Examen de physique générale Il — Section SV Prof. Furno

Semestre été 2023

Exercice 1

La planete « est immobile dans le référentiel attaché a la Terre (supposé inertiel) et se trouve a une
distance Lot = 10" m de la Terre. a envoie le long de 1’axe a-Terre un vaisseau de transport vers la
Terre, avec une vitesse v, = 0.6c. Quand ’horloge de bord du vaisseau indique qu’une minute s’est
écoulée depuis son départ d’av, le systeme de controle du vaisseau tombe en panne. Au méme moment
dans le vaisseau, celui-ci envoie un signal radio ”SOS” vers la Terre : le vaisseau avance toujours a
une vitesse constante v, et ne pourra pas atterrir en toute sécurité sur Terre.

a) Quelle est la distance, dans le référentiel de la Terre, entre le vaisseau et o au moment de
I’envoi du signal ”SOS” 7

Pour agir de la meilleure maniere face a cette urgence, le centre de commande sur Terre effectue deux
mesures : I’événement 1 correspond a la mesure de 'avant du vaisseau et I’événement 2 correspond a
la mesure de I'arriere du vaisseau. Dans le référentiel du vaisseau, I’évenement 1 précede I’évenement
2 d’un intervalle de temps de 1077 s. Considérez, uniquement pour la question b), que le vaisseau a
une longueur propre L, = 100 m, et qu’il ne peut donc pas étre considéré comme un point matériel.

b) Quel événement a lieu en premier dans le référentiel de la Terre et de combien de temps
précede-t-il I’évenement suivant 7 Quelle est la distance spatiale entre les deux événements
mesurée dans le référentiel de la Terre ?

Le centre de controle sur Terre décide d’agir pour éviter 'accident et effectue deux actions en méme
temps : il envoie un missile de la Terre (v, = 0.6¢) vers le vaisseau sur I'axe Terre-vaisseau pour
le détruire ainsi qu'un message radio "EVAC” pour prévenir I'équipage de l'arrivée du missile et
ordonner I’évacuation du vaisseau. Lorsque le vaisseau recoit le message "EVAC”, il est a une distance
de 10'° m de la Terre, mesurée dans le référentiel du vaisseau.

¢) Combien de temps (mesuré dans le référentiel du vaisseau) reste-t-il a ’équipage pour évacuer
le vaisseau a partir de la réception du message "EVAC” envoyé par la Terre?

Pour gagner du temps supplémentaire pour 1’évacuation, I’équipage arrive a activer des freins d’ur-
gence au moment de la réception du signal "EVAC”, ce qui leur permet d’instantanément réduire la
vitesse du vaisseau de transport a v,y = 0.1c dans le référentiel de la Terre.

d) Dans combien de temps la collision se produira-t-elle alors (dans le référentiel de la Terre) ?
Quelle quantité d’énergie cinétique est perdue par le vaisseau, en sachant que sa masse au
repos est mg = 10° kg ?

Apres le freinage, I’équipage du vaisseau de transport s’enfuit grace a un vaisseau de secours. La
Terre observe le vaisseau de secours quitter le vaisseau de transport avec un angle de 30° par rapport
a I'axe a - Terre, et avec une vitesse constante de norme vg = 0.5¢. Au méme moment, ['horloge de
bord du vaisseau de transport indique qu’il reste 5 s avant la collision avec le missile.

e) L’équipage arrive-t-il a se sauver, en sachant que il faut étre au moins a une distance de
6 x 10®* m (dans le référentiel du vaisseau de transport) au moment de la collision entre le
vaisseau de transport et le missile? (N.B. : Négligez les masses des différents vaisseaux pour
cette question).

Indications : Considérez la Terre, «, le vaisseau de transport, le missile et le vaisseau de secours
comme des points matériels, a ’exception du vaisseau de transport dans le point b). Vitesse de la
lumiere ¢ = 3 x 10® m/s.



Corrigé

Pour la suite de 'exercice, on choisit R comme le référentiel des planetes et R’ comme le référentiel
du vaisseau de transport (voir [figure 1)). On définit le facteur gamma du vaisseau :

o = ( - g) T (m)l —1.25 (1)

Terre
dyr

Y|

FIGURE 1 — Schéma général de I'exercice
a) (3 pt)

On donne le temps propre du vaisseau entre son départ et la panne : At’ = 60 s. On veut
trouver dyr (voir . Il y a deux possibilités pour arriver a la solution demandée : soit
trouver At grace a Lorentz puis le multiplier par la vitesse du vaisseau, soit trouver d. ;. grace
a la vitesse et ensuite effectuer Lorentz. La premiere possibilité donne :

At = v, At' =75 s
dor = v,At = 1.35 x 101 m

b) (4 pt)

On considere deux événements dans les deux référentiels.

