
Examen de physique générale II – Section SV Prof. Furno

Semestre été 2023

Exercice 1

La planète α est immobile dans le référentiel attaché à la Terre (supposé inertiel) et se trouve à une
distance LαT = 1011 m de la Terre. α envoie le long de l’axe α-Terre un vaisseau de transport vers la
Terre, avec une vitesse vv = 0.6c. Quand l’horloge de bord du vaisseau indique qu’une minute s’est
écoulée depuis son départ d’α, le système de contrôle du vaisseau tombe en panne. Au même moment
dans le vaisseau, celui-ci envoie un signal radio ”SOS” vers la Terre : le vaisseau avance toujours à
une vitesse constante vv et ne pourra pas atterrir en toute sécurité sur Terre.

a) Quelle est la distance, dans le référentiel de la Terre, entre le vaisseau et α au moment de
l’envoi du signal ”SOS” ?

Pour agir de la meilleure manière face à cette urgence, le centre de commande sur Terre effectue deux
mesures : l’événement 1 correspond à la mesure de l’avant du vaisseau et l’événement 2 correspond à
la mesure de l’arrière du vaisseau. Dans le référentiel du vaisseau, l’évènement 1 précède l’évènement
2 d’un intervalle de temps de 10−7 s. Considérez, uniquement pour la question b), que le vaisseau a
une longueur propre Lv = 100 m, et qu’il ne peut donc pas être considéré comme un point matériel.

b) Quel événement a lieu en premier dans le référentiel de la Terre et de combien de temps
précède-t-il l’évènement suivant ? Quelle est la distance spatiale entre les deux événements
mesurée dans le référentiel de la Terre ?

Le centre de contrôle sur Terre décide d’agir pour éviter l’accident et effectue deux actions en même
temps : il envoie un missile de la Terre (vm = 0.6c) vers le vaisseau sur l’axe Terre-vaisseau pour
le détruire ainsi qu’un message radio ”EVAC” pour prévenir l’équipage de l’arrivée du missile et
ordonner l’évacuation du vaisseau. Lorsque le vaisseau reçoit le message ”EVAC”, il est à une distance
de 1010 m de la Terre, mesurée dans le référentiel du vaisseau.

c) Combien de temps (mesuré dans le référentiel du vaisseau) reste-t-il à l’équipage pour évacuer
le vaisseau à partir de la réception du message ”EVAC” envoyé par la Terre ?

Pour gagner du temps supplémentaire pour l’évacuation, l’équipage arrive à activer des freins d’ur-
gence au moment de la réception du signal ”EVAC”, ce qui leur permet d’instantanément réduire la
vitesse du vaisseau de transport à vvf = 0.1c dans le référentiel de la Terre.

d) Dans combien de temps la collision se produira-t-elle alors (dans le référentiel de la Terre) ?
Quelle quantité d’énergie cinétique est perdue par le vaisseau, en sachant que sa masse au
repos est m0 = 105 kg ?

Après le freinage, l’équipage du vaisseau de transport s’enfuit grâce à un vaisseau de secours. La
Terre observe le vaisseau de secours quitter le vaisseau de transport avec un angle de 30◦ par rapport
à l’axe α - Terre, et avec une vitesse constante de norme vS = 0.5c. Au même moment, l’horloge de
bord du vaisseau de transport indique qu’il reste 5 s avant la collision avec le missile.

e) L’équipage arrive-t-il à se sauver, en sachant que il faut être au moins à une distance de
6 × 108 m (dans le référentiel du vaisseau de transport) au moment de la collision entre le
vaisseau de transport et le missile ? (N.B. : Négligez les masses des différents vaisseaux pour
cette question).

Indications : Considérez la Terre, α, le vaisseau de transport, le missile et le vaisseau de secours
comme des points matériels, à l’exception du vaisseau de transport dans le point b). Vitesse de la
lumière c = 3× 108 m/s.
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Corrigé

Pour la suite de l’exercice, on choisit R comme le référentiel des planètes et R′ comme le référentiel
du vaisseau de transport (voir figure 1). On définit le facteur gamma du vaisseau :

γv =

(√
1− v2v

c2

)−1

=
(√

1− 0.62
)−1

= 1.25 (1)

Figure 1 – Schéma général de l’exercice

a) (3 pt)

On donne le temps propre du vaisseau entre son départ et la panne : ∆t′ = 60 s. On veut
trouver dαT (voir figure 1). Il y a deux possibilités pour arriver à la solution demandée : soit
trouver ∆t grâce à Lorentz puis le multiplier par la vitesse du vaisseau, soit trouver d′αT grâce
à la vitesse et ensuite effectuer Lorentz. La première possibilité donne :

∆t = γv∆t′ = 75 s

dαT = vv∆t = 1.35× 1010 m

b) (4 pt)

On considère deux événements dans les deux référentiels.

