Ce qui donne :

pB =
2
3
∆UAB + pAVA

VB
= pC . (13)

Application numérique :

pB =
2
3
× (−0.9× 105) + 2× 105 × 1

2
=

(−0.6 + 2)× 105

2
= 7× 104 Pa = 0.7 bar

c) Pour calculer QBC on applique le premier principe de la thermodynamique au processus isobare :

∆UBC = QBC −WBC ⇒ QBC = ∆UBC +WBC

⇒ QBC = ncV (TC − TB) + pB(VC − VB)

QBC = ncV

(
pCVC
nR

− pBVB
nR

)
+ pB(VC − VB) = pB(VC − VB)

(cV
R

+ 1
)
,

⇒ QBC = pB(VC − VB)
(cV
R

+ 1
)

=
5

2
pB(VC − VB). (14)

Remarque : On peut également partir de l’expression QBC = ncp∆T pour une transformation
isobare.
Pour calculer QCA on utilise à nouveau le premier principe de la thermodynamique sachant que le
travail est nul car VA = VC .

∆UCA = QCA ⇒ QCA = ncV (TA − TC)⇒ QCA = ncV

(
pAVA
nR

− pCVC
nR

)
,

QCA =
cV
R
VA(pA − pC) =

3

2
VA(pA − pC). (15)

Applications numériques :

QBC =
5

2
× 0.7× 105 × (1− 2) = −1.75× 105 J = −175 kJ < 0 comme attendu.

QCA =
3

2
× 1× (2− 0.7)× 105 = 1.95× 105 J = 195 kJ > |QBC | car cycle moteur

Etant donné qu’il n’y a pas d’échange de chaleur lors de la transformation A → B, le rendement
du cycle peut alors être calculé en utilisant la chaleur absorbée et la chaleur libérée :

η = 1− | Qlib |
Qabs

= 1− | QBC |
QCA

= 0.102 (16)

d) Le rendement d’un cycle de Carnot ideal est défini comme :

η = 1− TL
TH

, (17)

où TL et TH sont les températures plus basse et plus élevée du cycle, respectivement.
Dans notre cas les deux températures extrêmes sont TA et TC comme on peut le voir sur la figure
où sont indiquées les isothermes :
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Encore une fois, nous utilisons la loi des gaz parfaits pour obtenir :

η = 1− TC
TA

= 1− pCVC
pAVA

= 1− pC
pA

= 0.65 (18)

e) Pour une transformation adiabatique réversible pV γ = const. ce qui donne :

pAV
γ
A = pB′V

γ
B′ ⇒ pB′ = pA

(
VA
VB′

)γ
= pA

(
VA
VB

)γ
= pA

(
1

2

)γ
< pB

Le diagramme est :

f) Pour démontrer que la quantité pV γ dans le cas d’un processus adiabatique irréversible ne peut
qu’augmenter, contrairement au cas réversible où elle reste constante, on part de la définition de
l’entropie et on utilise le deuxième principe de la thermodynamique sur une transformation réver-
sible :

dS =
δQ

T
= ncV

dT

T
+ p

dV

T

Maintenant nous intégrons dS pour trouver la différence d’entropie entre deux états génériques 1 et

2, et on utilise la loi des gaz parfaits pV = nRT , et cp = cV +R = 3
2
R+R = 5

2
R, et γ = cp

cV
=

5
2
3
2

= 5
3

:

∫ 2

1

dS =

∫ 2

1

ncV
dT

T
+

∫ 2

1

nR
dV

V
⇒ ∆S12 = ncV ln

T2

T1

+ nR ln
V2

V1

= ncV ln
p2V2

p1V1

+ nR ln
V2

V1

,

⇒ ∆S12 = ncV ln
p2

p1

+ ncV ln
V2

V1

+ nR ln
V2

V1

= ncV ln
p2

p1

+ n(cV +R) ln
V2

V1

.

De là, on obtient :

∆S12

ncV
= ln

p2

p1

+
cp
cV

ln
V2

V1

= ln
p2

p1

+ ln

(
V2

V1

) cp
cV

= ln

(
p2V

γ
2

p1V
γ

1

)
.