Dans R’

(x25") (1)

FIGURE 2 — Les deux événements dans R’

Pour le référentiel R’ :

xyp =100 m zh=0m
'=0s h=10""s



Pour R, en utilisant Lorentz et en substituant par les valeurs ci-dessus :

Ty =Y (2] +ot]) =2 =125 m To = Y, (T4 + vth) = yvth, =225 m
b= (B +5) =i =25x107 s tr = (th+ ) =ty = 1.25x 1077 s

On cherche les différences des coordonnées temporelles et spatiales entre les événements 1 et
2, c’est-a-dire Axy et Atm:

Al‘lg =Ty — T1 = —102.5 m
Atm:tg—tl =—1.25 x 10_7m<0:>t2<t1

Vu dans le référentiel R, le premier événement est celui de la mesure de 'arriere du vaisseau.
c) (7 pt)

Nous allons répondre a cette question en se placant uniquement dans le référentiel R, puis en
transformant le temps final avec Lorentz pour avoir la réponse dans R'.

1. Envoi

R
2. Réception 17”‘6‘5@”&@ X
«EVAC» dym - Amissite T
dyr
Y R
3. Collision X

FIGURE 3 — Les 3 événements a considérer dans le référentiel de la Terre. On cherche le temps entre
2 et 3 au point c).

La distance entre le vaisseau et la Terre au moment ”2.” (voir [figure 6)) dans R est :

dor = Yod,p = 1.25 x 10" m

1. Notez que cette réponse finale pouvait étre obtenue en appliquant directement les transformées de Lorentz avec
Az’ et At'. Attention toutefois & bien prendre Az’ = —100 m, puisqu’on mesure d’abord 'avant puis I'arriere du
vaisseau dans son référentiel.



Quand le vaisseau recoit le message, le missile a déja parcouru une certaine distance, que ’'on
peut trouver comme suit :

tsignal = dvT/C =41.67 s

dmissile = Umtsignal =75 X ]-09 m
La distance qui sépare le missile et le vaisseau est donc :
dym = dyr — dissite = 1.25 x 10" = 7.5 x 10° = 5 x 10° m

Comme le missile et le vaisseau de transport voyagent a la méme vitesse, ils vont chacun
parcourir la moitié du chemin restant avant de se rencontrer. Ensuite, on trouve te temps
avant la collision dans R (entre les instants ”2” et ”3” sur la en divisant par la
vitesse du vaisseau :

deott = dym /2 = 2.5 x 10° m
tcoll = dcoll/vv =139 s

Ce temps est trouvé dans R’ grace a Lorentz. Etant donné que, dans R/, il s’agit d’un temps
propre (les événements "réception du signal EVAC” et ”collision” se passent au méme endroit),
cela revient a contracter le temps précédemment trouvé :

thOll — tCOll/rY’U — ]_11 S

Nous pouvons trouver le méme résultat en réfléchissant dans le référentiel du vaisseau R’.
L’intervalle temporel entre la réception et ’émission dans le référentiel du vaisseau et donné par :

!
dUT

—cAtl_, = —dp + (—v,)At! = At =
c—u,

r—e r—e

La vitesse du missile dans le référentiel R’ est donnée par :

Um =% 88¢

Uy = ———
m/v 1 — v,/ c?

L’intervalle spatial entre le vaisseau et le missile au moment de la réception du message, est donc :
d;m = CAtg“fe - |Um/UAt:”fe‘
L’intervalle de temps avant la collision dans R’ sera donc :

/ o d/vm _ At;—e(c_ |Um/v|)

coll —

At ~11.1s

Um/v Um v
d) (4 pt)

Dans le référentiel de la Terre, on sait que la distance a parcourir est donnée par d,,, et que
les objets ont maintenant des vitesses respectives de v, ¢ et v,,. On trouve donc le temps avant
la collision :

dvm = vaAtcoll + UmAtcoll

dym
= Atpy = —— =238 s
Uy f + Um



.. D ]
3. Collision” /"
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FIGURE 4 — Les 3 événements a considérer dans le référentiel du vaisseau. On cherche le temps entre
2 et 3 au point c).

Comme le temps de collision initial (& la vitesse v,) était de 13.9 s, 'équipage arrive a gagner
9.9 secondes supplémentaires.

Il est possible de trouver le méme résultat a partir de la distance d,,, dans la question c), en
réfléchissant dans le référentiel du vaisseau.