Figure 2 – Les deux événements dans R′

Pour le référentiel R′ : {
x′
1 = 100 m

t′1 = 0 s

{
x′
2 = 0 m

t′2 = 10−7 s
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Pour R, en utilisant Lorentz et en substituant par les valeurs ci-dessus :{
x1 = γv (x

′
1 + vt′1) = γvx

′
1 = 125 m

t1 = γv

(
t′1 +

vx′
1

c2

)
= γv

vx′
1

c2
= 2.5× 10−7 s

{
x2 = γv (x

′
2 + vt′2) = γvvt

′
2 = 22.5 m

t2 = γv

(
t′2 +

vx′
2

c2

)
= γvt

′
2 = 1.25× 10−7 s

On cherche les différences des coordonnées temporelles et spatiales entre les événements 1 et
2, c’est-à-dire ∆x12 et ∆t12

(1) :

∆x12 = x2 − x1 = −102.5 m

∆t12 = t2 − t1 = −1.25× 10−7 m < 0 =⇒ t2 < t1

Vu dans le référentiel R, le premier événement est celui de la mesure de l’arrière du vaisseau.

c) (7 pt)

Nous allons répondre à cette question en se plaçant uniquement dans le référentiel R, puis en
transformant le temps final avec Lorentz pour avoir la réponse dans R′.

Figure 3 – Les 3 événements à considérer dans le référentiel de la Terre. On cherche le temps entre
2 et 3 au point c).

La distance entre le vaisseau et la Terre au moment ”2.” (voir figure 6) dans R est :

dvT = γvd
′
vT = 1.25× 1010 m

1. Notez que cette réponse finale pouvait être obtenue en appliquant directement les transformées de Lorentz avec
∆x′ et ∆t′. Attention toutefois à bien prendre ∆x′ = −100 m, puisqu’on mesure d’abord l’avant puis l’arrière du
vaisseau dans son référentiel.
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Quand le vaisseau reçoit le message, le missile a déjà parcouru une certaine distance, que l’on
peut trouver comme suit :

tsignal = dvT/c = 41.67 s

dmissile = vmtsignal = 7.5× 109 m

La distance qui sépare le missile et le vaisseau est donc :

dvm = dvT − dmissile = 1.25× 1010 − 7.5× 109 = 5× 109 m

Comme le missile et le vaisseau de transport voyagent à la même vitesse, ils vont chacun
parcourir la moitié du chemin restant avant de se rencontrer. Ensuite, on trouve te temps
avant la collision dans R (entre les instants ”2” et ”3” sur la figure 6) en divisant par la
vitesse du vaisseau :

dcoll = dvm/2 = 2.5× 109 m

tcoll = dcoll/vv = 13.9 s

Ce temps est trouvé dans R′ grâce à Lorentz. Étant donné que, dans R′, il s’agit d’un temps
propre (les événements ”réception du signal EVAC” et ”collision” se passent au même endroit),
cela revient à contracter le temps précédemment trouvé :

t′coll = tcoll/γv = 11.1 s

Nous pouvons trouver le même résultat en réfléchissant dans le référentiel du vaisseau R′.
L’intervalle temporel entre la réception et l’émission dans le référentiel du vaisseau et donné par :

−c∆t′r−e = −d′vT + (−vv)∆t′r−e ⇒ ∆t′r−e =
d′vT

c− vv

La vitesse du missile dans le référentiel R′ est donnée par :

vm/v =
vm − vv

1− vmvv/c2
≃ 0.88 c

L’intervalle spatial entre le vaisseau et le missile au moment de la réception du message, est donc :

d′vm = c∆t′r−e − |vm/v∆t′r−e|

L’intervalle de temps avant la collision dans R′ sera donc :

∆t′coll =
d′vm
vm/v

=
∆t′r−e(c− |vm/v|)

vm/v

≃ 11.1 s

d) (4 pt)

Dans le référentiel de la Terre, on sait que la distance à parcourir est donnée par dvm et que
les objets ont maintenant des vitesses respectives de vvf et vm. On trouve donc le temps avant
la collision :

dvm = vvf∆tcoll + vm∆tcoll

⇒ ∆tcoll =
dvm

vvf + vm
= 23.8 s
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Figure 4 – Les 3 événements à considérer dans le référentiel du vaisseau. On cherche le temps entre
2 et 3 au point c).

Comme le temps de collision initial (à la vitesse vv) était de 13.9 s, l’équipage arrive à gagner
9.9 secondes supplémentaires.
Il est possible de trouver le même résultat à partir de la distance d′vm dans la question c), en
réfléchissant dans le référentiel du vaisseau.

Figure 5 – Les 2 événements A et B simultanés dans le référentiel du vaisseau R′.