Or nous savons que lors d’une transformation irréversible, l’entropie de l’univers augmente, donc :
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∆Sunivers = ∆S12 > 0⇒ ln

(
p2V

γ
2

p1V
γ

1

)
> 0 (19)

⇒ ln(p2V
γ

2 ) > ln(p1V
γ

1 )⇒ p2V
γ

2 > p1V
γ

1 . (20)

Dans le cas réversible ∆S12 = 0 et donc p2V
γ

2 = p1V
γ

1 = const.
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Exercice 4 (20 points au total)

Ivo part en voyage vers une planète lointaine possédant une atmosphère et un grand océan qui ne sont
pas à l’équilibre thermique entre eux. Au cours de sa phase d’approche, la fusée traverse l’atmosphère et
se chauffe jusqu’à la température Tfusée. L’atmosphère, considérée comme un gaz parfait isotherme, est
constituée d’azote (masse d’une molécule d’azote ma = 5.34× 10−26 kg) à la température de 80◦C et à la
pression de 1 bar, à la surface de la planète. L’océan est constitué d’eau.
Pour mesurer la température de l’eau de l’océan, Tocéan, Ivo fait l’expérience suivante, à la surface de la
planète : une barre de métal de la fusée (longueur L = 1 m, masse m = 4 kg) est plongée dans un bain
de 20 kg d’eau de l’océan. La chaleur est uniquement échangée entre la barre de métal et l’eau de ce bain
jusqu’à ce que l’équilibre thermique entre les deux soit atteint. A ce moment-là, Ivo constate que 1 kg
d’eau a été évaporé et la barre de métal s’est rétrécie de ∆L =1.6 cm.

a) Calculez Tocéan et Tfusée.
b) En considérant la barre de métal comme un corps noir, représentez graphiquement de manière

qualitative son émittance spectrale ελ en fonction de la longueur d’onde λ avant sa plongée dans
l’eau du bain et après sa thermalisation avec l’eau du bain. Justifiez l’allure des courbes.

c) En sachant que, sur cette planète, l’eau bout à 300 K à 2700 m d’altitude, calculez l’accélération
de gravité a de la planète.

Indications : Chaleur spécifique du métal cmetal = 0.7 kJ/kg/K ; chaleur spécifique de l’eau ceau =
4.186 kJ/kg/K ; coefficient de dilatation thermique linéaire de la barre de métal α = 8×10−6 K−1 ; chaleur
latente de vaporisation de l’eau Lv = 2.2×106 J/kg ; constante des gaz parfaits R = 8.314 J/K/mol ; masse
molaire de l’eau M = 18 g/mol ; constante de Boltzmann kB = 1.3810−23 J/K.
Fâıtes l’approximation qu’à 100 ◦C la pression de vapeur d’eau vaut 1 bar.
On rappelle que dp

dz
= −ρ(z)a où p est la pression atmosphérique, z est la coordonnée relative à l’altitude,

ρ(z) est la densité de l’atmosphère et a est l’accélération de gravité de la planète.

Corrigé

a) On utilise l’équation sur la dilatation thermique pour trouver la température initiale de la barre de
métal, c’est-a-dire la température de la fusée Tfusée,

α(Tfusée − Tf ) =
∆L

L
⇒ Tfusée =

∆L

αL
+ Tf .

où Tf est la température finale de la barre de métal. Or la température finale est égale à la tempé-
rature d’équilibre entre la barre, l’eau et la vapeur et puisque il y a un équilibre thermique entre
l’eau et la vapeur à la pression p0 = 1 bar (à la surface de la planète), on a Tf = 100◦C.
Application numérique :

Tfusée =
0.016

8× 10−6
+ 100 = 2100 ◦C. (21)

Pour calculer la température de l’eau avant de plonger la barre, c’est-à-dire la température de l’océan
Tocéan, on utilise Qtot =