\J R
- ’ 5
2. Réception 3 ' my_ o
«EVAC» « d' v -
A (xl’?"’r tvr’) B (xmr’, tmr’)

FIGURE 5 — Les 2 événements A et B simultanés dans le référentiel du vaisseau R'.

Tout d’abord, pour pouvoir appliquer aux deux évenements simultanés A(x! ¢ ) e B(z!, .t )
(avec t!. =t/ ) les transformations de Lorentz en passant du référentiel R’ avec v, = 0.6¢
mesurée depuis la Terre, au nouveau référentiel R’ avec la nouvelle v,y = 0.1c mesurée depuis
la Terre (appelé a partir de ce moment R”), il faut calculer v, mesurée depuis le référentiel
du vaisseau apres l'application des freins :

" Uy — Uyf " 1

N, = —— ﬁ f—
P T T 00,/ T e




Nous pouvons a ce point appliquer Lorentz :

" "o [/ /} / " / o /
z - xvr - Axvm - PY’U (Axvm + vv Atvm) - ’yv Axvm
N——

mnr

=0

7 / 1,01 /
" " " " / Uy vam Vo Uy Axvm
tmr - tvr = Atvm = Yo (Atvm + 2 ) = )
- c c

=0
On peut noter comme dans R”, les deux évenements A et B ne sont plus simultanés (¢ >t ),
qui correspond a la situation indiqué dans la figure suivante :

1

\') :RH

2. Réception e
«EVAC» « d"’ vm

A

Ax,.," B (mr"’s tmr'")

»

FIGURE 6 — Les 2 événements A et B, plus simultanés dans le référentiel du vaisseau R”.

Pour calculer dans le référentiel R” le temps de la collision At/ ,, depuis la réception du message

At il faut donc calculer la distance d),,, = Azl + v At!

c m/v
d"
no _ Yom
Atcoll -
v
m/v

Le temps de collision demandé dans le référentiel de la Terra sera, avec Lorentz :

1
Atcoll = vaAt”

= = (0o /)

Veuillez noter comme cette derniere méthode de résolution dans le référentiel de la fusée est
bien plus longue que celle dans le référentiel de la Terre.

At =238s

coll

L’énergie cinétique est donnée par E = (v — 1)moc?®. On associe a la nouvelle vitesse v,y un
coefficient relativiste 7,y = 1.005. La différence entre les deux énergies cinétiques, avant et
apres l'actionnement des freins, sera donc :

AE = (5 — Yo)moc? = —2.2 x 102! J

Cette énergie est bien négative puisqu’elle est perdue par le vaisseau.

6



e) (7 pt)

Nous devons définir un référentiel R” attaché au vaisseau de secours. il faut ensuite traduire la
vitesse vg dans le référentiel R’ grace aux transformées de Lorentz, car les grandeurs (temps
avant explosion et distance de sécurité) sont données dans le référentiel R'.

FIGURE 7 — Schéma de la situation pour le point e), avec le vaisseau de sauvetage. On note v,
négatif sur R pour étre cohérent avec les transformées de Lorentz données au cours.

Dans le référentiel R, la vitesse du vaisseau de secours a les composantes suivantes :

Vs = vg cos(30) = 0.43¢
vgy = vgsin(30) = 0.25¢

Pour trouver ces composantes dans R’, on applique les transformations de Lorentz :

Vsz — Uyf
Vg, = 1 Torvss ad vavgl = 0.35¢
— DorfSe
v
Sy = 0.26¢

1 _ 'va'USz)

Tof ( c?

vgy =
oll v = v,y car c’est la vitesse de déplacement de R par rapport a R’. La distance parcourue

par le vaisseau de secours dans R’ pendant 5 s est :

d, = teapeVls, = 5.22 x 10° m

&) = tsagets, = 3.90 X 10° m

Ce qui donne une distance totale de d' = \/d?? + d;? = 6.52 x 108 m : I’équipage est sauf!