Tout d’abord, pour pouvoir appliquer aux deux évènements simultanésA(x′
vr, t

′
vr) eB(x′

mr, t
′
mr)

(avec t′vr = t′mr) les transformations de Lorentz en passant du référentiel R′ avec vv = 0.6c
mesurée depuis la Terre, au nouveau référentiel R′ avec la nouvelle vvf = 0.1c mesurée depuis
la Terre (appelé à partir de ce moment R′′), il faut calculer vv mesurée depuis le référentiel
du vaisseau après l’application des freins :

v′′v =
vv − vvf

1− vvvvf/c2
⇒ γ′′

v =
1√

[1− (v′′v )
2/c2]
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Nous pouvons à ce point appliquer Lorentz :

x′′
mr − x′′

vr = ∆x′′
vm = γ′′

v (∆x′
vm + v′′v ∆t′vm︸ ︷︷ ︸

=0

) = γ′′
v∆x′

vm

t′′mr − t′′vr = ∆t′′vm = γ′′
v (∆t′vm︸ ︷︷ ︸

=0

+
v′′v∆x′

vm

c2
) =

γ′′
vv

′′
v∆x′

vm

c2

On peut noter comme dans R′′, les deux évènements A et B ne sont plus simultanés (t′′mr > t′′vr),
qui correspond à la situation indiqué dans la figure suivante :

Figure 6 – Les 2 événements A et B, plus simultanés dans le référentiel du vaisseau R′′.

Pour calculer dans le référentiel R′′ le temps de la collision ∆t′′coll depuis la réception du message
∆t′′coll, il faut donc calculer la distance d′′vm = ∆x′′

vm + v′′m/v∆t′′vm :

∆t′′coll =
d′′vm
v′′m/v

Le temps de collision demandé dans le référentiel de la Terra sera, avec Lorentz :

∆tcoll = γvf∆t′′coll =
1√

[1− (vvf )2/c2]
∆t′′coll = 23.8 s

Veuillez noter comme cette dernière méthode de résolution dans le référentiel de la fusée est
bien plus longue que celle dans le référentiel de la Terre.

L’énergie cinétique est donnée par E = (γ − 1)m0c
2. On associe à la nouvelle vitesse vvf un

coefficient relativiste γvf = 1.005. La différence entre les deux énergies cinétiques, avant et
après l’actionnement des freins, sera donc :

∆E = (γvf − γv)m0c
2 = −2.2× 1021 J

Cette énergie est bien négative puisqu’elle est perdue par le vaisseau.

6



e) (7 pt)

Nous devons définir un référentiel R′′ attaché au vaisseau de secours. il faut ensuite traduire la
vitesse vS dans le référentiel R′ grâce aux transformées de Lorentz, car les grandeurs (temps
avant explosion et distance de sécurité) sont données dans le référentiel R′.

Figure 7 – Schéma de la situation pour le point e), avec le vaisseau de sauvetage. On note vvf
négatif sur R pour être cohérent avec les transformées de Lorentz données au cours.

Dans le référentiel R, la vitesse du vaisseau de secours a les composantes suivantes :

vSx = vS cos(30) = 0.43c

vSy = vS sin(30) = 0.25c

Pour trouver ces composantes dans R′, on applique les transformations de Lorentz :

v′Sx =
vSx − vvf
1− vvfvSx

c2

= 0.35c

v′Sy =
vSy

γvf
(
1− vvfvSx

c2

) = 0.26c

où v = vvf car c’est la vitesse de déplacement de R par rapport à R′. La distance parcourue
par le vaisseau de secours dans R′ pendant 5 s est :

d′x = tsafev
′
Sx = 5.22× 108 m

d′y = tsafev
′
Sy = 3.90× 108 m

Ce qui donne une distance totale de d′ =
√

d′2x + d′2y = 6.52 × 108 m : l’équipage est sauf !
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Exercice 2

Un récipient déformable en aluminium de masse mrec = 0.485 kg contient 0.3 kg d’eau. Le tout
se trouve au niveau de la mer. À l’état initial, le récipient a un volume total VAl = 1ℓ et il est à
l’équilibre thermique avec l’eau à la température Ti = 50 ◦C. Dans cet état, le récipient est déposé
dans un bain d’éthanol liquide, que l’on considère comme un réservoir de chaleur, à la température
Téth = −100 ◦C.

a) Démontrez que, à l’état initial, le récipient flotte dans l’éthanol.
Après avoir déposé le récipient dans le bain, de la chaleur est échangée uniquement entre le bain
d’éthanol et le récipient et l’eau jusqu’à atteindre, à l’état final, l’équilibre thermique.

b) Déterminez si, à l’état final, le récipient coule ou flotte dans l’éthanol. Justifiez votre réponse.
Entre l’état initial et l’état final, calculez :

c) La chaleur échangée entre l’éthanol et le récipient et l’eau.
d) La variation d’entropie de l’univers.