∑
Q = 0. On obtient

mmcm(Tfusée − Tf ) = mece(Tf − Tocéan) +mvLv, (22)

où mm, me et mv sont les masses de la barre, de l’eau et de la vapeur, respectivement. On peut
donc calculer Tocéan de l’équation (22),

Tocéan = Tf +
mvLv −mmcm(Tfusée − Tf )

mece
= Tf +

mvLv −mmcm
∆L
αL

mece
. (23)

Application numérique :

Tocéan = 100 +
2.2× 103 − 4× 0.7× 0.016

8×10−6

20× 4.186
' 59.4◦C (24)
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b) Les courbes demandées sont données sur la figure ci-après. On peut justifier l’allure ainsi :
— Un corps noir émet selon la loi de Planck.
ou
— Selon la loi de Wien, la longueur d’onde correspondant à l’émission maximale par rayonnement

d’un corps augmente si la température diminue, λmaxT =const. L’émittance est réduite lorsque
la température du corps est plus faible : E ∝ T 4.

0

0

λ

ε
λ

Emittance spectrale de la barre de métal

après

thermalisation

avant la plongée

dans l’eau

c) L’ébullition correspond à la condition de pression de vapeur égale à la pression ambiante. Pour
déterminer l’accélération de gravité a de la planète, on utilise la loi de Pascal,

dp

dz
= −ρ(z)a ,

où p est la pression de l’atmosphère, z est la coordonnée relative à l’altitude, ρ(z) est la densité de
l’azote et a est l’accélération de gravité de la planète, et la loi de Clausius-Clapeyron,

dp

dT
=

mLv
(Vv − Ve)T

≈ mLv
VvT

,

où on néglige Ve par rapport à Vv parce que Ve � Vv.
On intègre l’équation de Pascal en considérant la température constante et on obtient (calcul fait
dans le cours)

pf = p0 exp

(
−mah

kBT0

a

)
, (25)

où p0 = 1 bar est la pression à la surface de la planète et T0 = 80 ◦C est la température de
l’atmosphère.
En intégrant l’équation de Clausius-Clapeyron, on obtient (calcul fait dans le cours)

pf = p0 exp

[
MLv
R

( 1

Ti
− 1

Tf

)]
, (26)

où Ti = 373 K est la température d’ébullition de l’eau à la pression p0 = 1 bar et Tf = 300 K est la
température d’ébullition de l’eau à la pression pf .

12



L’accélération de gravité a peut être obtenu des équations (25) et (26),

a =
kBT0ML

mahR

(
1

Ti
− 1

Tf

)
. (27)

Application numérique :

a =
1.38× 10−23 × 353× 40× 103

4.8× 10−26 × 2700× 8.314

(
1

300
− 1

373

)
' 118

m

s2
. (28)
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Exercice 5 (20 points au total)

Un câble cylindrique en cuivre de section circulaire de rayon R et de longueur L est parcouru par un
courant électrique I. Le câble est chauffé par effet Joule et sa conductivité thermique est notée κc. On
suppose que le câble est thermiquement isolé par une gaine en plastique d’épaisseur ∆ et de conductivité
thermique κp. L’épaisseur ∆ n’est pas négligeable par rapport à R. La température à la surface du câble
vaut T0 et la température à la surface externe de la gaine en plastique vaut T1. On suppose que le transfert
de chaleur se fait en régime stationnaire et uniquement par conduction dans la direction radiale. On néglige
les transferts de chaleur aux extrémités du câble. On décrit la direction radiale par la coordonnée r ≥ 0
associée à un repère cylindrique centré sur l’axe du câble.

a) Montrez que le flux de chaleur radial J(r) dans la gaine en plastique est donné par l’équation
différentielle d

dr
(rJ(r)) = 0.

b) Calculez l’expression de la température T (r) dans la gaine en plastique en fonction de T0, T1, R, ∆.
c) Calculez l’expression du flux de chaleur J(r) dans la gaine en plastique en fonction de T0, T1, R, ∆

et κp.
d) Calculez l’expression du courant I en supposant qu’il est uniformément distribué dans le câble en

cuivre en fonction de T0, T1, R, ∆, κp et ρc.
Indications : La puissance par unité de volume produite par effet Joule dans le câble en cuivre est donnée
par P = ρcj

2, où ρc est la résistivité du cuivre et j la densité de courant.