Exercice 2

Un récipient déformable en aluminium de masse m,.. = 0.485 kg contient 0.3 kg d’eau. Le tout
se trouve au niveau de la mer. A I'état initial, le récipient a un volume total Vx; = 1/ et il est a
I’équilibre thermique avec l'eau a la température T; = 50 °C. Dans cet état, le récipient est déposé
dans un bain d’éthanol liquide, que 'on considere comme un réservoir de chaleur, a la température
Ten, = —100 °C.
a) Démontrez que, a 1’état initial, le récipient flotte dans 1’éthanol.
Apres avoir déposé le récipient dans le bain, de la chaleur est échangée uniquement entre le bain
d’éthanol et le récipient et ’eau jusqu’a atteindre, a I’état final, ’équilibre thermique.
b) Déterminez si, a I’état final, le récipient coule ou flotte dans I’éthanol. Justifiez votre réponse.
Entre ’état initial et ’état final, calculez :
c¢) La chaleur échangée entre ’éthanol et le récipient et 1'eau.
d) La variation d’entropie de l'univers.
Considérez dans la suite de I'exercice le méme récipient déformable en aluminium de masse Mo =
0.485 kg avec la méme masse d’eau (0.3 kg) contenue a lintérieur, mais avec les parois externes
parfaitement isolées thermiquement. A T'état initial, le récipient a un volume total V; = 1/, I'eau
et le récipient sont a ’équilibre thermique a la température T; = 50 °C et il sont immergés dans un
bain d’éthanol, qui n’échange pas de chaleur, ni avec le récipient, ni avec I’eau.
e) Vous aimeriez ajouter dans le récipient, avec 'eau a Iintérieur, une masse de 5.5 g a 90 °C
d’un matériau "M”. Quelle chaleur spécifique massique minimum devrait avoir ce matériau
"M” pour que le systeme récipient+eau-+masse ne coule pas quand le tout a atteint 1’équilibre
thermique ?
f) En sachant que la masse molaire du matériau "M” est de 150 g/mol, comparez la chaleur
spécifique molaire ¢y, du matériau ”M” avec celle calculée avec la loi de Dulong-Petit. Pensez-
vous que ce matériau existe ? Justifiez votre réponse.

S\ a
TN~ eau TN~

éthanol

aluminium

Indications : négligez le travail associé au changements de volumes et considérez les masses constantes.
Considérez les valeurs données dans la suite comme constantes pour toutes valeurs de température.
Coefficient de dilatation volumique de I'aluminium S = 70-107% °C~!; densité volumique de
I'éthanol pgn, = 790 kg/m?; chaleur spécifique massique de I'aluminium cs; = 897 J/kg/K; cha-
leur spécifique massique de 'eau ceay = 4186 J/kg/K; chaleur spécifique massique de la glace ¢y =
2090 J/kg/K; chaleur latente de fusion de la glace Ly = 334 kJ/kg.



Corrigé

a) (2 pt)

Grace a Archimede, nous savons que la masse immergée d'un corp flottant dans I’éthanol
correspond exactement aux masse d’éthanol dans le volume immerge. Pour le démontrer,
écrivons la condition de flottement de le récipient

peth‘/immg = (meau + mAl)g

nous considérons que Vi, est égal au volume du conteneur en aluminium, qui est le cas
limite avant de couler. Nous pouvons maintenant vérifier les deux masses et conclure que le
conteneur flotte.

Application numérique :

3

1
petnVimm = pen = T90kg /m* 11— = 0.79kg > Mewy + ma = 0.3kg + 0.485kg = 0.785kg

10001

La solution alternative avec la masse volumique du récipient :

Prec = (meau + mAl)/‘/;"ec (2)
prec = (0.3kg + 0.485kg)/0.001m* = 785kg/m* < 790kg/m* (3)

b) (3.5 pt)
La température du récipient est maintenant de 7' = —100 °C. En raison de la dilatation (ou

mieux dans ce cas, du rétrécissement), le volume du récipient est maintenant plus faible. Le
volume d’éthanol déplacé change et, par conséquent, la masse de liquide déplacé est inférieure
a la masse du récipient et de I’eau. Recalculons le volume du récipient :

AV
Vai
Maisp = (AVar + Var) petn

= By AT

Application numérique :

AVy = VyBayAT =1-10"% m3By = 70-107° °C~ (=100 — 50)°C = —1.05-107° m?

Maisp = (—1.05-107° +1-107°m?)790 kg/m® = 0.7817kg < Mequ + Mma = 0.785 kg

La solution alternative avec la masse volumique du récipient :

Prec = (meau + mAl)/V;"ec (4)

Prec = (0.3kg+0.485kg) /(0.001—1.05 - 10~°m®) = 0.785kg/9.895 - 10~ m® = 793.3kg/m” > 790kg/m"
(5)



c) (5pt)

En supposant que le récipient échange de la chaleur uniquement avec I’éthanol et non avec
I’environnement, nous avons :

Y Q=Qc+ Qi+ Qu+Qu

Le premier terme (). est 1’énergie nécessaire pour diminuer la température de 'eau de sa
valeur initiale a son point de fusion. Le deuxieme terme (), représente 1’énergie nécessaire
pour transforme 'eau en glace. Le troisieme (), terme représente 1’énergie cédée par le glace
pour diminuer sa température de fusion a 1’état final. Le quatrieme terme (@) 4; représente
I’énergie cédée par 'aluminium pour diminuer sa température initiale de a 1’état final.