Considérez dans la suite de l’exercice le même récipient déformable en aluminium de masse mrec =
0.485 kg avec la même masse d’eau (0.3 kg) contenue à l’intérieur, mais avec les parois externes
parfaitement isolées thermiquement. À l’état initial, le récipient a un volume total VAl = 1ℓ, l’eau
et le récipient sont à l’équilibre thermique à la température Ti = 50 ◦C et il sont immergés dans un
bain d’éthanol, qui n’échange pas de chaleur, ni avec le récipient, ni avec l’eau.

e) Vous aimeriez ajouter dans le récipient, avec l’eau à l’intérieur, une masse de 5.5 g à 90 ◦C
d’un matériau ”M”. Quelle chaleur spécifique massique minimum devrait avoir ce matériau
”M” pour que le système récipient+eau+masse ne coule pas quand le tout a atteint l’équilibre
thermique ?

f) En sachant que la masse molaire du matériau ”M” est de 150 g/mol, comparez la chaleur
spécifique molaire cM du matériau ”M” avec celle calculée avec la loi de Dulong-Petit. Pensez-
vous que ce matériau existe ? Justifiez votre réponse.

Indications : négligez le travail associé au changements de volumes et considérez les masses constantes.
Considérez les valeurs données dans la suite comme constantes pour toutes valeurs de température.
Coefficient de dilatation volumique de l’aluminium βAl = 70 · 10−6 ◦C−1 ; densité volumique de
l’éthanol ρéth = 790 kg/m3 ; chaleur spécifique massique de l’aluminium cAl = 897 J/kg/K ; cha-
leur spécifique massique de l’eau ceau = 4186 J/kg/K ; chaleur spécifique massique de la glace cgl =
2090 J/kg/K ; chaleur latente de fusion de la glace Lgl = 334 kJ/kg.
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Corrigé

a) (2 pt)

Grâce à Archimède, nous savons que la masse immergée d’un corp flottant dans l’éthanol
correspond exactement aux masse d’éthanol dans le volume immerge. Pour le démontrer,
écrivons la condition de flottement de le récipient

ρethVimmg = (meau +mAl)g

nous considérons que Vimm est égal au volume du conteneur en aluminium, qui est le cas
limite avant de couler. Nous pouvons maintenant vérifier les deux masses et conclure que le
conteneur flotte.
Application numérique :

ρethVimm = ρéth = 790kg/m31l
1m3

1000l
= 0.79kg > meau +mAl = 0.3kg + 0.485kg = 0.785kg

La solution alternative avec la masse volumique du récipient :

ρrec = (meau +mAl)/Vrec (2)

ρrec = (0.3kg + 0.485kg)/0.001m3 = 785kg/m3 < 790kg/m3 (3)

b) (3.5 pt)

La température du récipient est maintenant de T = −100 ℃. En raison de la dilatation (ou
mieux dans ce cas, du rétrécissement), le volume du récipient est maintenant plus faible. Le
volume d’éthanol déplacé change et, par conséquent, la masse de liquide déplacé est inférieure
à la masse du récipient et de l’eau. Recalculons le volume du récipient :

∆VAl

VAl

= βAl∆T

mdisp = (∆VAl + VAl)ρeth

Application numérique :

∆VAl = VAlβAl∆T = 1 · 10−3 m3βAl = 70 · 10−6 ℃−1(−100− 50)◦C = −1.05 · 10−5 m3

mdisp = (−1.05 · 10−5 + 1 · 10−3m3)790 kg/m3 = 0.7817kg < meau +mal = 0.785 kg

La solution alternative avec la masse volumique du récipient :

ρrec = (meau +mAl)/Vrec (4)

ρrec = (0.3kg+0.485kg)/(0.001−1.05 · 10−5m3) = 0.785kg/9.895 · 10−4m3 = 793.3kg/m3 > 790kg/m3

(5)
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c) (5 pt)

En supposant que le récipient échange de la chaleur uniquement avec l’éthanol et non avec
l’environnement, nous avons : ∑

Q = Qe +Qs +Qgl +QAl

Le premier terme Qe est l’énergie nécessaire pour diminuer la température de l’eau de sa
valeur initiale à son point de fusion. Le deuxième terme Qs représente l’énergie nécessaire
pour transforme l’eau en glace. Le troisième Qg terme représente l’énergie cédée par le glace
pour diminuer sa température de fusion à l’état final. Le quatrième terme QAl représente
l’énergie cédée par l’aluminium pour diminuer sa température initiale de à l’état final.