Corrigé

a) On considère un régime stationnaire. Dans ce régime et comme il n’y a pas de courant (et donc pas
d’effet Joule) dans la gaine en plastique, il y a la conservation de

δQ

dt
= S(r)J(r) = const., (29)

où S(r) est la surface en r.
Méthode I : Comme δQ/dt est une quantité conservée dans la gaine et est égale à la puissance

totale passsant à travers la gaine en plastique, le flux de chaleur J(r) est donné par l’Eq. (29),
avec S(r) = 2πrL, c’est-à-dire

J(r) =

(
δQ

dt

)
1

2πrL
(30)

On peut donc écrire que

rJ(r) =

(
δQ

dt

)
1

2πL
, (31)

En évaluant la dérivée par rapport à r de l’Eq. (31) et en utilisant l’Eq. (29), on obtient

d

dr
(rJ(r)) =

1

2πL

d

dr

[(
δQ

dt

)]
= 0. (32)

Méthode II : La conservation de S(r)J(r) s’écrit entre r et r′ (avec r, r′ ∈ [R,R + ∆])

S(r)J(r) = S(r′)J(r′).
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Or comme S(r) = 2πrL, l’équation précédente devient

���2πLrJ(r)−���2πLr′J(r′) = 0.

En posant r′ ≡ r + dr, on obtient

rJ(r)− (r + dr)J(r + dr) = r [J(r)− J(r + dr)]− drJ(r + dr) = 0.

Pour faire apparaitre la dérivée, on utilise l’approximation suivante :

∂

∂r
J(r) ' J(r + dr)− J(r)

dr
⇒ J(r)− J(r + dr) ' −dr ∂

∂r
J(r),

On obtient

r

[
−dr ∂

∂r
J(r)

]
− drJ(r + dr) = −dr

[
r
∂

∂r
J(r) + J(r)

]
0⇒ ∂

∂r
(rJ(r)) = 0. (33)

a bis) En partant de l’équation de la chaleur en coordonnée cylindrique,

1

r

∂

∂r

(
r
∂

∂r
T (r)

)
+
$

κp
=
ρcV
κp

∂

∂t
T. (34)

En régime stationnaire, ∂tT = 0 et en l’absence de courant dans le câble en plastique, $ = 0, on
obtient avec J = −κp∂rT ,

d

dr
(rJ(r)) = 0. (35)

b) Le flux de chaleur s’exprime par la loi de Fourier,

Jp(r) = −κp
∂

∂r
T (r). (36)

La température est donnée par

∂

∂r
(rJ(r)) = 0⇒ ∂

∂r

(
−κpr

∂

∂r
T (r)

)
= 0, (37)

avec r ∈ [R,R+ ∆]. Pour trouver T (r), il faut résoudre l’équation différentielle 45. Par intégration
par rapport à r, on trouve

r
∂

∂r
T (r) = C, (38)

où C est une constante d’intégration à déterminer. Une seconde intégration par rapport à r donne

T (r) =

∫ r

dr′
C

r′
+D

= C ln r +D, (39)
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où D est une deuxième constante d’intégration. Les constantes C et D sont à déterminer. Pour
cela, il faut utiliser les conditions au bord telles que T (R) = T0 et T (R + ∆) = T1. On obtient un
système de deux équations,

T0 = C lnR +D, (40a)

T1 = C ln (R + ∆) +D. (40b)

On peut écrire

(T0 − T1) = C ln

(
R

R + ∆

)
⇒ C =

(T0 − T1)

ln
(

R
R+∆

) . (41)

En injectant C dans 48a, on peut en déduire D telle que

D = T0 − C lnR. (42)