Q = mece<Te,f - Te,i) + meLgl + mecgl(Tgl,f - Tgl,z’) + malcal<TAl,f - TAl,i)

Application numérique :

Qeau =MeCe(Tep — Toi) +meLg + mecq(To s — Toii)
— 0.3 kg [4186 J/(kg K)(0 — 50) K + 334-10° J /kg + 2090 J/(kg K)(—100 — 0) K]
= —62790 — 100200 — 62700 J
= —225690 J

QAZ — mAchl(TAl,f — TAl,i) =0.485 kg 897 J/(kg K)(—IOO — 50) K~ —-6.53- 104 J

Qtot = Qal + Qeau ~ —291- 105 J

d) (6.5 pt)

Pour calculer la variation d’entropie de 1'univers, nous devons additionner la variation d’en-
tropie de tous les processus séparément. Nous commencons par 1’eau.

a) La variation d’entropie de 'eau doit étre calculée en trois étapes :
1.- Refroidissement de 'eau de 50 °C a la température de solidification, 0 °C
On obtient pour la variation d’entropie de ’eau :

Trar T
AS] = MCean /T T = MCoqy 1N <T]:) ) (6)
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2.- solidification de I'eau a 0 °C en glace a 0 °C
La chaleur transférée a ’'eau est :

Q =mLg. (7)
Ainsi, la variation d’entropie de 1’eau lors de sa solidification (c.-a.-d. & température
constante) est :
U L
AS, = / 09 _ / Q— = =2 (8)

3.- Refroidissement de la glace de 0 °C a —100 °C
La quantité infinitésimale de chaleur pour chauffer la glace de dT est :

0Q = mcy dT. 9)
Donc, la variation d’entropie de la glace s’écrit :
76Q Trar T
f
ASs = [ = meg /Tl = Meg In (f) . (10)
Nous devons également tenir en compte la variation de I’entropie de I'aluminium
Trdr T
ASy =muca |  —= =mucaln [ =L 11
Al mAlcl/Ti T mAzcln<Ti> (11)
Pour la variation d’entropie de I’éthanol, sachant que sa température est constante, on
obtient ; ;
0 1 Q
ASun=| === sQ== 12
w= [ F-7 ) 0-% (12)

Application numérique :

AS; = 0.3 kg x 4186 Jkg ' K™! x In (%) = -211.2JK.
AS, — 0.3 kg x 3;3;5;05 Jkeg™' -
ASs; = 0.3 kg x 2050 Jkg ' K x In (%) =286 JK %
ASy =0.485 kg x 897 Jkg ' K™! x In (%) =—271.62J K.
AS,y, = 2'9019753—'1125‘] = 1681 JK™.

On a donc pour la variation totale d’entropie de la glace :

ASean = ASy + ASy + AS3 = —864.2591 JK ™, (13)

ASiey = AS] + ASy 4+ ASs + ASy + ASey, = 5458 JK 1. (14)
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e) (6 pt)

Comme la masse du récipient a augmenté, une masse plus importante d’éthanol doit étre
déplacée pour que le récipient continue a flotter. Nous calculons la nouvelle masse du récipient
et le volume d’éthanol a déplacer qui en résulte :

Me = Ma; + My + My

‘/e) = (me/peth>

Ce volume correspond au nouveau volume du récipient apres I'insertion de la nouvelle masse.
Ce volume doit étre atteint grace a la dilatation causée par 'augmentation de la température
du systeme provoquée par la masse.

AV, =V, = Vy
AV,
AT = c
BaiVe

La variation de température calculée ici est relative aux 50 °C initiaux et correspond a ’aug-
mentation constatée lorsque le systeme est en équilibre. Nous pouvons maintenant trouver le
cyr de la masse qui permettrait une telle augmentation de température :

ZQ:Q6+QAI+ g% =0

énergie libérée par la masse M

Q =mece(Te s — Tei) + meLg +mpren(Tor g — Taai) + marcai(Tary — Tari) =0

En supposant que T f = Tequ,f = Tar; + AT nous pouvons résoudre 1’équation ci-dessus par
rapport au terme recherché c,; :

e = (Mece AT, + mac AT/ (marAT,)

Application numérique :

V. = 0.7905 kg/790 kg/m® = 1.0006 L

AT = (0.0006 L/70-107°°C~1)1.0006 L = 9°C

Ty = 50 + AT = 59°C

(0.3 kg x 4186 Jkg ' K~' 4 0.485 kg x 897 Jkg ' K1) x 9°C _—
- — 90'000 Jke ' K
oM (0.0055 kg x (90 — 59) K)) &

12



f) (2 pt) L’approximation de Dulong-Petit est formulée en termes de capacité thermique molaire.
Nous pouvons donc transformer la valeur trouvée au point €) en unités molaires

CMmol = ChMmassM = 90/000 Jkg ™ K™ x 150 x 10™* kgmol * = 13479 Jmol ' K™
Par rapport aux :

c=3R=24.94 Jmol 'K!