Q = mece(Te,f − Te,i) +meLgl +mecgl(Tgl,f − Tgl,i) +malcal(TAl,f − TAl,i)

Application numérique :

Qeau =mece(Te,f − Te,i) +meLgl +mecgl(Tgl,f − Tgl,i)

= 0.3 kg
[
4186 J/(kg K)(0− 50) K + 334 · 103 J/kg + 2090 J/(kg K)(−100− 0) K

]
= −62790− 100200− 62700 J

= −225690 J

QAl = mAlcAl(TAl,f − TAl,i) = 0.485 kg 897 J/(kg K)(−100− 50) K ≃ −6.53 · 104 J

Qtot = Qal +Qeau ≃ −2.91 · 105 J

d) (6.5 pt)

Pour calculer la variation d’entropie de l’univers, nous devons additionner la variation d’en-
tropie de tous les processus séparément. Nous commençons par l’eau.

a) La variation d’entropie de l’eau doit être calculée en trois étapes :
1.- Refroidissement de l’eau de 50 ℃ à la température de solidification, 0 ℃

On obtient pour la variation d’entropie de l’eau :

∆S1 = mceau

∫ Tf

Ti

dT

T
= mceau ln

(
Tf

Ti

)
. (6)
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2.- solidification de l’eau à 0 ℃ en glace à 0 ℃
La chaleur transférée à l’eau est :

Q = mLgl. (7)

Ainsi, la variation d’entropie de l’eau lors de sa solidification (c.-à.-d. à température
constante) est :

∆S2 =

∫ f

i

δQ

T
=

1

T

∫ f

i

δQ =
Q

T
= −mLgl

T
. (8)

3.- Refroidissement de la glace de 0 ℃ à −100 ℃
La quantité infinitésimale de chaleur pour chauffer la glace de dT est :

δQ = mcgl dT. (9)

Donc, la variation d’entropie de la glace s’écrit :

∆S3 =

∫ f

i

δQ

T
= mcgl

∫ Tf

Ti

dT

T
= mcgl ln

(
Tf

Ti

)
. (10)

Nous devons également tenir en compte la variation de l’entropie de l’aluminium

∆SAl = mAlcal

∫ Tf

Ti

dT

T
= mAlcal ln

(
Tf

Ti

)
. (11)

Pour la variation d’entropie de l’éthanol, sachant que sa température est constante, on
obtient

∆Seth =

∫ f

i

δQ

T
=

1

T

∫ f

i

δQ =
Q

T
(12)

Application numérique :

∆S1 = 0.3 kg× 4186 J kg−1K−1 × ln

(
273 K

323 K

)
= −211.2 JK−1.

∆S2 = −0.3 kg× 3.335 · 105 J kg−1

273 K
= −367 JK−1.

∆S3 = 0.3 kg× 2050 J kg−1K−1 × ln

(
173 K

273 K

)
= −286 JK−1.

∆SAl = 0.485 kg× 897 J kg−1K−1 × ln

(
173 K

323 K

)
= −271.62 JK−1.

∆Seth =
2.9095 · 105 J

173 K
= 1681 JK−1.

On a donc pour la variation totale d’entropie de la glace :

∆Seau = ∆S1 +∆S2 +∆S3 = −864.2591 JK−1. (13)

∆Stot = ∆S1 +∆S2 +∆S3 +∆Sal +∆Seth = 545.8 JK−1. (14)
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e) (6 pt)

Comme la masse du récipient a augmenté, une masse plus importante d’éthanol doit être
déplacée pour que le récipient continue à flotter. Nous calculons la nouvelle masse du récipient
et le volume d’éthanol à déplacer qui en résulte :

me = mAl +mw +mM

Ve) = (me/ρeth)

Ce volume correspond au nouveau volume du récipient après l’insertion de la nouvelle masse.
Ce volume doit être atteint grâce à la dilatation causée par l’augmentation de la température
du système provoquée par la masse.

∆Ve = Ve − VAl

∆T =
∆Ve

βAlVe

La variation de température calculée ici est relative aux 50 ℃ initiaux et correspond à l’aug-
mentation constatée lorsque le système est en équilibre. Nous pouvons maintenant trouver le
cM de la masse qui permettrait une telle augmentation de température :∑

Q = Qe +QAl + QM︸︷︷︸
énergie libérée par la masse M

= 0

Q = mece(Te,f − Te,i) +meLgl +mMcM(TM,f − TM,i) +mAlcAl(TAl,f − TAl,i) = 0

En supposant que TAl,f = Teau,f = TAl,i +∆T nous pouvons résoudre l’équation ci-dessus par
rapport au terme recherché cM :

cM = (mece∆Te +mAlcAl∆Te)/(mM∆Tm)

Application numérique :

Ve = 0.7905 kg/790 kg/m3 = 1.0006 L

∆T = (0.0006 L/70 · 10−6 ℃−1)1.0006 L = 9℃

Tf = 50 + ∆T = 59℃

cM =
(0.3 kg× 4186 J kg−1K−1 + 0.485 kg× 897 J kg−1K−1)× 9 ℃

(0.0055 kg× (90− 59) K))
= 90′000 J kg−1K−1
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f) (2 pt) L’approximation de Dulong-Petit est formulée en termes de capacité thermique molaire.
Nous pouvons donc transformer la valeur trouvée au point e) en unités molaires

cM,mol = cM,massM = 90′000 J kg−1K−1 × 150× 10−3 kgmol−1 = 13′479 Jmol−1K−1

Par rapport aux :

c = 3R = 24.94 Jmol−1K−1

Le cM du point e) est beaucoup plus grand que 3R, ce qui nous permet de conclure que ce
matériel n’existe pas.
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Exercice 3