La température T (r) dans la gaine est donc donné par la fonction

T (r) =
(T0 − T1)

ln
(

R
R+∆

) ln r + T0 −
lnR(T0 − T1)

ln
(

R
R+∆

)
T (r) = (T0 − T1)

ln
( r
R

)
ln

(
R

R + ∆

) + T0. (43)

On peut vérifier que T (R) = T0 et que T (R + ∆) = T1.
b bis) Le flux de chaleur s’exprime par la loi de Fourier,

Jp(r) = −κp
∂

∂r
T (r). (44)

La température est donnée par

∂

∂r
(rJ(r)) = 0⇒ ∂

∂r

(
−κpr

∂

∂r
T (r)

)
= 0, (45)

avec r ∈ [R,R+ ∆]. Pour trouver T (r), il faut résoudre l’équation différentielle 45. Par intégration
par rapport à r, on trouve

r
∂

∂r
T (r) = C, (46)

où C est une constante d’intégration à déterminer. Une seconde intégration par rapport à r donne

T (r) =

∫ r

dr′
C

r′
+D

= C ln r +D, (47)
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où D est une deuxième constante d’intégration. Les constantes C et D sont à déterminer. Pour
cela, il faut utiliser les conditions au bord telles que T (R) = T0 et T (R + ∆) = T1. On obtient un
système de deux équations,

T0 = C lnR +D, (48a)

T1 = C ln (R + ∆) +D. (48b)

On peut écrire

(T0 − T1) = C ln

(
R

R + ∆

)
⇒ C =

(T0 − T1)

ln
(

R
R+∆

) . (49)

En injectant C dans 48a, on peut en déduire D telle que

D = T0 − C lnR. (50)

La température T (r) dans la gaine est donc donné par la fonction

T (r) =
(T0 − T1)

ln
(

R
R+∆

) ln r + T0 −
lnR(T0 − T1)

ln
(

R
R+∆

)
T (r) = (T0 − T1)

ln
( r
R

)
ln

(
R

R + ∆

) + T0. (51)

On peut vérifier que T (R) = T0 et que T (R + ∆) = T1.
c) Le flux de chaleur Jp(r) dans la gaine en plastique est donné par la loi de Fourier exprimée en

coordonnée cylindrique,

Jp(r) = −κp
∂

∂r
T (r).

En utilisant Eq. (51), on déduit

Jp(r) = −κp
C

r
= −κp

(T0 − T1)

ln
(

R
R+∆

) 1

r
. (52)

d) En régime stationnaire, la puissance totale, Ptot, générée par effet Joule dans le volume du câble
de cuivre doit être égale à la totale puissance qui traverse le câble en r = R, c’est-à-dire Pout. La
puissance totale Ptot, générée par effet Joule, est donnée par

Ptot = PVc = PLπR2 (53)

avec P = ρcj
2, la puissance volumique associée à l’effet Joule, et Vc = LπR2 le volume du câble

du cuivre. j est la densité de courant dans le câble de cuivre. Comme I est uniformément distribué
dans le câble de cuivre, la densité de courant j peut s’écrire

j =
I

πR2
, (54)

on trouve que
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Ptot = ρcj
2LπR2 = ρc

(
I

πR2

)2

LπR2 =
LρcI

2

πR2
(55)

La puissance qui traverse dans le câble en r = R s’écrit comme

Pout = SJp(R), (56)

avec S = 2πRL la surface externe du câble de cuivre. Le flux de chaleur Jp(R) peut s’exprimer par
la loi de Fourier

Jp(R) = −κp
∂

∂r
T (R) = −κp

C

R
, (57)

où on a utilisé Eq. (47). Ainsi, la puissance totale qui sort du câble de cuivre en r = R est

Pout = 2πRLκp
|C|
R

= 2πLκp|C|. (58)

En égalisant les 2 puissances : Pout = Ptot, on tire l’expression pour I :

LρcI
2

πR2
= 2πLκp|C|

⇒ I =

√
2π2κp|C|R2

ρc
=

√
2π2κpR2

ρc

√√√√∣∣∣∣∣(T0 − T1)

ln
(

R
R+∆

) ∣∣∣∣∣ (59)
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