Le ¢p; du point e) est beaucoup plus grand que 3R, ce qui nous permet de conclure que ce
matériel n’existe pas.
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Exercice 3

Un gaz parfait monoatomique (n = 10 moles), contenu dans un cylindre fermé, subit un cycle moteur
constitué des trois transformations suivantes, que I'on considere comme réversibles :

1) Détente adiabatique d’un état A a un état B.

2) Compression de I’état B a un état C avec pression p et volume V' du gaz qui suivent la relation :

pe(aVp — Vi) pe(VE — aV3)
=mV +q avec m = , = , a=1.2, 15
b 1 Ve(Ve — V) 1 Ve(Ve — Vi) (15)

telle que pc > pg.
3) Transformation isochore de I’état C a I'état A.

a) Dessinez qualitativement le cycle ABCA dans un diagramme p — V' et T'— V en définissant
Iorientation du cycle avec des fleches.

Considérez le cycle ABCA tel que V4 =1 m?, Ty =500 K, et T = 200 K.

b) Calculez la température 7', le volume V', et la pression p du gaz dans chaque état A, B, C.

c) Calculez la chaleur échangée, le travail et la variation d’énergie interne du gaz lors de chaque
transformation 1), 2), 3).

d) Calculez la variation d’enthalpie du gaz lors de la transformation 3).

Dans le suite de l'exercice, considérez le méme gaz qui subit une séquence de 7,,,, cycles moteur
consécutifs, chacun formé de trois transformations du méme type que 1), 2) et 3), mais avec des
états B et C, qui changent d'un cycle au suivant, définis comme ci-dessous. Les variables d’état sont
indiquées avec I'index ”i” (exemple : V(i) est le volume du gaz dans I'état B au cycle i). Considérez
la séquence des cycles moteur telle que :
— Au premier cycle, V4(1) =1m3 |, Ta(1) =500 K, Tp(l)=200 K .
— A chaque cycle i, les parametres m et ¢ de 1'eq. sont calculés en utilisant les variables
d’état évaluées au i-eme cycle.
— Tp(i+1) =Tc(1).
e) Montrez que T¢(i) = a'Tg(1).
f) En sachant que la chaleur lors de la transformation CA est échangée uniquement avec un
réservoir a la température de 500K, calculez le nombre maximum de cycles moteur i,,,, que
I'on peut effectuer.
Indications : on arrondit la valeur de la constante des gaz parfaits a R = 8.3 J/K/mol.
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Corrigé

a) (5 pt)

Dans le diagramme p-V, la transformations A-B est une adiabatique (pV? = const ) et la C-A
est une isochore (donc une droite verticale). Dans ce méme diagramme p-V, la transformation
B-C est une droite avec pente négative (on peut le voire en utilisant 'Eq. (1)). Comme il s’agit
d’un cycle moteur le sense de parcours est horaire. Le diagramme T-V est moins intuitif que
le diagramme p-V. Pour obtenir 7" = T'(V), on utilise la loi des gaz parfaits (pV = nRT) dans
laquelle on insere I’'Eq. (1). La transformation B-C devient donc une parabole avec concavité
vers le bas, puisque selon 'Eq. (1) la droite a coefficient angulaire négatif. A noter que cela
signifie que pendant la transformation B-C, la température augmente d’abord, puis diminue
ensuite, jusqu’a la valeur T¢. Le sense est toujours horaire.

Pa
Pa

Pc
Ps

b) (4 pt)

Pour trouver les valeurs, nous utilisons la loi des gaz parfaits et I’équation du processus
adiabatique. La constante «y se trouve comme (en étant un gaz monoatomique) :

c, 5
T=6, T3 (16)

Pour le point C on utilise I’équation donnée par le probleme.
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Point A :

T
pa = A 4150100 Pa (17)
Va
Point B : )
TA -1 3
Ve =Va | — =3.95m (18)
Tp
T
pp = "B o 107 pa (19)
B
Point C :
pc =mVe +q=1.99-10" Pa (20)
m = —5.32-10° Pa/m? (21)
q=2.52-10* Pa (22)
pcVe
T = =240 K 2
© nR 0 (23)
c) (6 pt)

Pour trouver le travail, la chaleur et la variation d’énergie interne, nous utilisons le premier
principe de la thermodynamique.