Un gaz parfait monoatomique (n = 10 môles), contenu dans un cylindre fermé, subit un cycle moteur
constitué des trois transformations suivantes, que l’on considère comme réversibles :

1) Détente adiabatique d’un état A à un état B.
2) Compression de l’état B à un état C avec pression p et volume V du gaz qui suivent la relation :

p = mV + q avec m =
pB(αVB − VC)

VC(VC − VB)
, q =

pB(V
2
C − αV 2

B)

VC(VC − VB)
, α = 1.2 , (15)

telle que pC > pB.
3) Transformation isochore de l’état C à l’état A.

a) Dessinez qualitativement le cycle ABCA dans un diagramme p − V et T − V en définissant
l’orientation du cycle avec des flèches.

Considérez le cycle ABCA tel que VA = 1 m3, TA = 500 K, et TB = 200 K.

b) Calculez la température T , le volume V , et la pression p du gaz dans chaque état A, B, C.
c) Calculez la chaleur échangée, le travail et la variation d’énergie interne du gaz lors de chaque

transformation 1), 2), 3).
d) Calculez la variation d’enthalpie du gaz lors de la transformation 3).

Dans le suite de l’exercice, considérez le même gaz qui subit une séquence de imax cycles moteur
consécutifs, chacun formé de trois transformations du même type que 1), 2) et 3), mais avec des
états B et C, qui changent d’un cycle au suivant, définis comme ci-dessous. Les variables d’état sont
indiquées avec l’index ”i” (exemple : VB(i) est le volume du gaz dans l’état B au cycle i). Considérez
la séquence des cycles moteur telle que :

— Au premier cycle, VA(1) = 1 m3 , TA(1) = 500 K , TB(1) = 200 K .
— À chaque cycle i, les paramètres m et q de l’eq. (15) sont calculés en utilisant les variables

d’état évaluées au i-ème cycle.
— TB(i+ 1) = TC(i).

e) Montrez que TC(i) = αiTB(1).
f) En sachant que la chaleur lors de la transformation CA est échangée uniquement avec un

réservoir à la température de 500K, calculez le nombre maximum de cycles moteur imax que
l’on peut effectuer.

Indications : on arrondit la valeur de la constante des gaz parfaits à R = 8.3 J/K/mol.
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Corrigé

a) (5 pt)

Dans le diagramme p-V, la transformations A-B est une adiabatique (pV γ = const ) et la C-A
est une isochore (donc une droite verticale). Dans ce même diagramme p-V, la transformation
B-C est une droite avec pente négative (on peut le voire en utilisant l’Eq. (1)). Comme il s’agit
d’un cycle moteur le sense de parcours est horaire. Le diagramme T-V est moins intuitif que
le diagramme p-V. Pour obtenir T = T (V ), on utilise la loi des gaz parfaits (pV = nRT ) dans
laquelle on insère l’Eq. (1). La transformation B-C devient donc une parabole avec concavité
vers le bas, puisque selon l’Eq. (1) la droite a coefficient angulaire négatif. A noter que cela
signifie que pendant la transformation B-C, la température augmente d’abord, puis diminue
ensuite, jusqu’à la valeur TC . Le sense est toujours horaire.

b) (4 pt)

Pour trouver les valeurs, nous utilisons la loi des gaz parfaits et l’équation du processus
adiabatique. La constante γ se trouve comme (en étant un gaz monoatomique) :

γ =
Cp

CV

=
5

3
= 1.67 (16)

Pour le point C on utilise l’équation donnée par le problème.
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Point A :

pA =
nRTA

VA

= 4.150 · 104 Pa (17)

Point B :

VB = VA

(
TA

TB

) 1
γ−1

= 3.95 m3 (18)

pB =
nRTB

VB

= 4.2 · 103 Pa (19)

Point C :
pC = mVC + q = 1.99 · 104 Pa (20)

m = −5.32 · 103 Pa/m3 (21)

q = 2.52 · 104 Pa (22)

TC =
pCVC

nR
= 240 K (23)

c) (6 pt)

Pour trouver le travail, la chaleur et la variation d’énergie interne, nous utilisons le premier
principe de la thermodynamique.

Transformation AB. Comme c’est un adiabatique, Q=0, et on trouve l’énergie interne grâce
à la température finale et initiale.