Transformation AB. Comme c’est un adiabatique, Q=0, et on trouve ’énergie interne grace
a la température finale et initiale.

Qap =0 (24)
AUyp =nCy(Tp — Ty = —3.73-10" J (25)
Wap = —AUup = 3.73-10* J (26)

Transformation BC. La pression de cette transformation suit ’équation linéaire donnée par le
probleme, on peut donc la remplacer dans la définition du travail, et I'intégrer pour trouver
le travail effectué par le processus.

Ve Ve
Wi — / pdv = [ (mV + q)av (27)
Ve VB
V2 Ve 2 V2
Wae = {mT + qV} = mTC +qVe — mTB — gV = —3.56-10* J (28)
VB
AUpc = nCy(Tg — Tg) = 4.98-10° J (29)
Qpc = AUpc + Wpe = —3.06-10* J (30)

Transformation CA. Comme cette transformation est une isochore, le volume est constant et
le travail W=0.

Wea=0 (31)
AUcps =nCy(Ty — Te) = 3.24-10* J (32)
Qca = AUcs =3.24-10" J (33)
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d) (2 pt)
Pour trouver I'enthalpie, on utilise sa définition :

AH = AU + A(pV) (34)

Transformation CA :

AHey = AUcs 4+ paVa — pcVe = 5.4-10% J (35)
¢) (5 pt)
Pour trouver la relation entre T et T, nous devons trouver la relation entre « et les pa-

rametres du cycle. On part de I’équation de la transformation BC, et on cherche « par rapport
a la pression et aux volumes des points B et C.

pe(aVp — Vi) pe(VE — aV3)
=mVo+q= Ve + 36
be o Ve(Ve — Va) ¢ Ve(Ve — Vi) (36)
i—CVC(VC — Vp) = Ve(aVy — Vo) + (V2 — aVR)
B
bc
—Vc(VC — VB) = OéVB(VC — VB)
PB
pcVe
o= 37
peVE (37)

Cette relation est vraie pour chaque cycle i, car m et q varient a chaque cycle en fonction des
volumes et des pressions en B et C, tandis que « reste constant. On pourrait donc réécrire :

o = Pe@Ve(d)

pu(i)Va(i)

Donc on peut introduire o dans la loi des gaz parfaits du point C pour trouver une relation
entre la température en C et la température en B. Faisons le calcul pour le premier cycle :

Tc(l) _ pC(l,r)LgC<1) — apB(sz;B(l) — OéTB(l) (39)

Cette relation est valable pour chaque cycle, car « est défini avec les parametres du i-eme

cycle. Pour le second cycle, on sait que Tg(i + 1) = T (i), donc en substituant dans 1'eq.

on obtient :

(38)

Tp(2) = Te(1) = aTp(1) (40)

Et si on fait le méme calcul que eq. [39] on trouve :

To(2) = aTp(2) = o*Tp(1) (41)

Et par extension :

To(i) = o'Tp(1) (42)
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f) (3 pt)

Pour trouver le nombre maximum de cycles moteur possibles, il faut trouver combien de cycles
sont nécessaires pour augmenter la température du point C jusqu’a la température du point
A, puisque la température du point A est fixé parce que le gaz échange de la chaleur avec le
réservoir. La condition Tx > T}y correspond a un cycle réfrigérateur.

Ta =To(i) = a'Tp(1) (43)
i
! Ina (44)
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Exercice 4

L’intérieur d’un tuyau cylindrique rigide composé d’une paroi en acier est completement rempli de
glace a la température de T,; = 0 °C. Le tuyau a une longeur de [ = 10 m, un rayon interne r; = 0.09
m et un rayon externe r. = 0.1 m. Les températures des surfaces interne et externe de la paroi
sont indiquées par T; et T, respectivement. Pour fondre la glace (température de fusion de la glace
Tts = 0°C), la surface externe du tuyau est chauffée par un flux d’eau a la température T,,,, = 90 °C.
La direction radiale est décrite par la coordonnée r > 0 associée a un repere cylindrique centré sur
I’axe du tuyau. La surface interne du tuyau est en équilibre thermique avec la glace qui fond. Soit
k le coefficient de diffusivité thermique de 'acier et h le coefficient de transfert de la chaleur entre
I’eau et 'acier.
a) Montrez que la température dans la paroi du tuyau est donnée par T'(r) = A x log(r) + B, ou
A= (T.—-T;)/log(re/r;) et B="T, —log(r.)(Te. —T;)/log(re/r;).
b) Donnez l'expression du flux de chaleur J(r) dans la paroi du tuyau en fonction de T;, Ty, 7,
r; et K.
c¢) Pour les valeurs données, calculez la température 7.
d) Calculez le temps nécessaire pour que, a l'intérieur du tuyau, toute la glace fonde completement
jusqu’a obtenir uniquement de 'eau a 0 °C.

Considérez pour la suite de 'exercice un tuyau cylindrique rigide composé d’une paroi en acier (rayon
interne 7;, longueur [) dont 'intérieur est completement rempli de glace a la température Ty; = 0 °C,
en équilibre thermique avec la surface interne. La surface externe (de rayon r. a déterminer) est
chauffée par un flux d’eau a la température T,,,.

e) On souhaite trouver le rayon extérieur r. qui minimise le temps de fonte de la glace (c’est a
dire le temps qu’il faut pour obtenir uniquement de 'eau liquide a 0 °C), autrement dit qui
maximise le flux de chaleur a travers le tuyau. Montrez que le rayon extérieur du tuyau pour
lequel le temps de fonte sera minimal est donné par r, = k/h.

Indications : Traitez ce probleme en coordonnées cylindriques. On suppose que le transfert de cha-
leur se fait en régime stationnaire et uniquement dans la direction radiale par convection entre 1’eau
et le tuyau (pour r > ), et par conduction dans la paroi du tuyau et entre le tuyau et la glace. On
néglige les transferts de chaleur aux extrémités du tuyau. On fait I'hypothese que la chaleur échangée
avec la paroi interne est transférée de maniere homogene a toute la glace. Densité volumique de la
glace p = 920 kg/m?. Chaleur latente de fusion de la glace Ly = 334 kJ/kg. Coefficient de diffusivité
thermique de l'acier k = 50 W/m/K. Coefficient de transfert de la chaleur entre l'eau et l'acier
h =400 W/m? /K. Le logarithme en base e de la variable x est indiqué par log(z).
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Corrigé

a) (6 pt)
On part de I’équation de diffusion de la chaleur en coordonnées cylindriques sans source de
chaleur interne : Lo o7 o7
pCy
=) = L 45
r Or (r 87") Kk Ot (45)

Puisqu’on est en régime stationnaire, 5
trouver T'(r)

9 — (. On doit donc résoudre 1’équation suivante pour

oT
—=A
T@r
or A
or r

T(r)=Alnr+ B
Pour trouver les constantes d’intégration, on utilise les conditions au bord suivantes
T(r;)=T,=Aln(r;) + B
T(ro)=T.=Aln(r.) + B

On a deux équations pour deux inconnues, et on trouve

Te_ﬂ
A= "
(%)
_T
B=T, —1In(r)—~_2
n(re) T

b) (3 pt)

La loi de Fourier nous dit que le flux de chaleur J est donné par

T
J:—lia—

or
(Te - ﬂ)

J=—pe U
rin (%)

c) (6 pt)
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Pour trouver T,, on utilise le fait que % est constant pour tout r.
On peut donc égaliser la chaleur transmise par unité de temps des deux cotés de la surface
externe S du tuyau :

hS(T, — Toqu) = J(1e)S

T, = Topy — M
hr.In (’;—j)
kT;
BT 6|
hre 1:(%6)
T. ~7.00°C

d) (5 pt)

La chaleur totale nécessaire pour fondre la glace est égale a My Ly, avec My la masse de la
glace contenue dans le tuyau.

Comme % est constant dans le temps, on peut simplement écrire

0Q
%At - Mgngl
Ly priml
At = 1 —
J(r)2mrl
Lypriin (’;—6)
At = — N7
PTG p—
At ~ 375 s

e) (5 pt)

Pour simplifier les calculs, on va égaliser le flux de chaleur des deux cotés de la paroi externe du
tuyau pour éliminer 7, et trouver une expression pour % qui 'on va, par la suite, maximiser.

T In ( e
Q_ anin(r-1) (%)
dt In (r_p> dt 27lk
dQ dQ 1
— =2 elh Te - Teau Te - Teau T
g = 2l ) = dt 2rr.ih
d T; - Teau
—Q = (46)
dt 1n<;—j> 1
2mlk 2nrelh
On maximise Cé—? en cherchant r, pour lequel la dérivée s’annule :
0 (dQ
=)l =o 47
ore ( dt ) (47)
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In ( Z=
o (m(%)
= 4
ore 27lk +27T7“elh 0 (48)

1 1
2rlkr,  2mlhr?

—0 (49)

Te =

K
h

430 T T T T T T T T

410 b

400 - b

At [s]

390 b

380 b

360 Il i Il Il i Il Il Il
0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

re [m]

FI1GURE 8 — Temps nécessaire pour faire fondre la glace, en fonction du rayon externe.
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