QAB = 0 (24)

∆UAB = nCV (TB − TA = −3.73 · 104 J (25)

WAB = −∆UAB = 3.73 · 104 J (26)

Transformation BC. La pression de cette transformation suit l’équation linéaire donnée par le
problème, on peut donc la remplacer dans la définition du travail, et l’intégrer pour trouver
le travail effectué par le processus.

WBC =

∫ VC

VB

pdV =

∫ VC

VB

(mV + q)dV (27)

WBC =

[
m
V 2

2
+ qV

]VC

VB

= m
V 2
C

2
+ qVC −m

V 2
B

2
− qVB = −3.56 · 104 J (28)

∆UBC = nCV (TC − TB) = 4.98 · 103 J (29)

QBC = ∆UBC +WBC = −3.06 · 104 J (30)

Transformation CA. Comme cette transformation est une isochore, le volume est constant et
le travail W=0.

WCA = 0 (31)

∆UCA = nCV (TA − TC) = 3.24 · 104 J (32)

QCA = ∆UCA = 3.24 · 104 J (33)
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d) (2 pt)

Pour trouver l’enthalpie, on utilise sa définition :

∆H = ∆U +∆(pV ) (34)

Transformation CA :

∆HCA = ∆UCA + pAVA − pCVC = 5.4 · 104 J (35)

e) (5 pt)

Pour trouver la relation entre TC et TB, nous devons trouver la relation entre α et les pa-
ramètres du cycle. On part de l’équation de la transformation BC, et on cherche α par rapport
à la pression et aux volumes des points B et C.

pC = mVC + q =
pB(αVB − VC)

VC(VC − VB)
VC +

pB(V
2
C − αV 2

B)

VC(VC − VB)
(36)

pC
pB

VC(VC − VB) = VC(αVB − VC) + (V 2
C − αV 2

B)

pC
pB

VC(VC − VB) = αVB(VC − VB)

α =
pCVC

pBVB

(37)

Cette relation est vraie pour chaque cycle i, car m et q varient à chaque cycle en fonction des
volumes et des pressions en B et C, tandis que α reste constant. On pourrait donc réécrire :

α =
pC(i)VC(i)

pB(i)VB(i)
(38)

Donc on peut introduire α dans la loi des gaz parfaits du point C pour trouver une relation
entre la température en C et la température en B. Faisons le calcul pour le premier cycle :

TC(1) =
pC(1)VC(1)

nR
= α

pB(1)VB(1)

nR
= αTB(1) (39)

Cette relation est valable pour chaque cycle, car α est défini avec les paramètres du i-ème
cycle. Pour le second cycle, on sait que TB(i+ 1) = TC(i), donc en substituant dans l’eq. 39,
on obtient :

TB(2) = TC(1) = αTB(1) (40)

Et si on fait le même calcul que eq. 39, on trouve :

TC(2) = αTB(2) = α2TB(1) (41)

Et par extension :

TC(i) = αiTB(1) (42)
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f) (3 pt)

Pour trouver le nombre maximum de cycles moteur possibles, il faut trouver combien de cycles
sont nécessaires pour augmenter la température du point C jusqu’à la température du point
A, puisque la température du point A est fixé parce que le gaz échange de la chaleur avec le
réservoir. La condition TC > TA correspond a un cycle réfrigérateur.

TA = TC(i) = αiTB(1) (43)

i =
ln TA(1)

TB(1)

lnα
≃ 5 (44)
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Exercice 4

L’intérieur d’un tuyau cylindrique rigide composé d’une paroi en acier est complètement rempli de
glace à la température de Tgl = 0 ◦C. Le tuyau a une longeur de l = 10 m, un rayon interne ri = 0.09
m et un rayon externe re = 0.1 m. Les températures des surfaces interne et externe de la paroi
sont indiquées par Ti et Te respectivement. Pour fondre la glace (température de fusion de la glace
Tfus = 0◦C), la surface externe du tuyau est chauffée par un flux d’eau à la température Teau = 90 ◦C.
La direction radiale est décrite par la coordonnée r > 0 associée à un repère cylindrique centré sur
l’axe du tuyau. La surface interne du tuyau est en équilibre thermique avec la glace qui fond. Soit
κ le coefficient de diffusivité thermique de l’acier et h le coefficient de transfert de la chaleur entre
l’eau et l’acier.

a) Montrez que la température dans la paroi du tuyau est donnée par T (r) = A× log(r)+B, où
A = (Te − Ti)/log(re/ri) et B = Te − log(re)(Te − Ti)/log(re/ri).

b) Donnez l’expression du flux de chaleur J(r) dans la paroi du tuyau en fonction de Ti, Te, re,
ri et κ.

c) Pour les valeurs données, calculez la température Te.
d) Calculez le temps nécessaire pour que, à l’intérieur du tuyau, toute la glace fonde complètement

jusqu’à obtenir uniquement de l’eau à 0 ◦C.

Considérez pour la suite de l’exercice un tuyau cylindrique rigide composé d’une paroi en acier (rayon
interne ri, longueur l) dont l’intérieur est complètement rempli de glace à la température Tgl = 0 ◦C,
en équilibre thermique avec la surface interne. La surface externe (de rayon re à déterminer) est
chauffée par un flux d’eau à la température Teau.

e) On souhaite trouver le rayon extérieur re qui minimise le temps de fonte de la glace (c’est à
dire le temps qu’il faut pour obtenir uniquement de l’eau liquide à 0 ◦C), autrement dit qui
maximise le flux de chaleur à travers le tuyau. Montrez que le rayon extérieur du tuyau pour
lequel le temps de fonte sera minimal est donné par re = κ/h.

Indications : Traitez ce problème en coordonnées cylindriques. On suppose que le transfert de cha-
leur se fait en régime stationnaire et uniquement dans la direction radiale par convection entre l’eau
et le tuyau (pour r ≥ re), et par conduction dans la paroi du tuyau et entre le tuyau et la glace. On
néglige les transferts de chaleur aux extrémités du tuyau. On fait l’hypothèse que la chaleur échangée
avec la paroi interne est transférée de manière homogène à toute la glace. Densité volumique de la
glace ρ = 920 kg/m3. Chaleur latente de fusion de la glace Lgl = 334 kJ/kg. Coefficient de diffusivité
thermique de l’acier κ = 50 W/m/K. Coefficient de transfert de la chaleur entre l’eau et l’acier
h = 400 W/m2/K. Le logarithme en base e de la variable x est indiqué par log(x).
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Corrigé

a) (6 pt)

On part de l’équation de diffusion de la chaleur en coordonnées cylindriques sans source de
chaleur interne :

1

r

∂

∂r

(
r
∂T

∂r

)
=

ρcV
κ

∂T

∂t
(45)

Puisqu’on est en régime stationnaire, ∂
∂t

= 0. On doit donc résoudre l’équation suivante pour
trouver T (r)

1

r

∂

∂r

(
r
∂T

∂r

)
= 0

∂

∂r

(
r
∂T

∂r

)
= 0

r
∂T

∂r
= A

∂T

∂r
=

A

r
T (r) = A ln r +B

Pour trouver les constantes d’intégration, on utilise les conditions au bord suivantes :

T (ri) = Ti = A ln (ri) +B

T (re) = Te = A ln (re) +B

On a deux équations pour deux inconnues, et on trouve

A =
Te − Ti

ln
(

re
ri

)
B = Te − ln (re)

Te − Ti

ln re
ri

b) (3 pt)

La loi de Fourier nous dit que le flux de chaleur J est donné par

J = −κ
∂T

∂r

J = −κ
(Te − Ti)

r ln
(

re
ri

)
c) (6 pt)
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Pour trouver Te, on utilise le fait que δQ
dt

est constant pour tout r.
On peut donc égaliser la chaleur transmise par unité de temps des deux côtés de la surface
externe S du tuyau :

hS(Te − Teau) = J(re)S

Te = Teau −
κ(Te − Ti)

hre ln
(

re
ri

)
Te =

Teau +
κTi

hre ln
(

re
ri

)
1 + κ

hre ln
(

re
ri

)
Te ≃ 7.00 ◦C

d) (5 pt)

La chaleur totale nécessaire pour fondre la glace est égale à MglLgl avec Mgl la masse de la
glace contenue dans le tuyau.
Comme δQ

dt
est constant dans le temps, on peut simplement écrire

δQ

dt
∆t = MglLgl

∆t =
Lglρr

2
i πl

J(r)2πrl

∆t =
Lglρr

2
i ln
(

re
ri

)
2κ(Te − Ti)

∆t ≃ 375 s

e) (5 pt)

Pour simplifier les calculs, on va égaliser le flux de chaleur des deux côtés de la paroi externe du
tuyau pour éliminer Te et trouver une expression pour dQ

dt
qui l’on va, par la suite, maximiser.

dQ

dt
= −2πlκ(Te − Ti)

ln
(

re
ri

) =⇒ Ti − Te =
dQ

dt

ln
(

re
ri

)
2πlκ

dQ

dt
= 2πrelh(Te − Teau) =⇒ Te − Teau =

dQ

dt

1

2πrelh

dQ

dt
=

Ti − Teau

ln
(

re
ri

)
2πlκ

+ 1
2πrelh

(46)

On maximise dQ
dt

en cherchant re pour lequel la dérivée s’annule :

∂

∂re

(
dQ

dt

)
= 0 (47)
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∂

∂re

 ln
(

re
ri

)
2πlκ

+
1

2πrelh

 = 0 (48)

1

2πlκre
− 1

2πlhr2e
= 0 (49)

re =
κ

h
(50)

Figure 8 – Temps nécessaire pour faire fondre la glace, en fonction du rayon externe.
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